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Families Index Theorem follows from commutative diagram:

f

K{(N) K" (M))
ch(-) ATd(f) | | ch
H:(N; R) Jor H*(M : R).

f+ N — M a K-oriented map, i.e. TN & f*T'M has Spin® structure. Td(f) = Td(TN)/ Td(f*(TM)).
fix =PDo fooPD, f.: H(N;R) — H.(M;R). If f a submersion, f.. = / over the fibers of f.

We extend this to foliations.
M compact manifold, F oriented foliation. M/F = “space of leaves” of F. f: N — M/F a K-oriented
map. G the holonomy groupoid of F'.

Theorem: For k large, the diagram commutes

Ky —2 Ko(C25(G x R))
Ch() Arrd(f) l l Cha
H:(N; R) S H:(M/F).

fi the Connes-Skandalis push forward map. H}(M/F') Haefliger cohomology of F'. ch, and f.. to be defined.
Haefliger Cohomology

U = {U;} cover by foliation charts for F. T; C U; a transversal, T = UT;, disjoint union. QF(T) =
C* k forms with compact support. Hj = vector space generated by a — h*a, h € holonomy pseudogroup
and o € Q¥(T). Q5(F) = QF(T) /Hy,. d - Q¥(T) — QFY(T) induces d : QF(F) — QFF!(F). Construction
independent of all choices. Hf(M/F) = cohomology of this complex. If F' given by a fibration M — B,
then H*(M/F) = H*(B; R).

Integration over the fiber of F

/ cQPYE(M) — QF(F), p =dim F. w € QPFF(M). Write w = Zwi, where w; € Q%(U;). Inte-
F 7
grate w; along the fibers of 7; : U; — T;. Get / w; € QKT). / w = class of Z / w. / w € QF(F)
Lo F % s F

well defined; / commutes with d. Get / : HPTR (M) — HE(M/F).
F

F

Holonomy Graph G of F

g = quivalence classes of leafwise paths in M. Paths equivalent if start at same point, end at same point, and
have same holonomy. s,r : G — M: s([7]) = 7(0), 7([7]) = ¥(1). F foliation of G, leaves are L, = s~ ().

T Ez — L, is the holonomy cover of L,. Gy = units of G = classes of constant paths.
i: M — G, i(x) = class of constant path at z. Gy = i(M). C°(G) is a non-commutative algebra with

product (f-g)(7) = [ f(v11 Dg(11) dy. C2(G) plays role of C°(M/F).

s(v)



Definition of f,.. Case 1: f comes from f: N — M transverse to F'. f induces an oriented foliation Fly
of N. Fy and F are locally transversely diffeomorphic, so get f. : HX(N/Fy) — HX(M/F).

J
feut HE(N; R) =% HY(N/Fx) L2 HZ (M/F)

Case 2: f locally in Case 1. f: N — M/F is a G valued cocycle (Vy, fag). {Va} locally finite open cover
of N. fag : Va NV — G. fap(@)fay(x) = fary(x) = faa :Va — Go = M. [ a submersion if each
faa transverse to F', i.e. if a submersion to “space of leaves” of F. If f a submersion, it induces an oriented
foliation Fy of N. Fy and F are locally transversely diffeomorphic, so get f. : H¥(N/Fn) — H(M/F).

J
fow: HA(N; R) =2 HX(N/Fy) L5 HZ(M/F)

Case 3: Arbitrary f. Construct a manifold W, and K-oriented maps i : N — W and g: W — M/F. gis a
submersion, and f = goi.

Faw s HX(N; R) 25 HY(W; R) 2% HZ (M/F)
Definition of ch, : Ko(C*(G)) — HX(M/F).
Choose connection V : C*®(G) — C*°(T*G). vi = normal bundle of Fs ~ s*(T*M). Projection T*G — v
gives partial connection V* : C>(G) — C™(v}) ~ C>=(s*(T*M)) ~ C°°(G) ®c=(ar) U (M), so,
V¥ €%(G) = C¥(0) omn @ (M). & € CX(9) acts on C(G) by: dla)(b]) = [ o g,

¢ is a C*°(M) equivariant smoothing operator. Extend ¢ to act on C(G) ®@cee( M() Q*(M). Consider
dy(¢) = [V”,¢]. Essentially a transverse deRham operator, i.e. 9,(¢) € C°(G) @ce(ar) U (M). Since
92 # 0, use Connes’ X-construction to extend to § with 6% = 0. Want Tr : C°(G) ®cee(ar) Q* (M) — Q5 (F).
Any K € C°(G) ®ce(ar) 2°(M) is a smoothing operator on C*°(G) @c¢e(ar)y 2*(M). Schwartz kernel de-
noted K(a, ).

Defn: Tr(K) = /K(’,:E)dx € QX(F). z is class of constant path at + € M. Tr is a graded trace and
Trod = doTr.

Theorem: B = [(e1,\1)] — [(e2,A2)] € Ko(C°(G)), where (e;, \;) € Mn(CX(G) @ C) are idempotents.
tr: My (CX(G) @coo(ary (M) — C(G) @ceo(ar) (M) the usual trace. The Haefliger form

Tro tr(el exp [—(de1)?/2im] — ez exp [—(562)2/22'71'])

is closed, and its Haefliger cohomology class depends only on B.
ch,(B) is the Haefliger class of this form.
The Connes-Skandalis push forward map

To define must replace M by M x R**, G by G x R**, F by F on M x R**. Leaves of F are L x {z},z € R%*.
Details later. Get fi : KO(N) — Ko(C°(G x R*")).

Theorem: Following diagram commutes

KONy — Ko(C2(G x R*)
ch() ATA(f) | | ch,
H*(N:R) S H(M x R**/F).

Proof uses naturalness of ch and Td to reduce to a complicated direct computation. As H(M x R*/ F) ~
H*(M/F x R**) ~ H*(M/F) ® H*(R**; R) ~ H*(M/F), we get the main theorem.



Foliation Index Theorem: Ind, : KO(TF) — Ko(C>(G x R**)) the Connes-Skandalis topological index
map. 7, : H(T'F) — H*(M) integration over fibers. Then, for all u € K2(TF),

chg(Ind (u)) = (—1)”/ 7y (ch(uw)) Td (TF @ C), in H(M/F).

F
Direct corollary of theorem above using classical results of Atiyah-Singer and Connes-Skandalis.
Ind, : K)(TF) — Ko(C2°(G)), the Connes-Skandalis analytic index map.
B : Ko(C®(G) — Ko(C(G x R*)), the Bott map. In general B o Ind, # Ind,.

Theorem: For all u € K(TF),
chy (Indg (u)) = ch, (Ind, (u)).

Proof depends on the deep extension theorem of Connes.
Theorem: Let F be an Hermitian bundle over a compact manifold M, and F a codimension ¢ foliation of
M with Hausdorff graph. Assume that F' is even dimensional, oriented and spin. Assume further that the

family of generalized leafwise Dirac operators Dpg is regular near zero and that the strong Novikov-Shubin
invariants of F are greater than ¢/2. Set P = projection onto ker Dg. Then

chy(Ind,(DE)) = chy(P).

o~

As chy(Ind,(DE)) = chy(Ind(Dg)) = / A(TF)ch(E), and ch,(P) carries geometric information about F,

F
this relates characteristic classes of F' to its geomtery.
Heitsch-Lazarov proved this for NS > 3q. Proof requires careful analysis of e~tPE as t — oo.
Regularity Near Zero

Dpg = family of Dirac operators (on G!) along leaves of Fy associated to r*(E).
P = projection onto ker D. P, = spectral projection of D% for (0,¢).

Assumption: both P and P. (for sufficiently small €) have smooth Schwartz kernels, (i.e. are smooth
transversely) and their transverse derivatives define bounded smoothing operators along the leaves of Fi.

Strong Novikov-Shubin invariants
Kp_ (o, 3) = Schwartz kernel of P..

Assumption: Tr(Kp,) = O(e”) for 3 > ¢/2 as ¢ — 0.



The Connes-Skandalis map: details

Reduce to f : N — M/F is étale, i.e. fon : Va = Ti(a) C Ui(a)- Must replace M by M x R%* g
by G x R?*| F by F on M x R?* with leaves L x {z},z € R* . o: D; — T; normal disc bundle in M x R?".

Coordinates x on V,, and y, on De, give coordinates (,¥ya) on Dja) ~ Tja) X D' ~ Via) % D
Uap = classes of paths v where 1. 5(y) € D;(4), and 7(y) € D;(3), 2. 7 || fap(2o), where z, € V, N V3.

Uap charts on G x R coords (%, Yo, YB)-

14
Va Di(a) ~ Ti(a) X Dé ~ ‘/(a) x D

Jfaa

1

(T,Ya)

fsp

('7;7 Z/mi%)

4
Di(s) = Ty(g) x D' = Via) x D

12

Lo

Ti(a)

fap(@o)

(‘Tvyﬁ)

Choose ¢ : D* — R with compact support and /Dz Y? =1, and {¢,} a partition of unity on N subordinate

to {Va}.

Define f : C°(N) — C°(G x R*)as follows. For g € C°(N), fi(g) = 0 except on the U, where
Fi(9)(@,yar ys) = 9(2)0(ya)Y(ys)

fi is an algebra map, so get

Pa()Pp ().

fi: KON) = Ko(C>(G x R?%)).




