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Abstract Let u be a probability measure on a locally compact gra@upand suppose

G acts measurably on a probability measure spdten), preserving the measure.

We study ergodic theoretic properties of the action alprigi.d. random walks onG.

It is shown that under a (necessary) spectral assumption op-dneeraging operator

on L%(X,m), almost surely the mean and the pointwise (Kakutani’s) random ergodic
theorems have roughly /2 rate of convergence. We also prove a central limit theorem
for the pointwise convergence. Under a similar spectral condition on the diaGeaetion

on (X x X, m x m), an almost surely exponential rate of mixing along random walks is
obtained.

The imposed spectral condition is shown to be connected to a strengthening of the
ergodicity property, namely, the uniqguenessisintegration as aG-invariant mean on
L*(X,m). These related conditions, as well as the presented sharp ergodic theorems,
never occur for amenabl@. Nevertheless, we provide many natural examples, among
them automorphism actions on tori and actions on Lie groups’ homogeneous spaces, for
which our results can be applied.

1. Introduction and statement of the main results

Throughout this paperG denotes a locally compact group, acting measurably on a
probability space(X, B, m), preserving the measure. The action is assumed to be
ergodic, i.e. there are nG-invariant measurable subsetsXf except subsets of measure
zero or one.

Classical ergodic theory, which studies the behavior of a single measure preserving
transformation, has been widely extended through the last two decades to actions of
amenable groups (se®Y1-3]). The existence of 8lher sets in amenable groups enables
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natural averaging, which makes these groups good candidates for such an extension.
However, for general locally compact groups one should seek a different approach, and
the one we shall explore in the present paper is based upon the concept of a random walk
on the group.

Let 1 be a probability measure ai. We shall consider the probability space of the
random walk(©2, P) = (GY, 1), and foro = (w1, wy, ...) € Q refer to the sequence
of productsg? = w,...w1 as a sequence sandom products In the sequel we shall
impose different conditions on a measuren the groupG: w is said to besymmetridf
& = w (hereji(E) = uw(E~1) for measurabléE ¢ G); u is said to begeneratingif it
is not supported on a proper closed subgroug péind is said to baperiodicif it is not
supported on a coset of a proper closed subgroup. dfiote thatu is aperiodic iffi * u
is generating.

THEOREM. (Kakutani Ka]) Supposé&; acts ergodically on(X, m), and assume that is
a generating probability measure ai. Then for any functiorf € L(X, m), for P-a.e.
w € R,

1 n
lim —Zf(gf"x):/ fdm (1.1)
n—-oon =1 X
form-a.e.x € X.

The statement follows from Birkhoff’s ergodic theorem, applied to the single
transformatior’, acting on the product spa¢g x X, P x m) by T (w, x) = (fw, w1x)
whered : Q — Q is the shift: (fw); = w;+1. Under the assumptions of the theorem,
the skew-product2 x X,P x m,T) is known to be ergodic. In fact, under some
mild conditions on the distributiop, this skew-product is an exact transformation. This
(incidental) result is proved in Appendix B.

An intrinsic feature of the ergodic theory of amenable actions is the lack of any
prescribedate of convergencealid for all bounded functionqr, DJR]. In this paper we
shall present a family of non-amenable actions, where Kakutani’s random ergodic theorem
can be sharpenedumiversalrate of convergence holds fali L2-functions. To formulate
the precise result, we shall need some notation: consider the ugitagpresentationr
on the spacé3(X, m), defined by (g) f (x) = f(g1x), whereg € G, f € L3(X,m).
HereafterLg(X, m) denotes the space of zero-mean functiond. #iX, m). Given a
probability distributionu on G, recall that theu-convolution operatorr () is defined
on L3(X, m) by

(e, v) = /G (), v) du(g). (1.2)

Observe that its operator norm always satisfiesuw)|| < 1. We shall be interested in the
situation wherd|7 ()| < 1. This spectral gap condition is typical for actionsnmin-
amenablaroups; in fact, it never holds for actions of amenable groups, while for discrete
groups with Kazhdan’s propertyf’) (see Definition 6.2), it is always satisfied (assuming

wu is aperiodic onG). Let us postpone further discussion of this condition to §6, where
precise statements and other examples are considered, and concentrate here on some of its
consequences.
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THEOREM1.1. (Rate ofL?-convergenceBuppose; acts ergodically on a probability
space(X, m), let u be a probability distribution oG, and assume thatz ()| < 1.
Let {a,}°°, be a decreasing sequence wili?>; a2 < co. Then for any function
f e L3(X,m), forP-aew e ,

=0.

lim a, -
n—oo

> fglx)
i=1

In particular, for any functionf € L?(X, m) and every > 0, for P-a.e.w € Q,

1 logt/2+€
= oxy— | fam| =o22—").
[ s [ ran] =0 (57

For the proof see §2. We remark that a spectral assumption is necessany fate of
convergence to hold faall functions inL2(X, m) (see Remark 2.4). Moreover, the rate
of convergence in the above result is essentially optimal, since by the Law of the Iterated
Logarithm there exist actions for which the averages exeégdbglogn/./n) infinitely
many times.

By a completely different method, a similar rate of convergence to the one asserted in
Theorem 1.1 is established in 83 for the pointwise convergence.

THEOREM1.2. (Rate of pointwise convergencépt G,u and (X,m) be as in
Theorem 1.1 and ld,};2 ; be a monotone sequence wWR ; la, logn|? < co. Then
forall f € L3(X,m), for P-a.e.w € Q and form-a.e.x € X,

n
nIL>mOO ap - X]:-f(glwx) =0.
i=

In particular, for any f € L?(X,m) and anye > 0, for P-a.e.0 € Q andm-a.e.x € X

one has
‘1i log®?t€ n
” i=lf 8 Xf N

Theorems 1.1 and 1.2 show that, assunfiimgu)|| < 1, the rate of convergencein (1.1)
is roughlyn—1/2, This suggests to estimate the rate of convergence, normalizg@ bin
this context we obtain the following.

THEOREM1.3. (Functional central limit theoremlet G, and (X,m) be as in
Theorem 1.2 and &l # f € LP(X,m), p > 2, be areal valued function. Define

n
Su(@,x) =) f(gfx), on=ISl2
i=1

on (2 x X, P x m). Theno = lim,_,« n"Y2. ¢, is non-zero, the sequence of random
processesr, * - Siu, t € [0, 1] converges in the Skorohod topology to the standard
Brownian MotionW (¢) on [0, 1], and the following estimate holds:

1 a 2,92 log?/?n
sup |P xm({o 1 S, <a}) — / e 17/ dt‘ =0 ,
ael0,1] " " V2o Jox nd

wheres = min{1/2, (p — 1)/2}.
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Let us discuss now mixing properties along random products. Obviously, to have
mixing one has to assume first that, L%(X, m)) does not admit finite dimensional sub-
representations, which is known to be equivalent to the conditpnZl = ® =, i.e.
ergodicity of theG-action on(X x X, m x m). Motivated by Theorems 1.1-1.3, we shall
impose the spectral conditiglr ® 7(u)|| < 1 on theG-action on(X, m). Again, we
remark that this condition never holds for actions of amenable groups, while for discrete
groups with Kazhdan’s propert§T), it is equivalent to weak mixing (assuming is
aperiodic onG).

THEOREM1.4. SupposeG acts on a probability spac€X, B, m), u is a probability
distribution onG, and that||r ® w(u)|| < 1. Then there exists a conull s& C £,
such that for eaclw € Q' the sequence of random produgtg’}>° ; is mixing, namely,
for any A, B € B one hasm(g?A N B) — m(A) - m(B). Moreover, for any. with

lr 7w = 2o < A < 1, and anyA, B € B, there is a full measure subset
Q4 p C 2, such that for alkw € Q24 p one has

lim m(gyANB) —m(A) - m(B) _

n— oo )\.n

0.

The assumption made in the sharp ergodic theorems is a spectral one. However, it is
very closely related to a natural strengthening of ergodicity.

Definition 1.5.Let G be a locally compact group acting measurably on a probability
measure spaceX, m), wherem is G-invariant. TheG-action on(X, m) is said to be
strongly ergodidf m-integration is the uniqué&-invariant mean (i.e. continuous positive
normalized functional) old.*° (X, m).

This definition is slightly stronger than the one given by Connes and Wei€GW\ [
(Schmidt showed in $d that they are not equivalent). Notice that the ergodicity
assumption is equivalent to the assertion thahtegration is the uniqué&-invariant mean
onLP(X,m)forany 1< p < oo.

A probability measurex on a locally compact grou is said to be measurably
aperiodicif u is not supported on a coset of a proper measurable subgroGp dfor
example, ifu is absolutely continuous with respect to the Haar measure on a connected
locally compact groud, then it is measurably aperiodic. The following result, which is
proved in 85, connects strong ergodicity and our spectral assumption.

THEOREM1.6. Assume thatG and (X, m) are as in Definition 1.5 and let. be a
measurably aperiodiprobability distribution onG. If the G-action is strongly ergodic,
then|z(w)| < 1.

For countablez, Theorem 1.6 was proven 5. In fact the two conditions are then
equivalent, but this is not the case in general. Thus, the question of whether an action
is strongly ergodic has ergodic theoretic implications. The problem, however, has been
investigated in its own right by many authors (e.g. in relation to the Ruziewicz problem).
In 86 we shall briefly recall several known examples of such actions and present some new
ones. Here are two natural families:
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THEOREM1.7. LetG C SL4(Z). Suppose that acts irreducibly orR? and thatG does
not contain an abelian subgroup of finite index. Thendhaction on thed-torusR? /Z¢
is strongly ergodic.

THEOREM1.8. Let G = I1G; be a semisimple Lie group with finite centérc G be a
lattice, and letH € G be a subgroup. Suppose that the projectiorHofo every simple
factor G; does not have an amenable closure. Thenahaction onG/ T is strongly
ergodic.

2. Sharp mean ergodic theorem
In this section we prove Theorem 1.1. In fact, we shall see that it is natural to consider this
result in the general framework of unitary representations.

THEOREM2.1. Let (r, H) be a unitaryG-representationy a probability distribution on
G, and assume thaitr (1) || < 1. Then for any decreasirl§ sequencéua,}, and any vector
u € 'H, there exists a conull s€,, C €2, such that for alw € Q,,

> el > eyt
i=1 i=1

We shall consider both the action of random products ky’), and the action of their
inverses byyr(gf")*l, because the former is natural in the abstract unitary representation
setup, while the latter appears in representations comingdreantions (cf. Theorem 1.1):
(g (x) = f(g2x).

For a fixedu € H, define the random variablég andS; on (2, P) by

k k
Y (g > w(g?)
i=1 i=1

Our theorem will be deduced from the following estimates.

lim a, - = lim aq, - =0.
n—0o0 n—0o0

Sk(w) = AR

LEMMA 2.2. There exists a constanl, such that for every > 1,
E(S3)<C1-N, E(SH <Ci-N. (2.1)

LEMMA 2.3. There exists a constanfz, such that for anyk < N the conditional
expectations satisfy

E(S3 | w1, ..., %) > SZ — C2- Sk 2.2)

and a similar inequality holds fos;’. For Si (respectivel\s;) sufficiently large, the right-
hand side dominategf/z (respectiveI}(S;:)z/Z).

Proof of Theorem 2.1 based on 2.2 and 27 somee > 0 and letGy ., G;e denote the
events
Gre = {0 | axSk(w) > €}, Gi . ={o]aS;(®) > €}.

We will show that with probability 1 the event , G; . occur only finitely many times.
Sincee > 0 is arbitrary, this proves the theorem. Hereafter, we focus on but the same
arguments apply to'; ...
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Consider the intervals’2< k < 2"t1 and define the events

2n+l 271+1 k—1
En,e = U Gk,e = U Fk,év WhereFk,e = Gk,e \ U Gj,e-
k=2" k=21 j=2n
It is enough to show that with probability one the evelis (},, occur only finitely many
times, and the latter will follow from the Borel-Cantelli lemma, as soon as we prove

Y P(Ene) < oo. (2.3)
n=1

Observe thatFy . is measurable with respect to1,...,wr, andow € Fi implies
Sk(w) > €/ax. Hence,S; is large onFy ¢, for largek. Therefore (2.2) gives, using the

fact that{a;} is monotonic
! AP = E(S2,,, | Fie) = €.

n n k —_ - N

P(Fre) Jr. S 2ot TR = 202 T 242,

SinceE, . is a disjoint union of thef ¢'s, we obtain, using (2.1)

271+1

on+1
P = 3 PO =7 Z/ 2 ,dP
—on J Fie
2 !
a2 E(s2 = 02" d3).

The monotone series’ a,f converges together with’ 2”a§n, thereby proving (2.3). This
completes the proof of Theorem 2.1, and thus also Theorem 1.1. |
It remains to prove Lemmas 2.2 and 2.3.

Proof of Lemma 2.2We estimate the expectatiE{szv) = Zﬁ’j E(m(g)u, n(g] Ju) b

—J

E(s3) < Z I (g9 + 22 Z [ (@)1r .. 4179, 7 (g7 )u)]

j=1r=1

v N
Nl + ZZnn(u)u’nunsz-N
j=1lr=1

whereC1 = (1+ 2w (W + 2w (W% +---) - ull? < co.

To estimateE((S;f,)z) we use similar inequalities, replaciltlﬁ(n(g;f’Jrr)u n(gj Yu)| by

E(r(g9y,) ", m(g) )l = [E(r(€) (@) fy 0w, w(g9) T u)]

= [E(m(@; ... o7t )u,u)l

= [ () u, u)] < w )" - llul|?,

thereby obtainindj:((Sj;,)z) < C1-N. This proves Lemma 2.2.
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Proof of Lemma 2.3Let us fix some < N and define the random vectors

k
Z=2@w) =) n(g)u,
j=1

N—k N—k
W=Ww =) n(g)u= ) 1@ o)rgu.
r=1 r=1
Note thatZ is measurable with respectdq, ..., wr and|| Z| = Sx. Therefore,
E(S3 | w1.....ox) = E(IZI? + |WI|? + 2Re(W. Z) | o1, ..., ox)
N—k
= S;? -2 |[E(m (@k4r - - - k41T (U, Z) | w1, . .., wi)|
r=1
N—k
> SE =2 llwl” - llull - 1 Z]| = SF = C2- Sk,
r=1
whereCz = 2- (|x ()|l + lIwIIZ + -+ +) - llull.
In estimatingE((S;;,)2 | w1,...,wr), we use the random vectors
k N—k N—k
Z = Zn(g;‘-’)_lu, W = Z n(g,‘{"+r)_lu = Z n(g,‘{")_ln(w]:jl .. .a),?jr)u,
j=1 r=1 r=1
and prove similar inequalities, replacifig((z (g, - - - wk+1)u, Z) | w1, ..., wp)| by
E(m(g) (gt - o), Z) | o1, ..., wp)|
= [E(m(@p sy - .- 0 ). T Z) | @1, ..., i)

< () u, w(gH Z) < llw (I - lull - 1Z]].

Since||z ()| = |lm(w)*|| = 7 ()|l < 1 we get the same estimation
E(Si)? | w1,..., 1) > (S)2 = C2- SF.
The proof of Lemma 2.3 is completed. ad

Remark 2.4.The assumptiofiz ()| < 1 is essentially necessary to achieve any rate of
convergence. More precisely, iR$] the following statement is proved. Suppose that for
allu e H: |n 1. i (g )ull = o(ay) for some fixed sequeneg — 0, thenk; 4 7
(see Definition 6.1). We note that the conditions ¥ = and||w(u)|| < 1 are closely
related, and are often equivalent (see Theorems 6.3 and 6.9 below).

3. Sharp pointwise ergodic theorem and CLT
Sharp pointwise ergodic theoremln 82 a prescribed rate of convergence was established
for themeanergodic theorem. In this section we prove a pointwise ergodic theorem, with
essentially the same rate of convergence, but using a completely different approach.
Theorem 1.1 states, roughly, thatGf © and (X, m) satisfy ||z ()| < 1, then almost
surely the norm|| "7, f(g”x)|l is of order \/n, which intimates that the vectors
{m(g?) f}. are ‘almost’ orthogonal. This property suggests to apply an argument, due
to Kac, Salem and Zygmund on pointwise convergenaguafsi-orthogonasequences, a
notion which we now recall.



1044 A. Furman and Y. Shalom

Definition 3.1. A sequencég, }.° ; in a Hilbert spacét is said to beguasi-orthogonalif

the following equivalent conditions are satisfied.

(i)  The bi-infinite matrix{(¢:, ¢;)}; ; has a bounded norm.

(i) There exists a constarit < co, so that for anw € H the following Bessel’s type
inequality is satisfiedd_, |(¢n, ¥)|2 < L||¥ 2.

(iii)y For every/? sequencgc, }° ,, the series , c,¢, converges irt{.
The equivalence of the above conditions is a standard exercise in bi-linear forms on
Hilbert spaces. One also easily verifies that a sequence of végigdrsatisfying
sk, o)l < C 25 k=1 (3.1)
for someC < oo andi < 1, has property (iii), and is therefore quasi-orthogonal.

Proof of Theorem 1.2Following Kac—Salem—-zZygmun&SZ], we observe that ifo, (y)}

is a quasi-orthogonal sequence lii(Y, v), where (Y, v) is a probability space, then
property (i) in Definition 3.1 suffices to prove the following elegant Rademacher—Menshov
maximal inequality (which was originally stated forthonormalsequences).

THEOREM (see Ey, pp. 189-193]There exists a constaf < oo, depending only on
{¢n(»)}°2,, so that for any sequende,}° ,,

/ sup
1<k<oo

It is not difficult to verify that (3.2) implies thev-a.e. convergence of the series
3% 1 angn(y) given any sequende,} with 3, |a, logn|? < co.

Now, let {a,} be a monotone positive sequence W), |a, logn|? < oo, and f €
L%(X, m). Consideringf as a function on the skew-produ@t v) = (2 x X, P x m), we
claim that the sequence

dp(w,x) = foT"(w,x) = f(wy...01x)

satisfies estimation (3.1), and is therefore quasi-orthogonal. Indeed

k

2 00
andn(y)| dv(y) < K - laylogn|?. (3.2)
1 n=1

n=

|<¢n+k,¢n>|=|<foT",f>|=UX/QM)-f<wk...w1x)d7><w>dm<x>
= " £, HH < llm@ol* - 1 F12.

Therefore, the functiong, have exponential decay of correlations (3.1), with=

Izl < 1.
Next, applying inequality (3.2) tap, = f o T", we conclude that forP-a.e.
w € Q andm-a.e.x € X the series: ) a,pn(w,x) = > an,f(g¥x) converges.

Finally, recall Kronecker’s lemma: ifa,} is monotonic andd_, a,s, converges, then
lim,— o0 anl Y i_q sil = 0. Hence, we obtain foP-a.e.w € Q andm-a.e.x € X

> Ferx)
i=1

thereby proving Theorem 1.2. ]

-0,

lim a,
n—0o0
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Two auxiliary results for the CLT. For the proof of the Central Limit Theorem
(Theorem 1.3), we shall need two results on the structure of the skew-pi@iucy, P x
m, T), which may be of independent interest.

Consider the spac® of bi-infinite sequences with the product measre: 1% and the
shifté, which is the natural extension (®, P, 6). The skew-produdt2 x X, P x m, T),
defined byT (w, x) = (bw, w1x) is the natural extension ¢f2 x X, P x m, T). Consider
theo-algebraB3 of all measurable sets of the folx B, whereB C X is measurable.

THEOREM3.2. LetG, n and(X, m) be as in Theorem 1.2. Then thealgebraB has the
following property: the coefficienis(n) defined by

p(n):sup{iuf’g)' ’feL%(\/T’B),geL%(i/T’B)}, (3.3)
AN 1l i1 A
decay exponentially fasp(n) < |7 (w)]".

The theorem is a direct consequence of the following.

LEMMA 3.3. Let f,g € L3(2 x X,P x m) be such thatf e L3(\/72, T'B) and
g € L3(\/~", T'B), wheren > 1. Then

o)l = Mm@ Px f1I - lglh < I i) l™ - LA llgll, (3.4)

wherePy : L3(Q x X, P x m) — L3(X, m) denotes the orthogonal projection

(Pxf)(x)=/s_2f(w,x)d75(w).

Proof of Lemma 3.3Since f is measurable with respect tg w1, w2, ..., we can write
flw,x) = f(w1,w2,...,x),and f o T"(w, x) = f(wy+1, Op42,..., w5 - w1x). Let
h=goT" e T"LA\/ % T'B) = L3(\/°., T'B). The functionk is measurable with
respect tax, w;, i < 0, and hence(g o T")(w,x) = h(w,x) = h(...,wg, x). Now
compute

KA =foT" goT" | ={foT" h)

//_f(w,m,...,wn...wlx)-E(...,wo,x)dﬁ(w)dm(x)
X JQ

integrating the last expression with respect to the variablewith i < 0,i > n, we
continue

/ /_ Px f(wp...01x) - Pxh(x) du(wi) ...du(w,) dm(x)
X JQ

= [(m ()" Px f, Pxh)| < [lw ()" Px f1l - [ Pxh]|.
Since|| Pxh| < ||kl = llgll and|| Px f1I < IIf]l, we have

Il ()" Px fII < llw (™ - I1Px fI < I Goll™ - 1L £l

which implies (3.4). ]
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For the proof of Theorem 1.3 we shall also need the following.

PROPOSITION3.4. Let G act ergodically on a probability spaceX, m), and letu be
a measure onG. Suppose that a functioff < L%(X, m) is an L2-coboundary on
(Qx X, P xm,T),ie f(x) = h(@w, w1x) — h(w,x) With h € L3(Q x X). Then
h(w, x) = h(x) does not depend an. Furthermore, ifu is aperiodic onG, or satisfies
Il ()] < 1, then necessarily = 0.

The proof of a more general statement, namely, thatt 0 is not ameasurable
coboundary (rather than merely &R-coboundary), is given in Appendix A.

Proof of Theorem 1.3Theorem 3.2 states thé} is a sum of: random variableg o 77,
where f is anL? bounded p > 2) random variable, which is measurable with respect
to a p-mixing o-subalgebras. In this situation, Proposition 3.4 is known to imply that
o = lim,_« n~ 2.0, is non-zero, and therefore ti§g’s satisfy the assumptions ddJY].

The second statement, concerning the rate of convergence, follows fraemgbaential
p-mixing, as was shown inffi]. ]

4. Mixing properties
In this section we discuss mixing properties of group actions along random products. In
finite dimensional representations no mixing can occur, hence, seeking such phenomena,
we need to exclude the existence of finite dimensional sub—representatiﬂﬁ@dnm).
In general, it is well-known that a unitary representatiogontains a finite dimensional
sub-representation iff ® 7¢ contains the trivial sub-representatiof. IHere,7¢ denotes
the contragradient representationpi.e. the natural representation on the dual space. If
7 arises from a measure preservi@gaction on(X, m), thenz¢ = x, so the condition
1 € n®ncisequivalentto ¢ Z 7 ®m, itself equivalent to the ergodicity of the diagonal
G-action on(X x X, m xm). For proofs of these and further results in this direction see, for
example, BR]. In light of this observation, and motivated by Theorems 1.1-1.2, it seems
natural now to impose the spectral conditipn® 7 ()| < 1, for an appropriate measure
1 onG. We remark that in many examples the conditjen® = (w)|| < 1 is equivalent
to|lr(w)|l < 1 (see 86), but this is not the case in general. Hereaftandn (i) are as
in (1.2).

Our first goal is to prove Theorem 1.4. To emphasize the Hilbertian nature of the
statement, we reformulate the theorem as follows.

THEOREMA4.1. Let G act on(X, B, m), and 1 be a probability distribution orG, such
that || ® w(w)| < 1. Then there exists a full measure sub®étc 2, so that for each
o € Q' the sequence of random produ¢g§’} > ; is mixing: for allg, ¥ € L(Z)(X, m)

lim (¢, 7 (g)y) = lim / P (grx) - ¥(x)dm(x) =0. (4.1)
n—oo n—0o0 X
Moreover, for any. with Ag = /7 @ r(w)|| < A < 1, and anyp, ¢ € L%(X, m), there
is a subset of full measuy y C 2, such that for any € Q4
im (@ TEDY) _
)\‘n

n—oo

0. (4.2)
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For the proof of Theorem 4.1 we shall need the following.

LEMMA 4.2. LetG, n and(X, m) satisfy the same assumption as in Theorem 4.1, and set
20 =/t @t (W] < 1. Thenfor anyp, ¥ € L3(X, m), one has

E’ /XdJ(g,‘i’X) YD) dmx)| < Ag - gl - 1yl (4.3)

Proof. Consider the function® = ¢ ® ¢ and¥ =y ® ¥ in L3(X x X, m x m).

E

/X¢(g,‘,°X) <Y (x)dm(x)

2 12
< (/ du(")(g)>
G

b 7 1/2
= (/G/;(/Xfﬁ(gx)-¢(gy)-1//(x)-W(y)dm(x)dm(y)d'u(n)(g))

_ 1/2
= (/ </ D(g(x, y)) d,u(n)(g)) -W(x,y)dm x m(x, y))
XxX G

< llm @mG "2 |o|Y? - w2

/X¢(gX) - (x) dm(x)

Since||®|| = ||¢]|2 and|| ¥ || = ||¥ ||, this completes the proof of the lemma. ]

Proof of Theorem 4.1Choose somé > g, and observe that the non-negative series
o

1

Sw) =) -
n=1

has finite expectation, for by Lemma 4£25) < }7° (xo/A)" < oo. Therefore, for a full
measure subs€l, , C Q2 we have

/X¢>(g,’fX) - (x)dm(x)

1
lim —

n—oo0 \"

:O’

/Xfiﬁ(gffX) Y (x) dm(x)

thereby proving statement (4.2) in the theorem. Takiig= (; ; Q2¢,.¢;, Where{i}icn
is a dense countable sequenceﬁijx, m), we obtain (4.1). |

Note that the probabilistic nature of (4.2) is unavoidable, as one cannot expect any
deterministic rate of mixing. In fact, niixed sequencgg,} can provide any preselected
rate of mixing for all functions, as the following general assertion shows.

Remark 4.3 Given any sequendd/, };° ; of unitary operators on a Hilbert spatg any

v # 0, and any sequeneg — 0, there exista € H such that(U,u, v)| > a,|lull - ||v].

This follows from Banach'’s uniform boundness principle, applied to the sequence of linear
functionalsf, (x) = a; - (U,x, v) having normg| f, | = a; 1 - [|v]| — oo.

As we have already mentioned, the conditipn® 7 ()| < 1 holds for any weakly
mixing action of a discrete grou@ with Kazhdan’s property7T) and aperiodigt on G.
In particular, it is satisfied by lattices in higher rank simple Lie groups.



1048 A. Furman and Y. Shalom

COROLLARY 4.4. Let T be a discrete group with Kazhdan’s propext¥). Supposd
acts weakly mixing on a probability spac®, m), and letu be an aperiodic probability
measure of". Then with probability one the sequence of transformat{@ty$ is mixing,
and in fact an exponential rate of mixing holds for a dense séfefinctions.

We note that ifl” is, moreover, a non-uniform higher rank lattice, &g= SL,,(Z) with
n > 3, then weak mixing is equivalent to the condition that no non-constant function is
fixed by a finite index subgroup &f.

Theorem 4.1 as well as Corollary 4.4, apply to any unitary representation. This can be
considered a ‘random product’ analog of Howe—Moore’'s theorldM [ concerning the
vanishing of matrix coefficients, which applies to semi-simple Lie groups, but does not
hold for their lattices. It is known, that for lattices the notions of ergodicity, weak mixing,
mixing, and 3-mixing are all distinct. In particular, there exish-mixingactions, which
satisfy||7 ® 7 (w)| < 1, and hence, amaixing on random producisee F9)).

Remark 4.5Given G, u and (X, m) such that|r ® 7(u)|| < 1, one can consider the
critical exponential rate of mixing for the action, namely the greatest lower baufat

all » satisfying (4.2). Theorem 4.1 gives < /]lx ® 7 (w)]. On the other hand, it

is shown in FS] that the Kaimanovich—Vershik entropy G, 1) gives a lower bound:

e MG < .. Inthe case of an automorphism group of a compact abelian group, one
can show a stronger estimate?"(G-M/2 < . < ||lx(w)|. In the particular case of the
two-dimensional torus an@ C SLy(Z) it can further be shown thdtr (w)|| = [|e(w) ||
where(p, L2(G)) denotes the regular representation. For instance, for the free group

1 +£2 1 0
oer={(y ) (4 Yess

acting onR?/Z2, wherey is equally distributed on the four generators, one obtains

1 V3

O.76wmgkcg7

~ 0.86.
5. Strong ergodicity and the spectral condition
In this section we prove Theorem 1.6, regarding the connection between strong ergodicity
and the spectral gap conditigim ()| < 1.

It is easy to check thatr (u)|| < 1 implies I; 4 7. Thus, for measurably aperiodic
probability distributiorpe on a locally compact grou@, acting ergodically oriX, m), one
has the following.

(i) G is strongly ergodic oiiX, m) = (i) 7wl <1 = (i) 1lg £ 7.

If G were discrete, the three conditions are in fact equivalent, as is shown in Theorem 6.3
below. For general locally compact groups (iii) does not imply (i), as the example of
G = St acting on itself shows (see the next section for a further discussion).

The proof of Theorem 1.6 follows the ideas of the discrete cas8dn We shall also
use the opportunity to close a gap Bd. We first need the following two lemmas.
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LEMMA 5.1. Let G act ergodically on(X,m). Letg € G and suppose there exists a
sequence of measurable s€ts C X, satisfyingm(gC,AC,)/m(C,) — 0. Then every
limit point in the weak*-topology oh.*° (X, m)* of the sequence of meags, given by

on(F) = Fdm, F e L®(X,m),

m(Cyp) Jc,
is @ non-zerg-invariant mean orL.*°(X, m). Moreover, ify_m(C,) < 1then every such
limit mean is different fronm.

Proof. Denotingh, = m(C,) *1¢, we note that

m(gCp ACy)
h —h = 0.
lhnog nll1 m(C,) -

Therefore, ifg is a weak*-limit of{¢,, }, then for anyF € L*>°(X, m) one has

lgp(F)—¢(F)| = lim ‘/(hnkog_hnk)'de < ||Flloc - lim ”hnkog_hnknlzo-
k—oo | Jx k—o00

Thus,¢ is g-invariant. If " m(C,) < 1, thenm(F) <1=¢(F)for F =) 1c,. a

LEMMA 5.2. Letv be a probability distribution o7, which is not supported on a proper
measurable subgroup i@. Suppose thaf,, € X satisfiesn(C,) — t with0 < ¢ < 1,

andthatforv-a.e.g € G: m(gC,AC,) — 0. Thenm is not unique as &-invariant mean
onL*®(X,m).

Proof. We assume that is unique, and show first that under these conditions there exists
a sequenc®, C X, such thain(D,) — r? and forv-a.e.g € G: m(gD,AD,) — 0.
Indeed, from Lemma 5.1 and the uniqueness oit follows that

. m(CyNCy) . m(CyNGCy)

Iim ———— = Im ——— =m(Cp). 5.1
k—oo  m(Cg) k—00 t m(Cn) 1)

The sequence we shall construct is of the fabym, = C, N Ck, for suitablen, k. The

argument above shows thatifs fixed such that: (C,,) is close ta, then fork large enough

m(Dy k) is close tor?. Also note, thatifg € G, m(gC, AC,) < € andm(gCrACy) < e,

then

m((gCp N gCr)A(Cy, N Cr)) < m(gCrACK) + m(gC, ACy) < 2e. (5.2)

Thus, givere > 0, we can choos€,, with |m(C,) — t| < € and such that for a measurable
setF C Gwithv(F) > 1—¢,m(gC,AC,) < € foreveryg € F.

Now, applying (5.1), také large enough so that: (D, x) — 2| < 2¢, and using (5.2),
we have that for a sdt; € G with v(Fy) > 1 — 2¢

g€ F1=>m(gDyxADpi) < 2e.

Lettinge = 2~/ — 0, we obtain from Borel-Cantelli a sequence®® as required.
Repeating this process, one obtains for everye N, a sequenceD! such that
lim,, 0o m(D}) = 12 and forv-a.e.g € G: lim, oo m(gD! AD!) = 0.

For everyi, choose:; large enough so that:
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0] m(Dili) <2.2 S 0asi — o0;

(i) 3F c Gwithv(F;) > 1—27, suchthavg € F;: m(gD} AD.)/m(D. ) < 1/i.

By Borel-Cantelli,v-a.e.g € G is contained in all but finitely many;’s. Since
m(sz,-) — 0, we may take a subsequence wjf} m(sz,-) < 1. By Lemma 5.1 we
obtain a limit meanp # m on L*°(X, m), which is invariant under a measurable set
F = liminf F; with v(F) = 1. Butv is not supported by a proper measurable subgroup of
G, thus¢ is G-invariant, and not equal te. ]

Proof of Theorem 1.6We assume thatz(x)|| = 1 and show thain is not unique
as aG-invariant mean onL*®°(X,m). Considerv = g * u. Sinceu is measurably
aperiodic,v is not supported on a proper measurable subgroug@.ofThe self-adjoint
non-negative operater(v) = (u)* () has norm|z (v)| = |7 (w)|? = 1, which can
be approximated by a sequentec L%(X, m) with || f, ]2 = 1, satisfying

(T (W) fus fu) = /G/an(g_lx) - fu(x)dm(x)dv(g) — 1. (5.3)
Viewing f, (g~ 1x), f,(x) as unit vectors ir.2(G x X, v x m), we deduce that

| [ 5= m@mands = [ 15, - x@si2av o
GJx G
Following [S] we now define a sequeneg of probability measures dR, by

on(D) = m(f,H(D)).

Observe thaf t do, (t) = Oandf 2 do, (1) = 1. The last equality shows that the sequence
{o,,} is uniformly tight, so without loss of generality, we may assume #hatonverges
weakly on compacta to a probability measarenR.

If o is not concentrated on a single point, we can find R, such that

O<o(—o00,a) =0(—00,x] =1t < 1.

PuttingC,, = f, 1(—o0, @) it follows thatm(C,) — t, and for anyg € G which satisfies
| fn — gfnllz2 — O, we havem(gC,AC,) — 0. Thus, the sequendg, satisfies the
conditions of Lemma 5.2 and is not unique.

We now deal with the more complicated case, wheig concentrated on one poiag,
starting by showing thato = 0 (in [Sq the proof proceeds without identifyingy, which

causes a gap later). Let> 0 and takeV with N > max(|aol, 1/€). Let p € {o,,}, such

that
‘/ td,o—/ tdo
{lt1=N} {ltl=N}

N - |t|d,0§/ ?dp < 1.
{lz|>N} {lt|>N}

So|f{m>N} tdp| < 1/N < €, which, together with/ 7 dp = 0 gives|[|,|SNtd,o| <e.
By (5.4) we now deduce thaf‘t‘sN tdo| < 2¢. Buto = d4,, SOlag| < 2¢, as required.
Definingh, = £2 we obtain thayf 4, dm = 1, and for-a.e.g € G

Ihn — 7 (@hnllr < I fo — 7 (@) full2- | fu + 7(8) full2 = 0.

<e. (5.4)

Notice that
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Now for everyn > 1 let

ho(x) ifh,(x)>1

h(x) =
n) :0 if h,(x) < 1.

As in [SJ one observes that sinee is concentrated at 0 angh,|l1 = 1, we have
lim, o ll2}]l = 1, and forv-a.e.g: lim,_.« [} — A} o gll1 = 0. Using an adaptation
due to Connes, of a technique of Namioka, we set foreveryR, x € X, g € G

1 ifh*(g x) >
Fn(g’s’x) = . " g_l
0 ifri(g™x)<s
and obtain
o0
IIhZ—hiong:f/ |Fu(e, s, x) — Fy(g,s,x)|dsdm(x) (5.5)
x Jo

=/ / |Fp(e,s,x) — Fy(g,s,x)|dm(x)ds (5.6)
0 X

o o0
(12 =/ / Fu.(e,s,x)dsdm(x) = / / F.(e,s,x)dm(x)ds. (5.7)
xJo o Jx
Replacing{%};} by a subsequence, we may assume that there exists an increasing sequence
of Borel setsE,, C G, withv(UE,) = 1, such that

*
751l
n2

Vg e En: b —hogl < (5.8)

From (5.6)—(5.8) it follows that

/ /OO/ |Fp(e,s,x) — Fy(g,s,x)|dm(x)ds dv(g)
w0 X

l o
< —2/ /F,,(e,s,x)dm(x)ds.
n 0 X

Changing the order of integration betwe#nanddv in the left-hand side, and inserting
1/n? into the right-hand side integral, we deduce the existense-of(n) > 0, such that

/ /XIFn(e,S(n),X)—Ez(g,S(n),X)Idrn(X)dM(g)

< %/ F.(e,s(n), x)dm(x). (5.9)
n= Jx

DefiningC, = {x | h}(x) > s(n)} we see tha(C,) — 0 (asx € C, impliesh,(x) > 1
ando is concentrated at zero), so (5.9) translates to

/ m(gCpAC,)dv(g) < izm(Cn).
n

n

Finally, put
m(gCnACy)

¢n (g) = m(Cn)
0 otherwise

if g € E,
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Since[ ¢u(g) du(g) < 1/n?, for p-a.e.g we have) ¢, (g) < oo and henceg, (g) — 0.
Fromu(E,) — 1, it follows thatm(gC,AC,)/m(C,) — O for u-a.e.g. Recalling that

m(C,) — 0, we can pass to a subsequence with total measure less than one. Since the
assumption thap is measurably aperiodic implies thatis not supported on a proper
measurable subgroup df, it follows from Lemmas 5.1 and 5.2 that is not a unique
G-invariant mean. This proves the theorem. |

6. Strongly ergodic actions

In light of the results of the previous sections, we are naturally interested in establishing
the spectral gap conditidnr (1)|| < 1 and Theorem 1.6 suggests that the strong ergodicity
property should be examined more thoroughly. Let us first recall the following.

Definition 6.1.Let (r, V) be a unitary representation of a locally compact gréughen
7 is said toweakly contairthe trivial representationgl (notation: ; < x), if 7 admits
almost invariantvectors, i.e. for any compact subgétc G and anye > 0, there exists
v € V,suchthatjz(g)v —v|| < €]|jv] forall g € K.

Definition 6.2. A locally compact group is said to havé&Kazhdan'’s propertyT), if for
any unitaryG-representatiom with 15 < 7, necessarily & C .

It turns out that for a countable group, there is a clear connection between strong
ergodicity and representation theoretical properties related to the action.

THEOREM®G6.3. Let G be a countable discrete group, acting ¢, m) preserving the
probability measuren, and letyu be an aperiodic probability measure @®. Then the
following conditions are equivalent:

(i) theG-action on(X, m) is strongly ergodic;

(i) 7w < 1 (wherer is the associated representation, as in the previous section);
(i) 1g #£m.

Note the analogy to the well-known equivalent conditions, in the case of a measure
preserving action of a locally compact grodp on (X, m), whereu is a generating
probability measure o: (i) the G-action on(X, m) is ergodic; (i) (n) has no fixed
vectors inL2(X, m); (i) 1 Z .

Proof of Theorem 6.3(i) = (ii) was proven in Theorem 1.6 (actually, the implication
(i) = (iii) is due to Schmidt$d, and (iii) = (ii) can be proven by an easy direct
argument). The implicatiotii) = (iii ) is obvious, andiii) = (i) follows from [Ro]. O

The assumption tha® is countable is crucial for the above results. Whens any
locally compact group, it is shown irfFf] that if u is absolutely continuous, and is not
supported on a coset of an open subgroup, then the implicétign= (ii) above still
holds, and thusii)—(iii ) in Theorem 6.3 are equivalent. However, in general the situation
for non-countable groups can be quite different from the one described in Theorem 6.3,
and it is perhaps best illustrated by groups with Kazhdan'’s propé@ntyIf G is discrete,
countable, and has Kazhdan’s prope(Ty), then every ergodic action of it is strongly
ergodic. HoweverG = R/Z is compact (hence, has prope(t)), but its ergodic action
on itself is not strongly ergodic (see, for exampley[ 2.2.11]). This construction can
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be extended to any (Kazhdan) group which admits a non-trivial character. We remark
that, at least for connected (Kazhdan) Lie groups, it is showSH|[that admitting such
character is thenly obstacle for strong ergodicity.

Before proceeding to more concrete examples, we should mention here that amenable
groups have no strongly ergodic actions, and that these areniligegroups with this
property. At the other extreme, groups with properi) @re exactly those groups for
which every ergodic action is strongly ergodic (¢fu], 3.5], and the references therein).

Automorphisms of compact abelian groupgn important class of measure preserving
actions are automorphic actions on compact abelian groups, and we shall now investigate
strong ergodicity for these actions.

SupposeG is a discrete, countable group, acting by automorphisms on a compact
abelian groupA, with Haar measure: (which is obviously preserved by the action).
Denote, as usual, by the G-representation omg(A, m). Let A be the (discrete) dual
group of characters, and @ A the trivial character. Recall that acts onA by:

g-x = x og L fixing zero, and hencé& acts also o \ {0}. We denote byi the
G-representation oﬂz(/i \ {0}), and recall that the Fourier transform

feL3(A,m)r feL?A\(0) dﬁmﬂbyfu):/;ﬂm-ﬂMdmu)

is an isomorphism between tiierepresentations on L%(A, m) andz on LZ(A \ {O}).

THEOREM6.4. With the above notation, the following conditions are equivalent:
(1) theG-actionon(A, m) is strongly ergodic;

(2) 1 # 7 (see Definition 6.1);

Q) L £7,; )

(4) thereis noG-invariant mean orL>°(A \ {0});

(5) theG-actionon(A x A, m x m) is strongly ergodic;

6) 16 £nQm;

(7) 16 £7 ®7; R R

(8) thereis noG-invariant mean orL.°>°(A \ {0} x A \ {0}).

Proof. 1 = 2. Follows from Theorem 6.3.

2 = 3. Obvious, sincer = 7.

3 = 4. This follows from a general result, which is proved i¥g]. For completeness
we outline the proof in this case. Suppgse L>®(A \ {0})* is aG-invariant mean. Then
there exists a sequenkg € L1(A\{0}) C L®(A\{0})*, with i, — ¢ weakly. Passing to
convex combinations, one obtains sughwith ||, o ¢ — k|1 — O for everyg € G. We
can assume thdt:, |1 = 1 andh, > O for all n, and definef, (x) = /h,(x) which are
all unitary vectors in.2(A \ {0}). Using an elementary inequalitis/a — ~/b|2 < |a — b,
we obtain for every € G

17 (8) fu — fall3 < llhn 0 g — hnll1 — O

and therefore, & < 7, contradicting the assumption.
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4 = 8. If there was &-invariant meanb on L(A \ {0} x A \ {0}) then its projection
¢ onL°(A \ {0}), defined by (f) = ®(f ® 1) would beG-invariant as well.

8 = 7. Suppose;, € L2(A \ {0} x A \ {0}) are almost invariant unit vectors. Consider
the L1(A \ {0} x A \ {0}) functionsh,, = | f,|%2 as means ol *°(A \ {0} x A \ {0}). By
Cauchy—Schwartz inequality we have for everg G,

08 = ha(ll1 =D 1fu(g %, 8 ) = fux, |- 1 fu(g - X, 8- ¥) + fulx, Y

1/2
<2 (Dfn(g-x,g ) - fn<x,y>|2> — 0.
X,y

Therefore, any weak limit of the,’s defines aG-invariant mean.

7 = 6. Follows from the obvious isomorphisth® 7 = 7 ® =.

6 = 5. Notice that theG-representation ong(A \ {0} x A\ {0}) is isomorphic to
TRn @ tQ®lg ® lg®m. Sincek £ 7 ®m,alsok £ m, hence condition 5 now
follows from Theorem 6.3.

5= 1. If ¢ # m is anotheiG-invariant mean om, then the meap x m defined by

¢ x m(f) =¢</f(x,y)dm(y))

is aG-invariant mean which differs from x m. O

Note that from Theorem 6.4 it follows that for automorphism actions, strong ergodicity
implies strong ergodicity of the diagonal action. Thus the mixing theorems (of §4) apply
together with the ergodic ones.

To illustrate more concrete examples, and the way Theorem 6.4 may be used, we have
the following.

THEOREM®G6.5. Let G be a subgroup ofSL;(Z). Then either one of the following

conditions implies strong ergodicity of tiig-action on the torug¢ = R¢/Z4.

()  The Zariski closuré5 of G in GL,(R), admits no invariant probability measure on
the projective spacB?~1(R), for the adjoint action defined by - [u] = [(g") 1u].

(i) G acts irreducibly oriR?, and does not have an abelian subgroup of finite index.

Proof. Assume (i). Since stabilizers iIAG L, (R) of measures o’ ~1(R) are algebraic
[zi, 3.2.18], condition (i) implies that there is n@-invariant probability measure on
P4=1(R) for the adjoint action. By Theorem 6.4 it is enough to show that there is no
G-invariant mean orL2(A \ {0}) for the dual actiong - u = (g')~1u. Suppose that
such a meanp exists. Denote byP : A \ {0} — P9~L(R) the natural projection,
and letg,(f) = ¢(f o P). ltis easily verified thaty, defines a positive normalized
functional on the space of continuous functian€?—1(R)), and thus corresponds to a
probability measure. But, singgis G-invariant,¢, is G-invariant as well, contradicting
the assumption. This proves the first statement of the theorem.

Assume (ii). Since has no invariant subspacesi, the same is true for the adjoint
G-representation. By (i), it is enough to show that the adjGirdction does not preserve
any probability measure oB?~1(R). SupposeG admits such a measure. Passing to a
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subgroup, we can assume th@tis finitely generated and still acts irreducibly. By the
descending chain condition there exists a minimal quasi-linear subvériety1U- - -UVj,
which has full measure. By Furstenberg’s lemrRa][and the minimallity ofS, G has a
finite index subgroufs1 C G, preserving each of the subspadés, and its image in
every PGL(V;) is precompact. Sincé& is linear (over characteristic zero) and finitely
generated, it contains a torsion free subgraippof finite index inG1. The image of the
commutato G2, G2] in eachGL(V;) is contained inSL(V;), and is precompact there.
SinceG acts irreduciblyR" = sparfuV;}, so[G2, G2] is precompact inSL,(R). By
discretenesiG,, G2] is finite, and as it is torsion fre@G o, Go] is trivial. O

Remark 6.6 For G = SL;(Z) Theorem 6.5 was proven originally by Rosenbl&b],
using a different method.

The fast rate of convergence in the mean and pointwise ergodic theorems (1.1, 1.2)
suggests a way to distribute points uniformly on probability spaces, using strongly ergodic
group actions. For example, Theorem 6.5 applied to

6-se-((5 )-(* 9)

yields the following simple random algorithm of distributing points uniformly on the circle
(and tori).

Example 6.7.Choose randomlyxo, yo) € [0, 1] and apply the following random
procedure: at theth step chooséx,+1, y,+1) to be eitherx, + y,, y,) Or (x,, yn £ x5)
mod 1, with probability ¥4 each. Then, with probability one, the sequengg y,) is
distributed uniformly in the toru®? = R2/Z2, averaging any givefi?-function with rate
o(log®?*€ n//n) and satisfying the CLT estimates.

As a different example, consider the following compact, connected, abelian group
(which is not a Lie group)A = (R x Q,/Z[1/p])?, where the ringZ[1/p] is embedded
diagonally in the produdR x Q, of the real andgp-adic fields. Then the diagonal linear
action of SL;(Z) onR4 x Qj’, naturally induces an action oh. By Theorem 6.4 and the
method of proof of Theorem 6.5 one can then deduce the following.

THEOREM®6.8. Let G be a subgroup of§L;(Z), and A be as above. Then under either
one of the conditions (i) or (ii) in Theorem 6.5, ti¥eaction onA is strongly ergodic.

Using a method similar to that in Example 6.7, one can now obtain, applying
Theorem 6.8, a random algorithm for distributing points uniformlyZ@m

Semisimple groups.As was previously indicated, for countable groups the connection
between strong ergodicity and the unitary representation associated with the action is
completely understood. For non-discrete groups the structure is, in general, more subtle.
However, for the distinguished class of semisimple groups we do have much more accurate
information, as the following analog of Moore’s theorelkhd] shows.

THEOREM6.9. [Sh]] Let G = IT}G; be a semisimple Lie group with finite center, and
(7, H) be a unitaryG-representation witlg, £ 7|g, for eachl <i < n. Then:
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() if H € G is a closed non-amenable subgroup, then# | 4;
(ii) if w is a probability distribution onG, which is not supported on a closed amenable
subgroup, then the spectral radii satisfy, (7 (1)) < 1andr,, (7 @ w(w)) < 1.

In particular, for simple Lie groups we deduce a result which is stronger than the one
for discrete groups (compare with Theorem 6.3).

THEOREM®6.10. Let G be a connected non-compact simple Lie group with finite center,
and letu be a probability measure o6, which is not supported on a coset of a closed
amenable subgroup i&. Then for anyG-action on(X, m) the following conditions are
equivalent:

0 Izl <1

(i) |Ire®rwl <1

(i) theG-action on(X, m) is strongly ergodic;

(iv) 1g #m.

Moreover, if any of the above conditions hold, then for every closed non-amenable
subgroupH C G, the H-action on(X, m) is strongly ergodic as well.

Proof. For any locally compact group, both (i) and (ii) imply (iv). The implication (iii)

= (iv), follows from Theorem 1.6. By Theorem 6.9 (iv) implies (i) and (ii), once we
notice that under the assumption pnthe measurg * u is not supported on a closed
amenable subgroup, ang, (7 (it * w)) = |lx(i * w| = Il (w)|% . To prove that

(iv) implies (iii), as well as the last assertion, consider any finitely generated subgroup
Hi € H with non-amenable closure. Then, taking a meaguseipported on generators
and using Theorems 6.9 and 6.3, one obtains that already/tkection on (X, m) is
strongly ergodic. ]

Notice that, as in the case of automorphisms of a compact abelian group, the conditions
lmr(w)l < 1and|lr ® 7(w)| < 1 are equivalent. Thus, strong ergodicity implies also the
mixing results of §4.

A primary object in the ergodic theory of semisimple groups is the action on
homogeneous spacés/ I', wherel is a lattice (i.eI' is a discrete subgroup with finite
co-volume inG). If T is a uniform (i.e. co-compact) lattice in any locally compact group
G, then it is not difficult to show (see, for exampl#&4, 111.1.10]):

1 # m for the representation (i, LS(G/ ). (6.1)

However, (6.1) does not hold for general non-uniform lattices:Bih][a tree lattice is
constructed, which is a counterexample (we thank A. Lubotzky for bringing this fact to our
attention). Nevertheless, whéhis a connected semisimple Lie group dndc G is any

(also non-uniform) lattice, (6.1) holds, a fact which relies on rather deep results concerning
the geometry of such spaces (for a proof &)l As remarked inKM1], it seems very
reasonable that actually for any irreducible latiite a semisimple Lie groug = I1G;,

for everyi one has &, £ m|g,; (this is shown in KM2] for any non-uniformr’). This
information is required in order to apply Theorem 6.9. As in general we know only the
weaker property (6.1), the following is needed.
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THEOREM®G6.11. [Sh]] Let G = TIG; be as in Theorem 6.9 and let be a unitary
G-representation, such thdt; # w. Then statement (i) in Theorem 6.9 holds, if we
assume that the projection &f to everysimple factor does not have an amenable closure.
Statement (ii) holds if we assume that the projectiom db everysimple factor is not
supported on a closed amenable subgroup.

Theorem 1.8 of the Introduction follows easily from the above result, by taking an
appropriate measune, exactly as in the proof of 6.10. The caBe= G in Theorem 1.8
was treated inBe].

Appendix A. On a coboundary problem

Recall that ifG is a locally compact group, acting ergodically on a probability measure
spacg X, m), then a measurable function: G x X — H with values in alocally compact
group H, is said to be a (measurablegcycleif for every g1, g2 € G: a(g1g2,x) =
a(g1, g2x)-a(ge, x) form-a.ex € X. Acocycleq is said to be a (measurabt®boundary

in H, if there exists a measurable functigpn: X — H, such that for every € G and
m-a.ex € X, a(g,x) = ¢(gx)¢7l(x).

Remark A.1Let F = (S) be a free group (wher§ is a set of free generators), acting
ergodically on a probability spac&, m), and letH be any locally compact group. Then
any collection of measurable functiofis: X — H, s € S, uniquely defines a measurable
H-valued cocycler : F x X — H, such that(s, x) = fi(x).

Our goal is to prove the following.

PROPOSITION A.2. Let G be a countable group, acting ergodically on a probability
measure spacéX, m), u be a generating probability measure @n, and let f be a
measurable function o6X, m). Supposef is a measurable coboundary as Bafunction
on($2 x X, P xm, T), i.e. there exists a measurable functiof, x) on x X, such that

fx)=0hoT —h)(w,x) =h(Ow, w1x) — h(w, x), P x m-a.e. (A.2)

Thenh does not depend om, i.e. h(w, x) = ¢(x), andp(gx) = ¢(x) for i * u-a.e.
g€G.

First observe that Proposition 3.4 follows from Proposition A.2. Indeed, in the case
whereu is aperiodic ands acts ergodicallyg is a.e. a constant, and hengéx) = 0
almost everywhere as required. The case where the spectral gap cofditiol < 1 is
satisfied, together with the assumption that L2 in (A.1), is established as follows: by
Proposition A.2/i(w, x) = ¢ (x) is in L3(X, m) andg (gx) = ¢ (x) for it * u-a.e.g € G.
Thus,

117 = (x (i % W, ¢) = I (WPl
and|z(w)] < Limpliesf(x) = ¢(x) =0.
For the proof of Proposition A.2 we shall need some auxiliary results.

LEMMA A.3. LetG be alocally compact group, acting ergodically on a probability space
(X, m), and lete : H x X — ST be a measurable cocycle. Suppose thatdttaefined
skew-productX x, S, G), given byg(x, e/') = (gx, a(g, x)-¢'") is not ergodic. Then for
some integer > 1, «” is a coboundary, i.ex" (g, x) = ¢(gx)/¢ (x) for some measurable
¢: X — SL
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Proof. (This is essentially Zimmer’s ‘cocycle reduction lemma’; s&e, [5.2.11].) Let
F : X x S — R be a non-trivialG-invariantL2-function. By Fubini's theorem (x, -)
is a family of L2(S1)-functions, satisfying

F(g-xv') :(x(g, .X)'F(X,'). (A2)

SincefOZ” F(x, e'")drt is a G-invariant zero-mean function ok, we conclude that for
m-a.e.x € X, F(x, -) has zero mean oft!, i.e. F(x, -) € L3(s%).

Now consider the spacé = L3(5?) as a Borel space with the natutg-action given
by the translations. Sinc# is compact, thé&-action onV is smoothnamely, the space of
S1-orbits in V is countably separated, in the sense that there exists a countable collection
{(V;} of Borel S-invariant subsetd; of V, which separatest-orbits in V. This holds
for any compact group action (segi[ 2.1.21]), although in our particular case, such
separating sets may be constructed explicitly using the Fourier coefficients.

Now, considering the measurable sé{s= {x € X | F(x,-) € V;}, we note that by
(A.2) the set<E; areG-invariant, and therefore have-measure zero or one. Intersecting
thosekE;’s which have fullm-measure and the complements of all othgs, we are left
with a singles? orbit in V, supportingn-a.e.F(x, -). Hence,F(x, -) = ¢ (x)vo for some
(measurablep : X — St andvg € V. In particular,a(g, x)¢(x)vo = ¢(gx)vo, SO
thata(g, x)¢ (x)/¢(gx) takes values in the stabilizer of. Since the only proper closed
subgroups of? are finite, we conclude that for some> 1, @ (g, x) = ¢(gx)/p(x) is a
coboundary. ]

We shall need the following application of results due to Moore and Schmidt,
characterizing coboundaries by their mappings to circles.

THEOREM A.4. [MS] Let G be a locally compact group acting measurably on a
probability spacg X, m), and leta : G x X — R be a measurable cocycle. LB} C R be
the set of allt, such that the cocycle, : G x X — S1, defined byw;, (g, x) = ¢/*4(&X)

is a measurable coboundary %, i.e. @ (g, x) = ¢x(gx)/¢5(x). ThenB, is a Borel
subgroup ofR, hence if it has positive Lebesgue measure, tBgn= R. Moreover, in
that casea(g, x) is a measurable coboundary R: a(g, x) = b(gx) — b(x) for some
measurablé : X — R.

Proof. Measurability of B, is the contents of Proposition 4.1 iMB]. The second
statement follows from Theorem 4.3 iNIS]. O

Proof of Proposition A.2We first claim that without loss of generality, the groGpcan
assume to be free. Indeed, there exists a free g@wyith at most a countable sétof
generators, a probability measujiravith supg i) = S, and a homomorphism: G — G,
such thatp (™) = 1™ (one can take sugp) as the ses of free generators fo&, with
the fi-weights given byu). Defining theG-action bygx = p(3)x, we may, and shall,
replaceG by G andu by /i in the assumptions and conclusions of Proposition A.2.
Hence, we assume hereafter that the gr6uis free, and the measuyeis supported
on the sefS of free generators. With this assumption the measurable fungtio — R
uniquely defines a cocycle : G x X — R bya(g,x) = f(x) for g € S (see
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Remark A.1). For each € R consider the measurable cocyelg : G x X — S,
given by:ay (g, x) = ¢!**®9) and thex, -defined skew-produgiX x,, S, G).
Observe that the skew-produ&? Xy (X Xq, s1), T1) where

Ti(w, (x, ")) = (Bw, w1(x, ) = Bw, (w1x, & T DY) (A.3)

with (2, ) being the base, and& X $1, G) as the fiber, is naturally isomorphic to the
1f-defined skew-produdt(Q x ., X) x;.r S1, 7o) where

To((w, x), ') = (T (w, x), DY = (Bw, wix), e ETH D), (A.4)

with (€ x X, T) being the base, ansi! the fiber (this is the associativity of the skew-
product construction).

By the assumption, the functioh(as well as. - f) forms a coboundary off2 x,, X).
Therefore, for each € R the system (A.4), and hence (A.3), is also not ergodic. Since
generate§, Kakutani’s random ergodic theorem implies that ¢haction on(X x,, S%)
is not ergodic. By Lemma A.3, every, has a powen; such thato;* = ay,., is a
coboundary inst. This implies that for each, there exists:;, such thau;, - » € B, (see
the notation of Theorem A.4). But this implies th8} has positive Lebesgue measure,
and thus, by Theorem A.4, the cocyalés, x) is a measurable coboundary, i.e. for some

measurable : X — R: a(g, x) = ¢(gx) — ¢(x) holds for allg € G. In patrticular,

Vg esupfp) @ f(x) =¢(gx) — o (x).

This shows that (A.1) holds with(w, x) = ¢(x). SinceQ2 x X is ergodic, the equation
(A.1) determines uniquely up to a constant, and théigw, x) = ¢ (x) (¢ is now chosen
to have zero mean). We have fora.e.g € G, ¢(gx) = ¢(x) + f(x), and therefore is
invariant undeyt x u-a.e.g € G. m]

Remark A.5 Proposition A.2 holds for a general locally compact gréuprhe assumption
that G is countable was used to construct a free gréupvhich acts on theif (x)-
defined skew-produatX x $1). However, the topological structure of the groGpis
immaterial, since Kakutani’s theorem holds for angasurable familpf transformations.
The elements of; with the distributiony form such a family, each giving rise to a
measurablé f (x)-defined transformation ofX x $1).

Appendix B(Q x X, P x m, T) is a K-system

In this section we prove an incidental result, concerning the structure of the skew-product
(2 x X,P x m, T). The following theorem is a generalization of tdecase, proven

in [Me].

THEOREM B.1. Let G be a locally compact group, acting ergodically on a probability
measure spaceX, m). Letu be a probability measure o6, such thatr (1®™) — 0in
the strong operator topology. Thd&his an exact endomorphism ¢ x X, P x m), and
the invertible systert2 x X, P x m, T) is a K-system.

The assumption (1) — 0Ois satisfied if either one of the following properties holds:
(i) wuissymmetricandaperiodic or
(i) for somek > 1, the convolution powers® and . *+1D are not mutually singular.
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Proof of Theorem B.1Assuming that lim_, « [l (1™ )|l = O for everyg € L3(X, m),
we shall prove thatQ x X, P x m, T) is aK -system. Since an inverse limit &f-systems
is a K-system, it is enough to construct a sequefigé of (finite) measurable partitions,
so thatF = \/ & modulopu, and eacl§ satisfies the following ‘uniform mixing’ property

V[ e L§®) nILmoosup{Hf, glllge LS( V T"s), gl = 1} =0 (1)

We shall use partitions of the formé = « v 8, wherea is any partition of(Q, P),
depending on éinite number of coordinates;, |i| < N. The partitiong will be any finite
measurable partition of, i.e. 8 C B. Since sucl§’s generate allF, it is enough to show
(B.1)foré = o v 8. Observe tha C \/ﬁ’N T'B, and therefore

—n —n+N 00
Lg( \/ ng> c Lg( \/ ng), 126) ¢ LS(\/T’B).
—00 —0o0 —N

We can now apply the first inequality in (3.4) of Lemma 3.3 to deduce (B.1), thereby
proving the first assertion.

We are left with the second part. Assume (i), jueis symmetric and aperiodic. Then
7 (w) is a self-adjoint operator, and thus, by the spectral representation

1
I ()" II> = (7 ()b, ¢) = / lrz" dvg (1), (B.2)

wherevy on[—1, 1] is the spectral measure corresponding tp) = (1) and¢. By the
dominated convergence theorem the expression in (B.2) converges to zero, as soon as we
show thaty{—1} = vs{1} = 0. If the latter does not hold, there exigtse LS(X, m) with

m(u)y = 4 so thatr (i x w)y = . By convexity,w (g)y = v for (i1 x n)-a.e.g € G,

and hence, for all the's in the smallest closed grouy C G, supportingi * . Sinceu

is aperiodic,H = G, and we contradict the fact th&thas no fixed vectors iﬂcz,(X, m).

Now assume that condition (ii) is satisfied. Then denotthg= 7 (), its adjoint
operator isS* = 7 (u). The assumption that® and x**1 are not mutually singular,
implies that the operator norm satisfiest — S¥*1|| = |z (u® — 2*+D)| < 2. By the
‘0-2’ law (see KT]) this implies that for anyy:

lim [|(s" = s"™hy | = lm [|$"(1— )y =0.
n—o00 n—oo

In our case the operatét — S) is onto, since the dual operatdr— §*) = (1 — 7 (w)) is
one-to-one (this follows from ergodicity of th@-action and the fact that is generating).
Therefore, for any € L%(X, m), there exista) € L%(X, m) with ||S"¢| = ||IS"(1 —
S)yr|| — O. O
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