Index Theory and Non-Commutative Geometry.

Moulay-Tahar Benameur & James L. Heitsch

Families Index Theorem follows from commutative diagram:

$$\begin{array}{cccc} \mathrm{K}^{0}_{c}(N) & & \stackrel{f_{!}}{\longrightarrow} & \mathrm{K}^{0}(M)) \\ \mathrm{ch}(\cdot) \wedge \mathrm{Td}(f) & \downarrow & \downarrow & \mathrm{ch} \\ \mathrm{H}^{*}_{c}(N; \mathbf{R}) & & \stackrel{f_{**}}{\longrightarrow} & \mathrm{H}^{*}(M : \mathbf{R}). \end{array}$$

 $f: N \to M$ a K-oriented map, i.e. $TN \oplus f^*TM$ has Spin^c structure. $\text{Td}(f) = \text{Td}(TN)/\text{Td}(f^*(TM))$. $f_{**} = PD \circ f_* \circ PD, f_* : H_*(N; \mathbb{R}) \to H_*(M; \mathbb{R})$. If f a submersion, $f_{**} = \int$ over the fibers of f. We extend this to foliations.

M compact manifold, F oriented foliation. M/F = "space of leaves" of F. $f : N \to M/F$ a K-oriented map. \mathcal{G} the holonomy groupoid of F.

Theorem: For k large, the diagram commutes

$$\begin{array}{cccc} \mathrm{K}^{0}_{c}(N) & & \stackrel{f_{!}}{\longrightarrow} & \mathrm{K}_{0}(C^{\infty}_{c}(\mathcal{G} \times \boldsymbol{R}^{2k})) \\ \mathrm{ch}(\cdot) \wedge \mathrm{Td}(f) & \downarrow & \downarrow & \mathrm{ch}_{a} \\ \mathrm{H}^{*}_{c}(N; \boldsymbol{R}) & & \stackrel{f_{**}}{\longrightarrow} & \mathrm{H}^{*}_{c}(M/F). \end{array}$$

 $f_{!}$ the Connes-Skandalis push forward map. $H_{c}^{*}(M/F)$ Haefliger cohomology of F. ch_a and f_{**} to be defined.

Haefliger Cohomology

 $\mathcal{U} = \{U_i\}$ cover by foliation charts for F. $T_i \subset U_i$ a transversal, $T = \bigcup T_i$, disjoint union. $\Omega_c^k(T) = C^{\infty} k$ forms with compact support. \mathcal{H}_k = vector space generated by $\alpha - h^* \alpha$, $h \in$ holonomy pseudogroup and $\alpha \in \Omega_c^k(T)$. $\Omega_c^k(F) = \Omega_c^k(T)/\mathcal{H}_k$. $d : \Omega_c^k(T) \to \Omega_c^{k+1}(T)$ induces $d : \Omega_c^k(F) \to \Omega_c^{k+1}(F)$. Construction independent of all choices. $H_c^*(M/F) =$ cohomology of this complex. If F given by a fibration $M \to B$, then $H_c^*(M/F) = H_c^*(B; \mathbf{R})$.

Integration over the fiber of F

$$\begin{split} &\int_{F}: \,\Omega^{p+k}(M) \to \Omega^{k}_{c}(F), \quad p \ = \ \dim F. \ \omega \in \Omega^{p+k}(M). \ \text{Write} \ \omega = \sum_{i} \omega_{i}, \ \text{where} \ \omega_{i} \in \Omega^{*}_{c}(U_{i}). \ \text{Integrate} \\ &\text{grate} \ \omega_{i} \ \text{along the fibers of} \ \pi_{i}: U_{i} \to T_{i}. \ \text{Get} \ \int_{\pi_{i}} \omega_{i} \in \Omega^{k}_{c}(T_{i}). \ \int_{F} \omega \ \equiv \ \text{class of} \ \sum_{i} \ \int_{\pi_{i}} \omega_{i}. \ \int_{F} \omega \in \Omega^{k}_{c}(F) \\ &\text{well defined;} \ \int_{F} \ \text{commutes with} \ d. \ \text{Get} \ \int_{F} : H^{p+k}(M) \to H^{k}_{c}(M/F). \end{split}$$

Holonomy Graph \mathcal{G} of F

 \mathcal{G} = quivalence classes of leafwise paths in M. Paths equivalent if start at same point, end at same point, and have same holonomy. $s,r: \mathcal{G} \to M$: $s([\gamma]) = \gamma(0), r([\gamma]) = \gamma(1)$. F_s foliation of \mathcal{G} , leaves are $\widetilde{L}_x = s^{-1}(x)$. $r: \widetilde{L}_x \to L_x$ is the holonomy cover of L_x . \mathcal{G}_0 = units of \mathcal{G} = classes of constant paths. $i: M \to \mathcal{G}, \quad i(x) =$ class of constant path at x. $\mathcal{G}_0 = i(M)$. $C_c^{\infty}(\mathcal{G})$ is a non-commutative algebra with

product $(f \cdot g)(\gamma) \equiv \int_{\widetilde{L}_{s(\gamma)}} f(\gamma \gamma_1^{-1}) g(\gamma_1) \, d\gamma_1. \ C_c^{\infty}(\mathcal{G})$ plays role of $C_c^{\infty}(M/F).$

Definition of f_{**} . **Case 1:** f comes from $f: N \to M$ transverse to F. f induces an oriented foliation F_N of N. F_N and F are locally transversely diffeomorphic, so get $f_*: H^*_c(N/F_N) \to H^*_c(M/F)$.

$$f_{**}: H_c^*(N; \mathbf{R}) \xrightarrow{\int_{F_N}} H_c^*(N/F_N) \xrightarrow{f_*} H_c^*(M/F)$$

Case 2: f locally in Case 1. $f: N \to M/F$ is a \mathcal{G} valued cocycle $(V_{\alpha}, f_{\alpha\beta})$. $\{V_{\alpha}\}$ locally finite open cover of N. $f_{\alpha\beta}: V_{\alpha} \cap V_{\beta} \to \mathcal{G}$. $f_{\alpha\beta}(x)f_{\beta\gamma}(x) = f_{\alpha\gamma}(x) \implies f_{\alpha\alpha}: V_{\alpha} \to \mathcal{G}_0 = M$. f a submersion if each $f_{\alpha\alpha}$ transverse to F, i.e. if a submersion to "space of leaves" of F. If f a submersion, it induces an oriented foliation F_N of N. F_N and F are locally transversely diffeomorphic, so get $f_*: H^*_c(N/F_N) \to H^*_c(M/F)$.

$$f_{**}: H^*_c(N; \mathbf{R}) \xrightarrow{J_{F_N}} H^*_c(N/F_N) \xrightarrow{f_*} H^*_c(M/F)$$

Case 3: Arbitrary f. Construct a manifold W, and K-oriented maps $i: N \to W$ and $g: W \to M/F$. g is a submersion, and $f = g \circ i$.

$$f_{**}: H_c^*(N; \mathbf{R}) \xrightarrow{\iota_{**}} H_c^*(W; \mathbf{R}) \xrightarrow{g_{**}} H_c^*(M/F)$$

Definition of $\operatorname{ch}_a : K_0(C_c^{\infty}(\mathcal{G})) \to H_c^*(M/F).$

Choose connection $\nabla : C^{\infty}(\mathcal{G}) \to C^{\infty}(T^*\mathcal{G})$. $\nu_s^* = \text{normal bundle of } F_s \simeq s^*(T^*M)$. Projection $T^*\mathcal{G} \to \nu_s^*$ gives partial connection $\nabla^{\nu} : C^{\infty}(\mathcal{G}) \to C^{\infty}(\nu_s^*) \simeq C^{\infty}(s^*(T^*M)) \simeq C^{\infty}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^1(M)$, so,

$$\nabla^{\nu}: C^{\infty}(\mathcal{G}) \to C^{\infty}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^{1}(M). \ \phi \in C^{\infty}_{c}(\mathcal{G}) \text{ acts on } C^{\infty}(\mathcal{G}) \text{ by: } \phi(g)([\gamma]) = \int_{\widetilde{L}_{s(\gamma)}} \phi(\gamma\gamma_{1}^{-1})g(\gamma_{1})d\gamma_{1}.$$

 ϕ is a $C^{\infty}(M)$ equivariant smoothing operator. Extend ϕ to act on $C^{\infty}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^{*}(M)$. Consider $\partial_{\nu}(\phi) \equiv [\nabla^{\nu}, \phi]$. Essentially a transverse deRham operator, i.e. $\partial_{\nu}(\phi) \in C^{\infty}_{c}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^{1}(M)$. Since $\partial_{\nu}^{2} \neq 0$, use Connes' X-construction to extend to δ with $\delta^{2} = 0$. Want Tr : $C^{\infty}_{c}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^{*}(M) \to \Omega^{*}_{c}(F)$. Any $K \in C^{\infty}_{c}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^{*}(M)$ is a smoothing operator on $C^{\infty}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^{*}(M)$. Schwartz kernel denoted $K(\alpha, \beta)$.

Defn: $\operatorname{Tr}(K) \equiv \int_{F} K(\bar{x}, \bar{x}) dx \in \Omega_{c}^{*}(F)$. \bar{x} is class of constant path at $x \in M$. Tr is a graded trace and $\operatorname{Tr} \circ \delta = d \circ \operatorname{Tr}$.

Theorem: $B = [(e_1, \lambda_1)] - [(e_2, \lambda_2)] \in K_0(C_c^{\infty}(\mathcal{G}))$, where $(e_i, \lambda_i) \in M_N(C_c^{\infty}(\mathcal{G}) \oplus \mathbb{C})$ are idempotents. tr : $M_N(C_c^{\infty}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^*(M)) \to C_c^{\infty}(\mathcal{G}) \otimes_{C^{\infty}(M)} \Omega^*(M)$ the usual trace. The Haefliger form

$$\operatorname{Tr} \circ \operatorname{tr} \left(e_1 \exp \left[-(\delta e_1)^2 / 2i\pi \right] - e_2 \exp \left[-(\delta e_2)^2 / 2i\pi \right] \right)$$

is closed, and its Haefliger cohomology class depends only on B.

 $ch_a(B)$ is the Haefliger class of this form.

The Connes-Skandalis push forward map

To define must replace M by $M \times \mathbb{R}^{2k}$, \mathcal{G} by $\mathcal{G} \times \mathbb{R}^{2k}$, F by \widehat{F} on $M \times \mathbb{R}^{2k}$. Leaves of \widehat{F} are $L \times \{x\}, x \in \mathbb{R}^{2k}$. Details later. Get $f_! : K_c^0(N) \to K_0(C_c^{\infty}(\mathcal{G} \times \mathbb{R}^{2k}))$.

Theorem: Following diagram commutes

$$\begin{array}{cccc} \mathrm{K}^{0}_{c}(N) & & \stackrel{f_{!}}{\longrightarrow} & \mathrm{K}_{0}(C^{\infty}_{c}(\mathcal{G} \times \mathbf{R}^{2k})) \\ \mathrm{ch}(\cdot) \wedge \mathrm{Td}(f) & \downarrow & \downarrow & \mathrm{ch}_{a} \\ \mathrm{H}^{*}_{c}(N; \mathbf{R}) & & \stackrel{f_{**}}{\longrightarrow} & \mathrm{H}^{*}_{c}(M \times \mathbf{R}^{2k}/\widehat{F}). \end{array}$$

Proof uses naturalness of ch and Td to reduce to a complicated direct computation. As $H_c^*(M \times \mathbf{R}^{2k}/\hat{F}) \simeq H_c^*(M/F \times \mathbf{R}^{2k}) \simeq H_c^*(M/F) \otimes H_c^*(\mathbf{R}^{2k}; \mathbf{R}) \simeq H_c^*(M/F)$, we get the main theorem.

Foliation Index Theorem: $\operatorname{Ind}_t : K_c^0(TF) \longrightarrow K_0(C_c^{\infty}(\mathcal{G} \times \mathbb{R}^{2k}))$ the Connes-Skandalis topological index map. $\pi_{F_1} : H_c^*(TF) \longrightarrow H^*(M)$ integration over fibers. Then, for all $u \in K_c^0(TF)$,

$$\operatorname{ch}_{a}(\operatorname{Ind}_{t}(u)) = (-1)^{p} \int_{F} \pi_{F!}(\operatorname{ch}(u)) \operatorname{Td}\left(TF \otimes \boldsymbol{C}\right), \text{ in } H^{*}_{c}(M/F).$$

Direct corollary of theorem above using classical results of Atiyah-Singer and Connes-Skandalis.

 $\begin{aligned} \operatorname{Ind}_{a}: K_{c}^{0}(TF) &\longrightarrow K_{0}(C_{c}^{\infty}(\mathcal{G})), \text{ the Connes-Skandalis analytic index map.} \\ B: K_{0}(C_{c}^{\infty}(\mathcal{G}) &\longrightarrow K_{0}(C_{c}^{\infty}(\mathcal{G} \times \mathbb{R}^{2k})), \text{ the Bott map. In general } B \circ \operatorname{Ind}_{a} \neq \operatorname{Ind}_{t}. \end{aligned}$ **Theorem:** For all $u \in K_{c}^{0}(TF),$

 $\operatorname{ch}_{a}(\operatorname{Ind}_{t}(u)) = \operatorname{ch}_{a}(\operatorname{Ind}_{a}(u)).$

Proof depends on the deep extension theorem of Connes.

Theorem: Let E be an Hermitian bundle over a compact manifold M, and F a codimension q foliation of M with Hausdorff graph. Assume that F is even dimensional, oriented and spin. Assume further that the family of generalized leafwise Dirac operators D_E is regular near zero and that the strong Novikov-Shubin invariants of F are greater than q/2. Set P = projection onto ker D_E . Then

$$\operatorname{ch}_a(\operatorname{Ind}_a(D_E)) = \operatorname{ch}_a(P).$$

As $\operatorname{ch}_a(\operatorname{Ind}_a(D_E)) = \operatorname{ch}_a(\operatorname{Ind}_t(D_E)) = \int_F \widehat{A}(TF)\operatorname{ch}(E)$, and $\operatorname{ch}_a(P)$ carries geometric information about F, this relates characteristic classes of F to its geometry.

Heitsch-Lazarov proved this for NS > 3q. Proof requires careful analysis of $e^{-tD_E^2}$ as $t \to \infty$.

Regularity Near Zero

 D_E = family of Dirac operators (on \mathcal{G} !) along leaves of F_s associated to $r^*(E)$. P = projection onto ker D_E . P_{ϵ} = spectral projection of D_E^2 for $(0, \epsilon)$.

Assumption: both P and P_{ϵ} (for sufficiently small ϵ) have smooth Schwartz kernels, (i.e. are smooth transversely) and their transverse derivatives define bounded smoothing operators along the leaves of F_s .

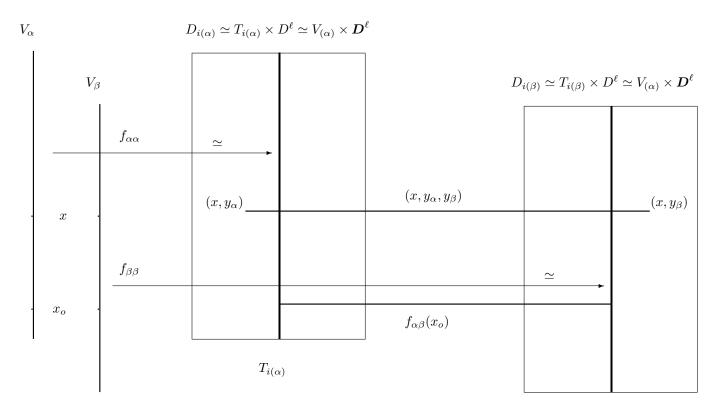
Strong Novikov-Shubin invariants

 $K_{P_{\epsilon}}(\alpha,\beta) =$ Schwartz kernel of P_{ϵ} .

Assumption: $\operatorname{Tr}(K_{P_{\epsilon}}) = \mathcal{O}(\epsilon^{\beta})$ for $\beta > q/2$ as $\epsilon \to 0$.

The Connes-Skandalis map: details

Reduce to $f: N \to M/F$ is **étale**, i.e. $f_{\alpha\alpha}: V_{\alpha} \xrightarrow{\simeq} T_{i(\alpha)} \subset U_{i(\alpha)}$. Must replace M by $M \times \mathbb{R}^{2k}$, \mathcal{G} by $\mathcal{G} \times \mathbb{R}^{2k}$, F by \widehat{F} on $M \times \mathbb{R}^{2k}$ with leaves $L \times \{x\}, x \in \mathbb{R}^{2k}$. $\varrho: D_i \to T_i$ normal disc bundle in $M \times \mathbb{R}^{2k}$. Coordinates x on V_{α} and y_{α} on \mathbb{D}^{ℓ} , give coordinates (x, y_{α}) on $D_{i(\alpha)} \simeq T_{i(\alpha)} \times \mathbb{D}^{\ell} \simeq V_{(\alpha)} \times \mathbb{D}^{\ell}$. $U_{\alpha\beta} = \text{classes of paths } \gamma \text{ where } 1. \ s(\gamma) \in D_{i(\alpha)}, \text{ and } r(\gamma) \in D_{i(\beta)}, 2. \ \gamma \parallel f_{\alpha\beta}(x_o), \text{ where } x_o \in V_{\alpha} \cap V_{\beta}.$ $U_{\alpha\beta}$ charts on $\mathcal{G} \times \mathbb{R}^{2k}$, coords $(x, y_{\alpha}, y_{\beta})$.



 $T_{i(\beta)}$

Choose $\psi : \mathbf{D}^{\ell} \to \mathbf{R}$ with compact support and $\int_{\mathbf{D}^{\ell}} \psi^2 = 1$, and $\{\phi_{\alpha}\}$ a partition of unity on N subordinate to $\{V_{\alpha}\}$.

Define $f_!: C_c^{\infty}(N) \to C_c^{\infty}(\mathcal{G} \times \mathbb{R}^{2k})$ as follows. For $g \in C_c^{\infty}(N)$, $f_!(g) = 0$ except on the $U_{\alpha\beta}$, where $f_!(g)(x, y_{\alpha}, y_{\beta}) = g(x)\psi(y_{\alpha})\psi(y_{\beta})\sqrt{\phi_{\alpha}(x)\phi_{\beta}(x)}$.

 $f_!$ is an algebra map, so get

$$f_!: K^0_c(N) \to K_0(C^\infty_c(\mathcal{G} \times \mathbf{R}^{2k})).$$