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a Stationary Measure?
Alex Furman

The concept of a stationary measure appears
in probability, dynamics of group actions, and
foliations of manifolds. But it can also be related
to such real-life experiences as card shuffling and
searching the Internet.

Markov Chains and Markov Operators
Let P = (pij ) be a k × k stochastic matrix, i.e., a
matrix with nonnegative entries satisfying pi1 +
·· · + pik = 1 for each 1 ≤ i ≤ k. We view pij as
the probability of moving from state i to state j.
Given P and some distribution ν0 on {1, . . . , k}, the
corresponding Markov chain is a sequence {Xn}n≥0

of random variables with values in {1, . . . , k}, where
X0 is chosen according to ν0, and for each n ≥ 0
the value of Xn+1 given X0, . . . , Xn depends only on
the value of Xn, and Xn+1 = j with probability pi,j
provided Xn = i. Then the distribution νn of Xn is
νn = P

∗νn−1 = · · · = (P
∗)nν0, where P∗ij = pji . A

P -stationary measure is a solution to the equation:
ν = P∗ν.

Observe that the distribution νn of the nth step
Xn of the Markov chain defined by a stationary
measure ν remains stable: νn = ν. Any finite
Markov chain is guaranteed to have a stationary
measure. Indeed, any stochastic P satisfies P1 = 1.
Thus 1 is an eigenvalue for P and therefore also
for P∗. Writing a P∗ invariant v as v = v+ − v−

with v+, v− ∈ (R+)
k, we obtain P∗v± = v± because

P∗ preserves the positive cone; if v+ 6= 0 take
ν = (

∑
v+i )

−1·v+, otherwise normalizev−. Another
argument for the existence of stationary measures
is by Brouwer’s fixed point theorem applied to
the P∗-invariant simplex of probability measures
∆ = {qi ≥ 0,

∑
qi = 1}.

Often (e.g., if P
n0
ij > 0 for some n0 and all

i, j) there is only one stationary measure ν, and
given any initial distribution ν0 the distributions
νn = (P∗)nν0 converge to ν exponentially fast
(Perron-Frobenius theorem).

Apparently Google uses this phenomenon in
its page-ranking algorithm, where thousands of
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sites containing the searched-for words have to
be ranked by their “relevance”. Imagine a graph
whose vertices are the sites found in a particular
search and interconnected by links between them.
One assumes that sites that are better connected

(linked to or from) within this graph are most
relevant and that the stationary measure for this
graph can be used to determine the ranking
of the search results. Since the convergence to

the stationary measure is very fast, it can be
approximated by the nth step of the random walk,
rather than by a calculation of the eigenfunctions
of the potentially huge matrix.

Card shuffling is another, much older, example.

Performing a number of shuffles, say cutting the
deck at random places, is implicitly assumed to
produce permutations of the deck with an approxi-
mately uniform distribution. From a mathematical
standpoint, a finite group (S52) acts transitively

on a set (fifty-two cards), and some probability
measure µ is given on a generating set (cut-
shuffles) of the group. This defines a Markov chain
pij = µ{g : gi = j}, and one can show that the uni-

form measure is the unique stationary one on this
set. This example appears already in Poincaré’s
Calcul des probabilités (1912).

Markov chains are generalized by Markov oper-
ators on, say, a compact space X. Let {µx}x∈X be

a family of Borel probability measures on X, so
that x ֏ µx is continuous in the weak-* topology.
This defines a (positive, normalized) operator on
C(X) by Pf (x) =

∫
X f (y) dµx(y). The dual operator

P∗ acting on C(X)∗ = M(X) preserves the con-
vex weak-* compact subset Prob(X) of probability
measures. In this setting, stationary measures are
solutions in Prob(X) to ν = P∗ν. Existence of
stationary measures is now guaranteed by the

Markov-Kakutani fixed point theorem.

µ-Stationary Measures
Next consider a continuous action G ↷ X of some
locally compact groupG on a compact spaceX. We
say that X is a compact G-space. Fix a probability

measure µ on G and define a Markov operator
{µx} on X by pushing µ forward via g ֏ g.x.
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This Markov operator on Prob(X) is given by the
convolution µ ∗ ν =

∫
g∗ν dµ(g). Stationary (or

rather µ-stationary ) measures are solutions to

(1) ν = µ ∗ ν.

Note that any G-invariant measure on X is µ-
stationary for any µ on G; however, many im-
portant actions of large groups (precisely the
nonamenable ones) leave no probability measure
invariant. Yet any compact G-space X is entitled
to a µ-stationary measure ν.

Here is a beautiful application of this fact
(observed by Deroin-Kleptsyn-Navas): any count-
able subgroup G < Homeo(S1) of the group of
homeomorphisms of the circle is conjugate to the
subgroup of bi-Lipschitz homeomorphisms. Indeed,
fix a measure µ of full support on G and let ν
be a µ-stationary measure on the circle. Then

it follows from (1) that
dg∗ν

dν
≤ µ(g)−1, and the

required conjugation can be realized by any cir-
cle homeomorphism mapping ν to the Lebesgue
measure.

Poisson-Furstenberg Boundaries
Now let us very briefly discuss the notions of
µ-stationary measures, µ-harmonic functions, and
Poisson (or rather Poisson-Furstenberg) bound-
aries that were developed by Furstenberg in his
study of random walks on groups [2] and that
continue to play an important role in rigidity,
dynamics, and geometry.

Let ν be a µ-stationary measure on some G-
space X. If µ is sufficiently nice, say absolutely
continuous with respect to the Haar measure on G
and not supported on a proper closed subgroup,
thenν isG-quasi-invariant.Consider the transform
Π : L∞(X, ν) → L∞(G) given by
(2)

Πf (g) =
∫

X
f (x) dg∗ν(x) =

∫

X

dg∗ν

dν
(x) f (x) dν(x).

Equation (1) implies that u = Π f satisfies aµ-mean
value property

u(g) =

∫

G
u(gh)dµ(h).

Such functions are called bounded µ-harmonic.
In the case of G = PSL2(R) acting on the circle
X = R ∪ {∞} and µ being a bi-SO(2)-invariant
measure, bounded µ-harmonic functions u on G
are lifts of the classical harmonic functions on
the Poincaré disc PSL2(R)/ SO(2), and (2) is the
classical Poisson transform.

This construction has an analogue in the com-
pletely general setting of an arbitrary locally
compact group G and a nice probability mea-
sure µ on it. Namely, there exists a G-space X with
a µ-stationary measure ν, so that transform (2) is
an isometric isomorphism between L∞(X, ν) and
the subspace of bounded µ-harmonic functions
in L∞(G). Such an (X, ν) is defined uniquely as a

measurable G-space; it is called the Poisson or the
Poisson-Furstenberg boundary PFµ(G) of (G, µ).

Such boundaries have been identified explic-
itly in many examples, including semisimple Lie
groups and their lattices, where PFµ is a compact
homogeneous space of the Lie group ([2]); Gromov
hyperbolic groups Γ , where PFµ is realized on the
Gromov boundary ∂Γ ; and many other situations
(see [3]).

The G-action on PFµ has important dynamical
properties—the action is amenable and ergodic in
a very strong sense. The dynamics of G↷ PFµ and,
in particular, the structure of their equivariant
quotients play a crucial role in proofs of many
remarkable rigidity results for representations of
lattices, group actions on manifolds, computations
of bounded cohomology, and more.

Stiff Actions
Studying dynamics of a single transformation
T : X → X, one is interested in closed invariant
sets, invariant measures, and limiting distributions
for orbits of individual points. Famously, Ratner’s
theorems provide a complete classification of
these objects for unipotent flows on homogeneous
spaces.

Recently, significant progress has been made
on analogous problems for algebraic actions of
large groups Γ , such as Γ < SLd(Z) acting on
the torus X = Rd/Zd ([1]), or Γ < SLd(R) acting
on X = SLd(R)/ SLd(Z) ([4]). In this context, any
Γ not contained in a proper algebraic subgroup
L Ú SLd(R) is “large” enough. The acting group Γ
is nonamenable; thus the role played by invariant
probability measures in Ratner’s theorems is taken
here by stationary ones. For example, classification
of closed invariant sets is deduced from the
classification of stationary measures. These turn
out to be invariant (such actions are called stiff ):
either atomic on a finite Γ -orbit, or uniform, or
convex combinations of these. Hence using a few
matrices from SLd(Z) at random, one can very
effectively shuffle the deck of torus points to get
a uniform distribution.
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