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Abstract. Let µ be a probability measure on a locally compact groupG, and suppose
G acts measurably on a probability measure space(X,m), preserving the measurem.
We study ergodic theoretic properties of the action alongµ-i.i.d. random walks onG.
It is shown that under a (necessary) spectral assumption on theµ-averaging operator
on L2(X,m), almost surely the mean and the pointwise (Kakutani’s) random ergodic
theorems have roughlyn−1/2 rate of convergence. We also prove a central limit theorem
for the pointwise convergence. Under a similar spectral condition on the diagonalG-action
on (X × X,m × m), an almost surely exponential rate of mixing along random walks is
obtained.

The imposed spectral condition is shown to be connected to a strengthening of the
ergodicity property, namely, the uniqueness ofm-integration as aG-invariant mean on
L∞(X,m). These related conditions, as well as the presented sharp ergodic theorems,
never occur for amenableG. Nevertheless, we provide many natural examples, among
them automorphism actions on tori and actions on Lie groups’ homogeneous spaces, for
which our results can be applied.

1. Introduction and statement of the main results
Throughout this paper,G denotes a locally compact group, acting measurably on a
probability space(X,B,m), preserving the measurem. The action is assumed to be
ergodic, i.e. there are noG-invariant measurable subsets ofX, except subsets of measure
zero or one.

Classical ergodic theory, which studies the behavior of a single measure preserving
transformation, has been widely extended through the last two decades to actions of
amenable groups (see [OW1–3]). The existence of F˝olner sets in amenable groups enables
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natural averaging, which makes these groups good candidates for such an extension.
However, for general locally compact groups one should seek a different approach, and
the one we shall explore in the present paper is based upon the concept of a random walk
on the group.

Let µ be a probability measure onG. We shall consider the probability space of the
random walk(�,P) = (GN, µN), and forω = (ω1, ω2, . . . ) ∈ � refer to the sequence
of productsgω

n = ωn . . . ω1 as a sequence ofrandom products. In the sequel we shall
impose different conditions on a measureµ on the groupG: µ is said to besymmetricif
µ̌ = µ (hereµ̌(E) = µ(E−1) for measurableE ⊂ G); µ is said to begeneratingif it
is not supported on a proper closed subgroup ofG; and is said to beaperiodicif it is not
supported on a coset of a proper closed subgroup ofG. Note thatµ is aperiodic iffµ̌ ∗ µ

is generating.

THEOREM. (Kakutani [Ka]) SupposeG acts ergodically on(X,m), and assume thatµ is
a generating probability measure onG. Then for any functionf ∈ L1(X,m), for P-a.e.
ω ∈ �,

lim
n→∞

1

n

n∑
i=1

f (gω
i x) =

∫
X

f dm (1.1)

for m-a.e.x ∈ X.

The statement follows from Birkhoff’s ergodic theorem, applied to the single
transformationT , acting on the product space(� × X,P × m) by T (ω, x) = (θω, ω1x)

whereθ : � → � is the shift: (θω)i = ωi+1. Under the assumptions of the theorem,
the skew-product(� × X,P × m,T ) is known to be ergodic. In fact, under some
mild conditions on the distributionµ, this skew-product is an exact transformation. This
(incidental) result is proved in Appendix B.

An intrinsic feature of the ergodic theory of amenable actions is the lack of any
prescribedrate of convergencevalid for all bounded functions [Kr, DJR ]. In this paper we
shall present a family of non-amenable actions, where Kakutani’s random ergodic theorem
can be sharpened: auniversalrate of convergence holds forall L2-functions. To formulate
the precise result, we shall need some notation: consider the unitaryG-representationπ
on the spaceL2

0(X,m), defined byπ(g)f (x) = f (g−1x), whereg ∈ G, f ∈ L2
0(X,m).

HereafterL2
0(X,m) denotes the space of zero-mean functions inL2(X,m). Given a

probability distributionµ on G, recall that theµ-convolution operatorπ(µ) is defined
onL2

0(X,m) by

〈π(µ)u, v〉 =
∫

G

〈π(g)u, v〉 dµ(g). (1.2)

Observe that its operator norm always satisfies‖π(µ)‖ ≤ 1. We shall be interested in the
situation where‖π(µ)‖ < 1. This spectral gap condition is typical for actions ofnon-
amenablegroups; in fact, it never holds for actions of amenable groups, while for discrete
groups with Kazhdan’s property(T ) (see Definition 6.2), it is always satisfied (assuming
µ is aperiodic onG). Let us postpone further discussion of this condition to §6, where
precise statements and other examples are considered, and concentrate here on some of its
consequences.
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THEOREM 1.1. (Rate ofL2-convergence)SupposeG acts ergodically on a probability
space(X,m), let µ be a probability distribution onG, and assume that‖π(µ)‖ < 1.
Let {an}∞n=1 be a decreasing sequence with

∑∞
n=1 a2

n < ∞. Then for any function
f ∈ L2

0(X,m), for P-a.e.ω ∈ �,

lim
n→∞ an ·

∥∥∥∥ n∑
i=1

f (gω
i x)

∥∥∥∥ = 0.

In particular, for any functionf ∈ L2(X,m) and everyε > 0, for P-a.e.ω ∈ �,∥∥∥∥1

n

n∑
i=1

f (gω
i x)−

∫
X

f dm

∥∥∥∥ = o

(
log1/2+ε n√

n

)
.

For the proof see §2. We remark that a spectral assumption is necessary foranyrate of
convergence to hold forall functions inL2(X,m) (see Remark 2.4). Moreover, the rate
of convergence in the above result is essentially optimal, since by the Law of the Iterated
Logarithm there exist actions for which the averages exceedc(

√
log logn/

√
n) infinitely

many times.
By a completely different method, a similar rate of convergence to the one asserted in

Theorem 1.1 is established in §3 for the pointwise convergence.

THEOREM 1.2. (Rate of pointwise convergence)Let G,µ and (X,m) be as in
Theorem 1.1 and let{an}∞n=1 be a monotone sequence with

∑∞
n=1 |an logn|2 < ∞. Then

for all f ∈ L2
0(X,m), for P-a.e.ω ∈ � and form-a.e.x ∈ X,

lim
n→∞ an ·

n∑
i=1

f (gω
i x) = 0.

In particular, for anyf ∈ L2(X,m) and anyε > 0, for P-a.e.ω ∈ � andm-a.e.x ∈ X

one has ∣∣∣∣1n
n∑

i=1

f (gω
i x)−

∫
X

f dm

∣∣∣∣ = o

(
log3/2+ε n√

n

)
.

Theorems 1.1 and 1.2 show that, assuming‖π(µ)‖ < 1, the rate of convergence in (1.1)
is roughlyn−1/2. This suggests to estimate the rate of convergence, normalized by

√
n. In

this context we obtain the following.

THEOREM 1.3. (Functional central limit theorem)Let G,µ and (X,m) be as in
Theorem 1.2 and let0 6= f ∈ Lp(X,m), p > 2, be a real valued function. Define

Sn(ω, x) =
n∑

i=1

f (gω
i x), σn = ‖Sn‖2

on (� × X,P × m). Thenσ = limn→∞ n−1/2 · σn is non-zero, the sequence of random
processesσ−1

n · S[nt ], t ∈ [0, 1] converges in the Skorohod topology to the standard
Brownian MotionW(t) on [0, 1], and the following estimate holds:

sup
a∈[0,1]

∣∣∣∣P ×m({σ−1
n · Sn < a}) − 1√

2π · σ
∫ a

−∞
e−t2/2σ2

dt

∣∣∣∣ = O

(
logp/2 n

nδ

)
,

whereδ = min{1/2, (p − 1)/2}.
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Let us discuss now mixing properties along random products. Obviously, to have
mixing one has to assume first that(π,L2

0(X,m)) does not admit finite dimensional sub-
representations, which is known to be equivalent to the condition 1G 6⊆ π ⊗ π , i.e.
ergodicity of theG-action on(X ×X,m×m). Motivated by Theorems 1.1–1.3, we shall
impose the spectral condition‖π ⊗ π(µ)‖ < 1 on theG-action on(X,m). Again, we
remark that this condition never holds for actions of amenable groups, while for discrete
groups with Kazhdan’s property(T ), it is equivalent to weak mixing (assumingµ is
aperiodic onG).

THEOREM 1.4. SupposeG acts on a probability space(X,B,m), µ is a probability
distribution onG, and that‖π ⊗ π(µ)‖ < 1. Then there exists a conull set�′ ⊂ �,
such that for eachω ∈ �′ the sequence of random products{gω

n }∞n=1 is mixing, namely,
for any A,B ∈ B one hasm(gω

n A ∩ B) → m(A) · m(B). Moreover, for anyλ with√‖π ⊗ π(µ)‖ = λ0 < λ ≤ 1, and anyA,B ∈ B, there is a full measure subset
�A,B ⊂ �, such that for allω ∈ �A,B one has

lim
n→∞

m(gω
n A ∩ B)−m(A) ·m(B)

λn
= 0.

The assumption made in the sharp ergodic theorems is a spectral one. However, it is
very closely related to a natural strengthening of ergodicity.

Definition 1.5.Let G be a locally compact group acting measurably on a probability
measure space(X,m), wherem is G-invariant. TheG-action on(X,m) is said to be
strongly ergodicif m-integration is the uniqueG-invariant mean (i.e. continuous positive
normalized functional) onL∞(X,m).

This definition is slightly stronger than the one given by Connes and Weiss in [CW]
(Schmidt showed in [Sc] that they are not equivalent). Notice that the ergodicity
assumption is equivalent to the assertion thatm-integration is the uniqueG-invariant mean
onLp(X,m) for any 1≤ p <∞.

A probability measureµ on a locally compact groupG is said to be measurably
aperiodic if µ is not supported on a coset of a proper measurable subgroup ofG. For
example, ifµ is absolutely continuous with respect to the Haar measure on a connected
locally compact groupG, then it is measurably aperiodic. The following result, which is
proved in §5, connects strong ergodicity and our spectral assumption.

THEOREM 1.6. Assume thatG and (X,m) are as in Definition 1.5 and letµ be a
measurably aperiodicprobability distribution onG. If the G-action is strongly ergodic,
then‖π(µ)‖ < 1.

For countableG, Theorem 1.6 was proven in [Sc]. In fact the two conditions are then
equivalent, but this is not the case in general. Thus, the question of whether an action
is strongly ergodic has ergodic theoretic implications. The problem, however, has been
investigated in its own right by many authors (e.g. in relation to the Ruziewicz problem).
In §6 we shall briefly recall several known examples of such actions and present some new
ones. Here are two natural families:
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THEOREM 1.7. LetG ⊆ SLd (Z). Suppose thatG acts irreducibly onRd and thatG does
not contain an abelian subgroup of finite index. Then theG-action on thed-torusRd/Zd

is strongly ergodic.

THEOREM 1.8. Let G = 5Gi be a semisimple Lie group with finite center,0 ⊂ G be a
lattice, and letH ⊆ G be a subgroup. Suppose that the projection ofH to every simple
factor Gi does not have an amenable closure. Then theH -action onG/0 is strongly
ergodic.

2. Sharp mean ergodic theorem
In this section we prove Theorem 1.1. In fact, we shall see that it is natural to consider this
result in the general framework of unitary representations.

THEOREM 2.1. Let (π,H) be a unitaryG-representation,µ a probability distribution on
G, and assume that‖π(µ)‖ < 1. Then for any decreasingl2 sequence{an}, and any vector
u ∈ H, there exists a conull set�u ⊂ �, such that for allω ∈ �u,

lim
n→∞ an ·

∥∥∥∥ n∑
i=1

π(gω
i )u

∥∥∥∥ = lim
n→∞ an ·

∥∥∥∥ n∑
i=1

π(gω
i )−1u

∥∥∥∥ = 0.

We shall consider both the action of random products byπ(gω
i ), and the action of their

inverses byπ(gω
i )−1, because the former is natural in the abstract unitary representation

setup, while the latter appears in representations coming fromG-actions (cf. Theorem 1.1):
π(gω

i )−1f (x) = f (gω
i x).

For a fixedu ∈ H, define the random variablesSk andS∗k on (�,P) by

Sk(ω) =
∥∥∥∥ k∑

i=1

π(gω
i )u

∥∥∥∥, S∗k (ω) =
∥∥∥∥ k∑

i=1

π(gω
i )−1u

∥∥∥∥.
Our theorem will be deduced from the following estimates.

LEMMA 2.2. There exists a constantC1, such that for everyN ≥ 1,

E(S2
N) ≤ C1 ·N, E(S∗2N ) ≤ C1 ·N. (2.1)

LEMMA 2.3. There exists a constantC2, such that for anyk < N the conditional
expectations satisfy

E(S2
N | ω1, . . . , ωk) ≥ S2

k − C2 · Sk (2.2)

and a similar inequality holds forS∗k . For Sk (respectivelyS∗k ) sufficiently large, the right-
hand side dominatesS2

k /2 (respectively(S∗k )2/2).

Proof of Theorem 2.1 based on 2.2 and 2.3.Fix someε > 0 and letGk,ε , G∗k,ε denote the
events

Gk,ε = {ω | akSk(ω) > ε}, G∗k,ε = {ω | akS
∗
k (ω) > ε}.

We will show that with probability 1 the eventsGk,ε , G∗k,ε occur only finitely many times.
Sinceε > 0 is arbitrary, this proves the theorem. Hereafter, we focus onGk,ε , but the same
arguments apply toG∗k,ε .
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Consider the intervals 2n ≤ k ≤ 2n+1, and define the events

En,ε =
2n+1⋃
k=2n

Gk,ε =
2n+1⋃
k=2n

· Fk,ε, whereFk,ε = Gk,ε \
k−1⋃
j=2n

Gj,ε.

It is enough to show that with probability one the events{En,ε}n occur only finitely many
times, and the latter will follow from the Borel–Cantelli lemma, as soon as we prove

∞∑
n=1

P(En,ε) <∞. (2.3)

Observe thatFk,ε is measurable with respect toω1, . . . , ωk, and ω ∈ Fk,ε implies
Sk(ω) > ε/ak. Hence,Sk is large onFk,ε , for largek. Therefore (2.2) gives, using the
fact that{ai} is monotonic

1

P(Fk,ε)

∫
Fk,ε

S2
2n+1 dP = E(S2

2n+1 | Fk,ε) ≥ ε2

2a2
k

≥ ε2

2a2
2n

.

SinceEn,ε is a disjoint union of theFk,ε ’s, we obtain, using (2.1)

P(En,ε) =
2n+1∑
k=2n

P(Fk,ε) ≤ 2a2
2n

ε2

2n+1∑
k=2n

∫
Fk,ε

S2
2n+1 dP

≤ 2a2
2n

ε2
E(S2

2n+1) ≤ 2a2
2n

ε2
C12n+1 = O(2n · a2

2n).

The monotone series
∑

a2
n converges together with

∑
2na2

2n, thereby proving (2.3). This
completes the proof of Theorem 2.1, and thus also Theorem 1.1. 2

It remains to prove Lemmas 2.2 and 2.3.

Proof of Lemma 2.2.We estimate the expectationE(S2
N) =∑N

i,j E〈π(gω
i )u, π(gω

j )u〉 by

E(S2
N) ≤

N∑
j=1

‖π(gω
j )‖ + 2

N∑
j=1

N−j∑
r=1

|E〈π(ωj+r . . . ωj+1)π(gω
j )u, π(gω

j )u〉|

≤ N · ‖u‖2 + 2
N∑

j=1

N−j∑
r=1

‖π(µ)‖r‖u‖2 ≤ C1 · N,

whereC1 = (1+ 2‖π(µ)‖ + 2‖π(µ)‖2 + · · · ) · ‖u‖2 <∞.
To estimateE((S∗N)2) we use similar inequalities, replacing|E〈π(gω

j+r )u, π(gω
j )u〉| by

|E〈π(gω
j+r )

−1u, π(gω
j )−1u〉| = |E〈π(gω

j )−1π(ω−1
j+1 . . . ω−1

j+r )u, π(gω
j )−1u〉|

= |E〈π(ω−1
j+1 . . . ω−1

j+r )u, u〉|
= |〈π(µ)ru, u〉| ≤ ‖π(µ)‖r · ‖u‖2,

thereby obtainingE((S∗N)2) ≤ C1 · N . This proves Lemma 2.2. 2
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Proof of Lemma 2.3.Let us fix somek < N and define the random vectors

Z = Z(ω) =
k∑

j=1

π(gω
j )u,

W = W(ω) =
N−k∑
r=1

π(gω
k+r )u =

N−k∑
r=1

π(ωk+r . . . ωk+1)π(gω
k )u.

Note thatZ is measurable with respect toω1, . . . , ωk and‖Z‖ = Sk . Therefore,

E(S2
N | ω1, . . . , ωk) = E(‖Z‖2 + ‖W‖2 + 2 Re〈W,Z〉 | ω1, . . . , ωk)

≥ S2
k − 2

N−k∑
r=1

|E(〈π(ωk+r . . . ωk+1)π(gω
k )u,Z〉 | ω1, . . . , ωk)|

≥ S2
k − 2

N−k∑
r=1

‖π(µ)‖r · ‖u‖ · ‖Z‖ ≥ S2
k − C2 · Sk,

whereC2 = 2 · (‖π(µ)‖ + ‖π(µ)‖2+ · · · ) · ‖u‖.
In estimatingE((S∗N)2 | ω1, . . . , ωk), we use the random vectors

Z =
k∑

j=1

π(gω
j )−1u, W =

N−k∑
r=1

π(gω
k+r )

−1u =
N−k∑
r=1

π(gω
k )−1π(ω−1

k+1 . . . ω−1
k+r )u,

and prove similar inequalities, replacing|E(〈π(gω
k+r . . . ωk+1)u,Z〉 | ω1, . . . , ωk)| by

|E(〈π(gω
k )−1π(ω−1

k+1 . . . ω−1
k+r )u, Z〉 | ω1, . . . , ωk)|

= |E(〈π(ω−1
k+1 . . . ω−1

k+r )u, π(gω
k )Z〉 | ω1, . . . , ωk)|

≤ |〈π(µ̌)ru, π(gω
k )Z〉| ≤ ‖π(µ̌)‖r · ‖u‖ · ‖Z‖.

Since‖π(µ̌)‖ = ‖π(µ)∗‖ = ‖π(µ)‖ < 1 we get the same estimation

E((S∗N)2 | ω1, . . . , ωk) ≥ (S∗k )2− C2 · S∗k .

The proof of Lemma 2.3 is completed. 2

Remark 2.4.The assumption‖π(µ)‖ < 1 is essentially necessary to achieve any rate of
convergence. More precisely, in [FS] the following statement is proved. Suppose that for
all u ∈ H: ‖n−1 ·∑n

i=1 π(gω
i )u‖ = o(an) for some fixed sequencean → 0, then 1G 6≺ π

(see Definition 6.1). We note that the conditions 1G 6≺ π and‖π(µ)‖ < 1 are closely
related, and are often equivalent (see Theorems 6.3 and 6.9 below).

3. Sharp pointwise ergodic theorem and CLT
Sharp pointwise ergodic theorem.In §2 a prescribed rate of convergence was established
for themeanergodic theorem. In this section we prove a pointwise ergodic theorem, with
essentially the same rate of convergence, but using a completely different approach.

Theorem 1.1 states, roughly, that ifG,µ and(X,m) satisfy‖π(µ)‖ < 1, then almost
surely the norm‖∑n

i=1 f (gω
i x)‖ is of order

√
n, which intimates that the vectors

{π(gω
n )f }n are ‘almost’ orthogonal. This property suggests to apply an argument, due

to Kac, Salem and Zygmund on pointwise convergence ofquasi-orthogonalsequences, a
notion which we now recall.



1044 A. Furman and Y. Shalom

Definition 3.1.A sequence{φn}∞n=1 in a Hilbert spaceH is said to bequasi-orthogonal, if
the following equivalent conditions are satisfied.
(i) The bi-infinite matrix{〈φi, φj 〉}i,j has a bounded norm.
(ii) There exists a constantL < ∞, so that for anyψ ∈ H the following Bessel’s type

inequality is satisfied:
∑

n |〈φn,ψ〉|2 ≤ L‖ψ‖2.
(iii) For everyl2 sequence{cn}∞n=1, the series

∑
n cnφn converges inH.

The equivalence of the above conditions is a standard exercise in bi-linear forms on
Hilbert spaces. One also easily verifies that a sequence of vectors{φn} satisfying

|〈φn+k, φn〉| ≤ C · λk n, k ≥ 1 (3.1)

for someC <∞ andλ < 1, has property (iii), and is therefore quasi-orthogonal.

Proof of Theorem 1.2.Following Kac–Salem–Zygmund [KSZ], we observe that if{φn(y)}
is a quasi-orthogonal sequence inL2(Y, ν), where (Y, ν) is a probability space, then
property (ii) in Definition 3.1 suffices to prove the following elegant Rademacher–Menshov
maximal inequality (which was originally stated fororthonormalsequences).

THEOREM (see [Zy, pp. 189–193])There exists a constantK < ∞, depending only on
{φn(y)}∞n=1, so that for any sequence{an}∞n=1,∫

sup
1≤k<∞

∣∣∣∣ k∑
n=1

anφn(y)

∣∣∣∣2 dν(y) ≤ K ·
∞∑

n=1

|an logn|2. (3.2)

It is not difficult to verify that (3.2) implies theν-a.e. convergence of the series∑∞
n=1 anφn(y) given any sequence{an} with

∑
n |an logn|2 <∞.

Now, let {an} be a monotone positive sequence with
∑

n |an logn|2 < ∞, andf ∈
L2

0(X,m). Consideringf as a function on the skew-product(Y, ν) = (�×X,P×m), we
claim that the sequence

φn(ω, x) = f ◦ T n(ω, x) = f (ωn . . . ω1x)

satisfies estimation (3.1), and is therefore quasi-orthogonal. Indeed

|〈φn+k, φn〉| = |〈f ◦ T k, f 〉| =
∣∣∣∣ ∫

X

∫
�

f (x) · f̄ (ωk . . . ω1x) dP(ω) dm(x)

∣∣∣∣
= |〈π(µ)kf, f 〉| ≤ ‖π(µ)‖k · ‖f ‖2.

Therefore, the functionsφn have exponential decay of correlations (3.1), withλ =
‖π(µ)‖ < 1.

Next, applying inequality (3.2) toφn = f ◦ T n, we conclude that forP-a.e.
ω ∈ � and m-a.e. x ∈ X the series:

∑
anφn(ω, x) = ∑

anf (gω
n x) converges.

Finally, recall Kronecker’s lemma: if{an} is monotonic and
∑

n ansn converges, then
limn→∞ an|∑n

i=1 si | = 0. Hence, we obtain forP-a.e.ω ∈ � andm-a.e.x ∈ X

lim
n→∞ an

∣∣∣∣ n∑
i=1

f (gω
i x)

∣∣∣∣ = 0,

thereby proving Theorem 1.2. 2
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Two auxiliary results for the CLT. For the proof of the Central Limit Theorem
(Theorem 1.3), we shall need two results on the structure of the skew-product(�×X,P×
m,T ), which may be of independent interest.

Consider the spacē� of bi-infinite sequences with the product measureP̄ = µZand the
shift θ , which is the natural extension of(�,P, θ). The skew-product(�̄×X, P̄×m,T ),
defined byT (ω, x) = (θω, ω1x) is the natural extension of(�×X,P ×m,T ). Consider
theσ -algebraB of all measurable sets of the form̄�× B, whereB ⊂ X is measurable.

THEOREM 3.2. LetG,µ and(X,m) be as in Theorem 1.2. Then theσ -algebraB has the
following property: the coefficientsρ(n) defined by

ρ(n) = sup

{ |〈f, g〉|
‖f ‖ · ‖g‖

∣∣∣∣ f ∈ L2
0

( ∞∨
i=1

T iB
)
, g ∈ L2

0

( −n∨
−∞

T iB
)}

, (3.3)

decay exponentially fast:ρ(n) ≤ ‖π(µ)‖n.

The theorem is a direct consequence of the following.

LEMMA 3.3. Let f, g ∈ L2
0(�̄ × X, P̄ × m) be such thatf ∈ L2

0(
∨∞

i=1 T iB) and
g ∈ L2

0(
∨−n
−∞ T iB), wheren ≥ 1. Then

|〈f, g〉| ≤ ‖π(µ̌)nPXf ‖ · ‖g‖ ≤ ‖π(µ)‖n · ‖f ‖ · ‖g‖, (3.4)

wherePX : L2
0(�̄×X, P̄ ×m)→ L2

0(X,m) denotes the orthogonal projection

(PXf )(x) =
∫

�̄

f (ω, x) dP̄(ω).

Proof of Lemma 3.3.Sincef is measurable with respect tox, ω1, ω2, . . . , we can write
f (ω, x) = f (ω1, ω2, . . . , x), andf ◦ T n(ω, x) = f (ωn+1, ωn+2, . . . , ωn · · ·ω1x). Let
h = g ◦ T n ∈ T nL2

0(
∨−n
−∞ T iB) = L2

0(
∨0
−∞ T iB). The functionh is measurable with

respect tox, ωi , i ≤ 0, and hence,(g ◦ T n)(ω, x) = h(ω, x) = h(. . . , ω0, x). Now
compute

|〈f, g〉| = |〈f ◦ T n, g ◦ T n〉| = |〈f ◦ T n, h〉|
=
∣∣∣∣ ∫

X

∫
�̄

f (ωn+1, . . . , ωn . . . ω1x) · h̄(. . . , ω0, x) dP̄(ω) dm(x)

∣∣∣∣
integrating the last expression with respect to the variablesωi with i ≤ 0, i > n, we
continue

=
∣∣∣∣ ∫

X

∫
�̄

PXf (ωn . . . ω1x) · PXh̄(x) dµ(ω1) . . . dµ(ωn) dm(x)

∣∣∣∣
= |〈π(µ̌)nPXf, PXh〉| ≤ ‖π(µ̌)nPXf ‖ · ‖PXh‖.

Since‖PXh‖ ≤ ‖h‖ = ‖g‖ and‖PXf ‖ ≤ ‖f ‖, we have

‖π(µ̌)nPXf ‖ ≤ ‖π(µ̌)‖n · ‖PXf ‖ ≤ ‖π(µ)‖n · ‖f ‖,
which implies (3.4). 2
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For the proof of Theorem 1.3 we shall also need the following.

PROPOSITION3.4. Let G act ergodically on a probability space(X,m), and letµ be
a measure onG. Suppose that a functionf ∈ L2

0(X,m) is an L2-coboundary on
(�̄ × X, P̄ × m,T ), i.e. f (x) = h(θω,ω1x) − h(ω, x) with h ∈ L2

0(�̄ × X). Then
h(ω, x) = h(x) does not depend onω. Furthermore, ifµ is aperiodic onG, or satisfies
‖π(µ)‖ < 1, then necessarilyf = 0.

The proof of a more general statement, namely, thatf 6= 0 is not ameasurable
coboundary (rather than merely anL2-coboundary), is given in Appendix A.

Proof of Theorem 1.3.Theorem 3.2 states thatSn is a sum ofn random variablesf ◦ T i ,
wheref is anLp bounded (p > 2) random variable, which is measurable with respect
to a ρ-mixing σ -subalgebraB. In this situation, Proposition 3.4 is known to imply that
σ = limn→∞ n−1/2·σn is non-zero, and therefore theSn’s satisfy the assumptions of [OY].
The second statement, concerning the rate of convergence, follows from theexponential
ρ-mixing, as was shown in [Ti ]. 2

4. Mixing properties
In this section we discuss mixing properties of group actions along random products. In
finite dimensional representations no mixing can occur, hence, seeking such phenomena,
we need to exclude the existence of finite dimensional sub-representations inL2

0(X,m).
In general, it is well-known that a unitary representationπ contains a finite dimensional
sub-representation iffπ ⊗ πc contains the trivial sub-representation 1G. Here,πc denotes
the contragradient representation toπ , i.e. the natural representation on the dual space. If
π arises from a measure preservingG-action on(X,m), thenπc ∼= π , so the condition
1G 6⊆ π⊗πc is equivalent to 1G 6⊆ π⊗π , itself equivalent to the ergodicity of the diagonal
G-action on(X×X,m×m). For proofs of these and further results in this direction see, for
example, [BR]. In light of this observation, and motivated by Theorems 1.1–1.2, it seems
natural now to impose the spectral condition‖π ⊗ π(µ)‖ < 1, for an appropriate measure
µ on G. We remark that in many examples the condition‖π ⊗ π(µ)‖ < 1 is equivalent
to ‖π(µ)‖ < 1 (see §6), but this is not the case in general. Hereafter,π andπ(µ) are as
in (1.2).

Our first goal is to prove Theorem 1.4. To emphasize the Hilbertian nature of the
statement, we reformulate the theorem as follows.

THEOREM 4.1. Let G act on(X,B,m), andµ be a probability distribution onG, such
that ‖π ⊗ π(µ)‖ < 1. Then there exists a full measure subset�′ ⊂ �, so that for each
ω ∈ �′ the sequence of random products{gω

n }∞n=1 is mixing: for allφ,ψ ∈ L2
0(X,m)

lim
n→∞〈φ, π(gω

n )ψ〉 = lim
n→∞

∫
X

φ(gω
n x) · ψ̄(x) dm(x) = 0. (4.1)

Moreover, for anyλ with λ0 = √‖π ⊗ π(µ)‖ < λ ≤ 1, and anyφ,ψ ∈ L2
0(X,m), there

is a subset of full measure�φ,ψ ⊂ �, such that for anyω ∈ �φ,ψ

lim
n→∞

〈φ, π(gω
n )ψ〉

λn
= 0. (4.2)
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For the proof of Theorem 4.1 we shall need the following.

LEMMA 4.2. LetG, µ and(X,m) satisfy the same assumption as in Theorem 4.1, and set
λ0 = √‖π ⊗ π(µ)‖ < 1. Then for anyφ,ψ ∈ L2

0(X,m), one has

E

∣∣∣∣ ∫
X

φ(gω
n x) · ψ̄(x) dm(x)

∣∣∣∣ ≤ λn
0 · ‖φ‖ · ‖ψ‖. (4.3)

Proof. Consider the functions8 = φ ⊗ φ̄ and9 = ψ ⊗ ψ̄ in L2
0(X ×X,m×m).

E

∣∣∣∣ ∫
X

φ(gω
n x) · ψ̄(x) dm(x)

∣∣∣∣
≤
(∫

G

∣∣∣∣ ∫
X

φ(gx) · ψ̄(x) dm(x)

∣∣∣∣2 dµ(n)(g)

)1/2

=
(∫

G

∫
X

∫
X

φ(gx) · φ̄(gy) · ψ̄(x) · ψ(y) dm(x) dm(y) dµ(n)(g)

)1/2

=
(∫

X×X

(∫
G

8(g(x, y)) dµ(n)(g)

)
· 9̄(x, y) dm×m(x, y)

)1/2

≤ ‖π ⊗ π(µ)‖n/2 · ‖8‖1/2 · ‖9‖1/2.

Since‖8‖ = ‖φ‖2 and‖9‖ = ‖ψ‖2, this completes the proof of the lemma. 2

Proof of Theorem 4.1.Choose someλ > λ0, and observe that the non-negative series

S(ω) =
∞∑

n=1

1

λn

∣∣∣∣ ∫
X

φ(gω
n x) · ψ(x) dm(x)

∣∣∣∣
has finite expectation, for by Lemma 4.2E(S) ≤∑∞1 (λ0/λ)n <∞. Therefore, for a full
measure subset�φ,ψ ⊂ � we have

lim
n→∞

1

λn

∣∣∣∣ ∫
X

φ(gω
n x) · ψ(x) dm(x)

∣∣∣∣ = 0,

thereby proving statement (4.2) in the theorem. Taking�′ = ⋂i,j �φi ,φj , where{φi}i∈N
is a dense countable sequence inL2

0(X,m), we obtain (4.1). 2

Note that the probabilistic nature of (4.2) is unavoidable, as one cannot expect any
deterministic rate of mixing. In fact, nofixedsequence{gn} can provide any preselected
rateof mixing for all functions, as the following general assertion shows.

Remark 4.3.Given any sequence{Un}∞n=1 of unitary operators on a Hilbert spaceH, any
v 6= 0, and any sequencean → 0, there existsu ∈ H such that|〈Unu, v〉| > an‖u‖ · ‖v‖.
This follows from Banach’s uniform boundness principle, applied to the sequence of linear
functionalsfn(x) = a−1

n · 〈Unx, v〉 having norms‖fn‖ = a−1
n · ‖v‖ → ∞.

As we have already mentioned, the condition‖π ⊗ π(µ)‖ < 1 holds for any weakly
mixing action of a discrete groupG with Kazhdan’s property(T ) and aperiodicµ on G.
In particular, it is satisfied by lattices in higher rank simple Lie groups.
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COROLLARY 4.4. Let 0 be a discrete group with Kazhdan’s property(T ). Suppose0
acts weakly mixing on a probability space(X,m), and letµ be an aperiodic probability
measure on0. Then with probability one the sequence of transformations{gω

n } is mixing,
and in fact an exponential rate of mixing holds for a dense set ofL2-functions.

We note that if0 is, moreover, a non-uniform higher rank lattice, e.g.0 = SLn(Z) with
n ≥ 3, then weak mixing is equivalent to the condition that no non-constant function is
fixed by a finite index subgroup of0.

Theorem 4.1 as well as Corollary 4.4, apply to any unitary representation. This can be
considered a ‘random product’ analog of Howe–Moore’s theorem [HM ] concerning the
vanishing of matrix coefficients, which applies to semi-simple Lie groups, but does not
hold for their lattices. It is known, that for lattices the notions of ergodicity, weak mixing,
mixing, and 3-mixing are all distinct. In particular, there existnon-mixingactions, which
satisfy‖π ⊗ π(µ)‖ < 1, and hence, aremixing on random products(see [FS]).

Remark 4.5.Given G,µ and (X,m) such that‖π ⊗ π(µ)‖ < 1, one can consider the
critical exponential rate of mixing for the action, namely the greatest lower boundλc for
all λ satisfying (4.2). Theorem 4.1 givesλc ≤ √‖π ⊗ π(µ)‖. On the other hand, it
is shown in [FS] that the Kaimanovich–Vershik entropyh(G,µ) gives a lower bound:
e−h(G,µ) ≤ λc. In the case of an automorphism group of a compact abelian group, one
can show a stronger estimate:e−h(G,µ)/2 ≤ λc ≤ ‖π(µ)‖. In the particular case of the
two-dimensional torus andG ⊂ SL2(Z) it can further be shown that‖π(µ)‖ = ‖ρ(µ)‖
where(ρ, L2(G)) denotes the regular representation. For instance, for the free group

G = F2 =
〈(

1 ±2
0 1

)
,

(
1 0
±2 1

)〉
⊂ SL2(Z)

acting onR2/Z2, whereµ is equally distributed on the four generators, one obtains

0.76≈ 1

31/4
≤ λc ≤

√
3

2
≈ 0.86.

5. Strong ergodicity and the spectral condition
In this section we prove Theorem 1.6, regarding the connection between strong ergodicity
and the spectral gap condition‖π(µ)‖ < 1.

It is easy to check that‖π(µ)‖ < 1 implies 1G 6≺ π . Thus, for measurably aperiodic
probability distributionµ on a locally compact groupG, acting ergodically on(X,m), one
has the following.

(i) G is strongly ergodic on(X,m) ⇒ (ii) ‖π(µ)‖ < 1 ⇒ (iii ) 1G 6≺ π.

If G were discrete, the three conditions are in fact equivalent, as is shown in Theorem 6.3
below. For general locally compact groups (iii) does not imply (i), as the example of
G = S1 acting on itself shows (see the next section for a further discussion).

The proof of Theorem 1.6 follows the ideas of the discrete case in [Sc]. We shall also
use the opportunity to close a gap in [Sc]. We first need the following two lemmas.
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LEMMA 5.1. Let G act ergodically on(X,m). Let g ∈ G and suppose there exists a
sequence of measurable setsCn ⊆ X, satisfyingm(gCn4Cn)/m(Cn) → 0. Then every
limit point in the weak*-topology onL∞(X,m)∗ of the sequence of meansφn, given by

φn(F ) = 1

m(Cn)

∫
Cn

F dm, F ∈ L∞(X,m),

is a non-zerog-invariant mean onL∞(X,m). Moreover, if
∑

m(Cn) < 1 then every such
limit mean is different fromm.

Proof. Denotinghn = m(Cn)
−11Cn we note that

‖hn ◦ g − hn‖1 = m(gCn4Cn)

m(Cn)
→ 0.

Therefore, ifφ is a weak*-limit of{φnk }, then for anyF ∈ L∞(X,m) one has

|gφ(F )−φ(F )| = lim
k→∞

∣∣∣∣ ∫
X

(hnk ◦g−hnk ) ·F dm

∣∣∣∣ ≤ ‖F‖∞ · lim
k→∞‖hnk ◦g−hnk‖1 = 0.

Thus,φ is g-invariant. If
∑

m(Cn) < 1, thenm(F) < 1= φ(F ) for F =∑ 1Cn. 2

LEMMA 5.2. Letν be a probability distribution onG, which is not supported on a proper
measurable subgroup inG. Suppose thatCn ⊆ X satisfiesm(Cn) → t with 0 < t < 1,
and that forν-a.e.g ∈ G: m(gCn4Cn)→ 0. Thenm is not unique as aG-invariant mean
onL∞(X,m).

Proof. We assume thatm is unique, and show first that under these conditions there exists
a sequenceDn ⊂ X, such thatm(Dn)→ t2 and forν-a.e.g ∈ G: m(gDn4Dn)→ 0.

Indeed, from Lemma 5.1 and the uniqueness ofm, it follows that

lim
k→∞

m(Ck ∩ Cn)

m(Ck)
= lim

k→∞
m(Ck ∩ Cn)

t
= m(Cn). (5.1)

The sequence we shall construct is of the formDn,k = Cn ∩ Ck, for suitablen, k. The
argument above shows that ifn is fixed such thatm(Cn) is close tot , then fork large enough
m(Dn,k) is close tot2. Also note, that ifg ∈ G, m(gCn4Cn) < ε andm(gCk4Ck) < ε,
then

m((gCn ∩ gCk)4(Cn ∩ Ck)) ≤ m(gCk4Ck)+m(gCn4Cn) < 2ε. (5.2)

Thus, givenε > 0, we can chooseCn with |m(Cn)− t| < ε and such that for a measurable
setF ⊆ G with ν(F ) > 1− ε, m(gCn4Cn) < ε for everyg ∈ F .

Now, applying (5.1), takek large enough so that|m(Dn,k)− t2| < 2ε, and using (5.2),
we have that for a setF1 ⊆ G with ν(F1) > 1− 2ε

g ∈ F1⇒ m(gDn,k4Dn,k) < 2ε.

Letting ε = 2−i → 0, we obtain from Borel–Cantelli a sequence ofD’s as required.
Repeating this process, one obtains for everyi ∈ N, a sequenceDi

n such that

limn→∞ m(Di
n) = t2i

and forν-a.e.g ∈ G: limn→∞m(gDi
n4Di

n) = 0.
For everyi, chooseni large enough so that:
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(i) m(Di
ni

) < 2 · t2i → 0 asi →∞;
(ii) ∃Fi ⊂ G with ν(Fi) > 1− 2−i , such that∀g ∈ Fi : m(gDi

ni
4Di

ni
)/m(Di

ni
) < 1/i.

By Borel–Cantelli, ν-a.e. g ∈ G is contained in all but finitely manyFi ’s. Since
m(Di

ni
) → 0, we may take a subsequence with

∑
i m(Di

ni
) < 1. By Lemma 5.1 we

obtain a limit meanφ 6= m on L∞(X,m), which is invariant under a measurable set
F = lim inf Fi with ν(F ) = 1. Butν is not supported by a proper measurable subgroup of
G, thusφ is G-invariant, and not equal tom. 2

Proof of Theorem 1.6.We assume that‖π(µ)‖ = 1 and show thatm is not unique
as aG-invariant mean onL∞(X,m). Considerν = µ̌ ∗ µ. Sinceµ is measurably
aperiodic,ν is not supported on a proper measurable subgroup ofG. The self-adjoint
non-negative operatorπ(ν) = π(µ)∗π(µ) has norm‖π(ν)‖ = ‖π(µ)‖2 = 1, which can
be approximated by a sequencefn ∈ L2

0(X,m) with ‖fn‖2 = 1, satisfying

〈π(ν)fn, fn〉 =
∫

G

∫
X

fn(g
−1x) · f̄n(x) dm(x) dν(g)→ 1. (5.3)

Viewing fn(g
−1x), fn(x) as unit vectors inL2(G×X, ν ×m), we deduce that∫
G

∫
X

|fn − π(g)fn)|2 dm dν =
∫

G

‖fn − π(g)fn‖2 dν → 0.

Following [Sc] we now define a sequenceσn of probability measures onR, by

σn(D) = m(f−1
n (D)).

Observe that
∫

t dσn(t) = 0 and
∫

t2 dσn(t) = 1. The last equality shows that the sequence
{σn} is uniformly tight, so without loss of generality, we may assume thatσn converges
weakly on compacta to a probability measureσ onR.

If σ is not concentrated on a single point, we can findα ∈ R, such that

0 < σ(−∞, α) = σ(−∞, α] = t < 1.

PuttingCn = f−1
n (−∞, α) it follows thatm(Cn)→ t , and for anyg ∈ G which satisfies

‖fn − gfn‖2 → 0, we havem(gCn4Cn) → 0. Thus, the sequenceCn satisfies the
conditions of Lemma 5.2 andm is not unique.

We now deal with the more complicated case, whereσ is concentrated on one pointα0,
starting by showing thatα0 = 0 (in [Sc] the proof proceeds without identifyingα0, which
causes a gap later). Letε > 0 and takeN with N > max(|α0|, 1/ε). Let ρ ∈ {σn}, such
that ∣∣∣∣ ∫{|t |≤N}

t dρ −
∫
{|t |≤N}

t dσ

∣∣∣∣ ≤ ε. (5.4)

Notice that

N ·
∫
{|t |>N}

|t| dρ ≤
∫
{|t |>N}

t2 dρ ≤ 1.

So|∫{|t |>N} t dρ| ≤ 1/N < ε, which, together with
∫

t dρ = 0 gives|∫|t |≤N t dρ| ≤ ε.
By (5.4) we now deduce that|∫|t |≤N t dσ | ≤ 2ε. Butσ = δα0, so|α0| ≤ 2ε, as required.

Defininghn = f 2
n we obtain that

∫
hn dm = 1, and forν-a.e.g ∈ G

‖hn − π(g)hn‖1 ≤ ‖fn − π(g)fn‖2 · ‖fn + π(g)fn‖2→ 0.
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Now for everyn ≥ 1 let

h∗n(x) =
{

hn(x) if hn(x) ≥ 1

0 if hn(x) < 1.

As in [Sc] one observes that sinceσ is concentrated at 0 and‖hn‖1 = 1, we have
limn→∞ ‖h∗n‖ = 1, and forν-a.e.g: limn→∞ ‖h∗n − h∗n ◦ g‖1 = 0. Using an adaptation
due to Connes, of a technique of Namioka, we set for everys ∈ R, x ∈ X, g ∈ G

Fn(g, s, x) =
{

1 if h∗n(g−1x) ≥ s

0 if h∗n(g−1x) < s

and obtain

‖h∗n − h∗n ◦ g‖1 =
∫

X

∫ ∞
0
|Fn(e, s, x)− Fn(g, s, x)| ds dm(x) (5.5)

=
∫ ∞

0

∫
X

|Fn(e, s, x)− Fn(g, s, x)| dm(x) ds (5.6)

‖h∗n‖ =
∫

X

∫ ∞
0

Fn(e, s, x) ds dm(x) =
∫ ∞

0

∫
X

Fn(e, s, x) dm(x) ds. (5.7)

Replacing{h∗n} by a subsequence, we may assume that there exists an increasing sequence
of Borel setsEn ⊂ G, with ν(∪En) = 1, such that

∀g ∈ En : ‖h∗n − h∗n ◦ g‖1 <
‖h∗n‖1

n2 (5.8)

From (5.6)–(5.8) it follows that∫
En

∫ ∞
0

∫
X

|Fn(e, s, x)− Fn(g, s, x)| dm(x) ds dν(g)

<
1

n2

∫ ∞
0

∫
X

Fn(e, s, x) dm(x) ds.

Changing the order of integration betweends anddν in the left-hand side, and inserting
1/n2 into the right-hand side integral, we deduce the existence ofs = s(n) > 0, such that∫

En

∫
X

|Fn(e, s(n), x)− Fn(g, s(n), x)| dm(x) dµ(g)

<
1

n2

∫
X

Fn(e, s(n), x) dm(x). (5.9)

DefiningCn = {x | h∗n(x) ≥ s(n)} we see thatm(Cn)→ 0 (asx ∈ Cn implieshn(x) ≥ 1
andσ is concentrated at zero), so (5.9) translates to∫

En

m(gCn4Cn) dν(g) <
1

n2
m(Cn).

Finally, put

φn(g) =


m(gCn4Cn)

m(Cn)
if g ∈ En

0 otherwise.
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Since
∫

φn(g) dµ(g) < 1/n2, for µ-a.e.g we have
∑

φn(g) <∞ and hence,φn(g)→ 0.
Fromµ(En) → 1, it follows thatm(gCn4Cn)/m(Cn) → 0 for µ-a.e.g. Recalling that
m(Cn) → 0, we can pass to a subsequence with total measure less than one. Since the
assumption thatµ is measurably aperiodic implies thatν is not supported on a proper
measurable subgroup ofG, it follows from Lemmas 5.1 and 5.2 thatm is not a unique
G-invariant mean. This proves the theorem. 2

6. Strongly ergodic actions
In light of the results of the previous sections, we are naturally interested in establishing
the spectral gap condition‖π(µ)‖ < 1 and Theorem 1.6 suggests that the strong ergodicity
property should be examined more thoroughly. Let us first recall the following.

Definition 6.1.Let (π, V ) be a unitary representation of a locally compact groupG. Then
π is said toweakly containthe trivial representation 1G (notation: 1G ≺ π), if π admits
almost invariantvectors, i.e. for any compact subsetK ⊂ G and anyε > 0, there exists
v ∈ V , such that‖π(g)v − v‖ < ε‖v‖ for all g ∈ K.

Definition 6.2.A locally compact groupG is said to haveKazhdan’s property(T ), if for
any unitaryG-representationπ with 1G ≺ π , necessarily 1G ⊂ π .

It turns out that for a countable groupG, there is a clear connection between strong
ergodicity and representation theoretical properties related to the action.

THEOREM 6.3. Let G be a countable discrete group, acting on(X,m) preserving the
probability measurem, and letµ be an aperiodic probability measure onG. Then the
following conditions are equivalent:
(i) theG-action on(X,m) is strongly ergodic;
(ii) ‖π(µ)‖ < 1 (whereπ is the associated representation, as in the previous section);
(iii) 1G 6≺ π .

Note the analogy to the well-known equivalent conditions, in the case of a measure
preserving action of a locally compact groupG on (X,m), whereµ is a generating
probability measure onG: (i) the G-action on(X,m) is ergodic; (ii)π(µ) has no fixed
vectors inL2(X,m); (iii) 1G 6⊆ π .

Proof of Theorem 6.3.(i) ⇒ (ii) was proven in Theorem 1.6 (actually, the implication
(i) ⇒ (iii ) is due to Schmidt [Sc], and (iii ) ⇒ (ii) can be proven by an easy direct
argument). The implication(ii)⇒ (iii ) is obvious, and(iii )⇒ (i) follows from [Ro]. 2

The assumption thatG is countable is crucial for the above results. WhenG is any
locally compact group, it is shown in [FS] that if µ is absolutely continuous, and is not
supported on a coset of an open subgroup, then the implication(iii ) ⇒ (ii) above still
holds, and thus(ii)–(iii ) in Theorem 6.3 are equivalent. However, in general the situation
for non-countable groups can be quite different from the one described in Theorem 6.3,
and it is perhaps best illustrated by groups with Kazhdan’s property(T ). If G is discrete,
countable, and has Kazhdan’s property(T ), then every ergodic action of it is strongly
ergodic. However,G = R/Z is compact (hence, has property(T )), but its ergodic action
on itself is not strongly ergodic (see, for example, [Lu , 2.2.11]). This construction can
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be extended to any (Kazhdan) group which admits a non-trivial character. We remark
that, at least for connected (Kazhdan) Lie groups, it is shown in [Sh2] that admitting such
character is theonlyobstacle for strong ergodicity.

Before proceeding to more concrete examples, we should mention here that amenable
groups have no strongly ergodic actions, and that these are theonly groups with this
property. At the other extreme, groups with property (T ) are exactly those groups for
which every ergodic action is strongly ergodic (cf. [Lu , 3.5], and the references therein).

Automorphisms of compact abelian groups.An important class of measure preserving
actions are automorphic actions on compact abelian groups, and we shall now investigate
strong ergodicity for these actions.

SupposeG is a discrete, countable group, acting by automorphisms on a compact
abelian groupA, with Haar measurem (which is obviously preserved by the action).
Denote, as usual, byπ the G-representation onL2

0(A,m). Let Â be the (discrete) dual

group of characters, and 0∈ Â the trivial character. Recall thatG acts onÂ by:
g · χ = χ ◦ g−1, fixing zero, and henceG acts also onÂ \ {0}. We denote byπ̂ the
G-representation onL2(Â \ {0}), and recall that the Fourier transform

f ∈ L2
0(A,m) 7→ f̂ ∈ L2(Â \ {0}) defined by f̂ (χ) =

∫
A

f (x) · χ̄(x) dm(x)

is an isomorphism between theG-representationsπ onL2
0(A,m) andπ̂ onL2(Â \ {0}).

THEOREM 6.4. With the above notation, the following conditions are equivalent:
(1) theG-action on(A,m) is strongly ergodic;
(2) 1G 6≺ π (see Definition 6.1);
(3) 1G 6≺ π̂ ;
(4) there is noG-invariant mean onL∞(Â \ {0});
(5) theG-action on(A×A,m×m) is strongly ergodic;
(6) 1G 6≺ π ⊗ π ;
(7) 1G 6≺ π̂ ⊗ π̂ ;
(8) there is noG-invariant mean onL∞(Â \ {0} × Â \ {0}).
Proof. 1⇒ 2. Follows from Theorem 6.3.

2⇒ 3. Obvious, sinceπ ∼= π̂ .
3⇒ 4. This follows from a general result, which is proved in [FS]. For completeness

we outline the proof in this case. Supposeφ ∈ L∞(Â \ {0})∗ is aG-invariant mean. Then
there exists a sequencehn ∈ L1(Â\{0}) ⊂ L∞(Â\{0})∗, with hn → φ weakly. Passing to
convex combinations, one obtains suchhn with ‖hn ◦ g − hn‖1→ 0 for everyg ∈ G. We
can assume that‖hn‖1 = 1 andhn ≥ 0 for all n, and definefn(x) = √hn(x) which are
all unitary vectors inL2(Â \ {0}). Using an elementary inequality:|√a−√b|2 ≤ |a− b|,
we obtain for everyg ∈ G

‖π̂(g)fn − fn‖22 ≤ ‖hn ◦ g − hn‖1→ 0

and therefore, 1G ≺ π̂ , contradicting the assumption.
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4⇒ 8. If there was aG-invariant mean8 onL∞(Â \ {0}× Â \ {0}) then its projection
φ onL∞(Â \ {0}), defined byφ(f ) = 8(f ⊗ 1) would beG-invariant as well.

8⇒ 7. Supposefn ∈ L2(Â \ {0}× Â \ {0}) are almost invariant unit vectors. Consider
theL1(Â \ {0} × Â \ {0}) functionshn = |fn|2 as means onL∞(Â \ {0} × Â \ {0}). By
Cauchy–Schwartz inequality we have for everyg ∈ G,

‖hn ◦ g − hn(x)‖1 =
∑
x,y

|fn(g · x, g · y)− fn(x, y)| · |fn(g · x, g · y)+ fn(x, y)|

≤ 2 ·
(∑

x,y

|fn(g · x, g · y)− fn(x, y)|2
)1/2

→ 0.

Therefore, any weak limit of thehn’s defines aG-invariant mean.
7⇒ 6. Follows from the obvious isomorphism̂π ⊗ π̂ ∼= π ⊗ π .
6 ⇒ 5. Notice that theG-representation onL2

0(Â \ {0} × Â \ {0}) is isomorphic to
π ⊗ π ⊕ π ⊗ 1G ⊕ 1G ⊗ π . Since 1G 6≺ π ⊗ π , also 1G 6≺ π , hence condition 5 now
follows from Theorem 6.3.

5⇒ 1. If φ 6= m is anotherG-invariant mean onA, then the meanφ ×m defined by

φ ×m(f ) = φ

(∫
f (x, y) dm(y)

)
is aG-invariant mean which differs fromm×m. 2

Note that from Theorem 6.4 it follows that for automorphism actions, strong ergodicity
implies strong ergodicity of the diagonal action. Thus the mixing theorems (of §4) apply
together with the ergodic ones.

To illustrate more concrete examples, and the way Theorem 6.4 may be used, we have
the following.

THEOREM 6.5. Let G be a subgroup ofSLd(Z). Then either one of the following
conditions implies strong ergodicity of theG-action on the torusTd = Rd/Zd .
(i) The Zariski closureḠ of G in GLn(R), admits no invariant probability measure on

the projective spacePd−1(R), for the adjoint action defined by:g · [u] = [(gt )−1u].
(ii) G acts irreducibly onRd , and does not have an abelian subgroup of finite index.

Proof. Assume (i). Since stabilizers inPGLd(R) of measures onPd−1(R) are algebraic
[Zi , 3.2.18], condition (i) implies that there is noG-invariant probability measure on
Pd−1(R) for the adjoint action. By Theorem 6.4 it is enough to show that there is no
G-invariant mean onL2(Â \ {0}) for the dual actiong · u = (gt )−1u. Suppose that
such a meanφ exists. Denote byP : Â \ {0} → Pd−1(R) the natural projection,
and letφ∗(f ) = φ(f ◦ P). It is easily verified thatφ∗ defines a positive normalized
functional on the space of continuous functionsC(Pd−1(R)), and thus corresponds to a
probability measure. But, sinceφ is G-invariant,φ∗ is G-invariant as well, contradicting
the assumption. This proves the first statement of the theorem.

Assume (ii). SinceG has no invariant subspaces inRd , the same is true for the adjoint
G-representation. By (i), it is enough to show that the adjointG-action does not preserve
any probability measure onPd−1(R). SupposeG admits such a measure. Passing to a
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subgroup, we can assume thatG is finitely generated and still acts irreducibly. By the
descending chain condition there exists a minimal quasi-linear subvarietyS = V1∪· · ·∪Vk ,
which has full measure. By Furstenberg’s lemma [Fu] and the minimallity ofS, G has a
finite index subgroupG1 ⊆ G, preserving each of the subspacesVi ’s, and its image in
everyPGL(Vi) is precompact. SinceG1 is linear (over characteristic zero) and finitely
generated, it contains a torsion free subgroupG2 of finite index inG1. The image of the
commutator[G2,G2] in eachGL(Vi) is contained inSL(Vi), and is precompact there.
SinceG acts irreducibly,Rn = span{∪Vi}, so [G2,G2] is precompact inSLn(R). By
discreteness[G2,G2] is finite, and as it is torsion free,[G2,G2] is trivial. 2

Remark 6.6.For G = SLd(Z) Theorem 6.5 was proven originally by Rosenblatt [Ro],
using a different method.

The fast rate of convergence in the mean and pointwise ergodic theorems (1.1, 1.2)
suggests a way to distribute points uniformly on probability spaces, using strongly ergodic
group actions. For example, Theorem 6.5 applied to

G = SL2(Z) =
〈(

1 1
0 1

)
,

(
1 0
1 1

)〉
yields the following simple random algorithm of distributing points uniformly on the circle
(and tori).

Example 6.7.Choose randomly(x0, y0) ∈ [0, 1]2 and apply the following random
procedure: at thenth step choose(xn+1, yn+1) to be either(xn ± yn, yn) or (xn, yn ± xn)

mod 1, with probability 1/4 each. Then, with probability one, the sequence(xn, yn) is
distributed uniformly in the torusT2 = R2/Z2, averaging any givenL2-function with rate
o(log3/2+ε n/

√
n) and satisfying the CLT estimates.

As a different example, consider the following compact, connected, abelian group
(which is not a Lie group):A = (R× Qp/Z[1/p])d , where the ringZ[1/p] is embedded
diagonally in the productR × Qp of the real andp-adic fields. Then the diagonal linear
action ofSLd(Z) onRd ×Qd

p naturally induces an action onA. By Theorem 6.4 and the
method of proof of Theorem 6.5 one can then deduce the following.

THEOREM 6.8. Let G be a subgroup ofSLd(Z), andA be as above. Then under either
one of the conditions (i) or (ii) in Theorem 6.5, theG-action onA is strongly ergodic.

Using a method similar to that in Example 6.7, one can now obtain, applying
Theorem 6.8, a random algorithm for distributing points uniformly onZd

p.

Semisimple groups.As was previously indicated, for countable groups the connection
between strong ergodicity and the unitary representation associated with the action is
completely understood. For non-discrete groups the structure is, in general, more subtle.
However, for the distinguished class of semisimple groups we do have much more accurate
information, as the following analog of Moore’s theorem [Mo] shows.

THEOREM 6.9. [Sh1] Let G = 5n
1Gi be a semisimple Lie group with finite center, and

(π,H) be a unitaryG-representation with1Gi 6≺ π |Gi for each1 ≤ i ≤ n. Then:
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(i) if H ⊆ G is a closed non-amenable subgroup, then1H 6≺ π |H ;
(ii) if µ is a probability distribution onG, which is not supported on a closed amenable

subgroup, then the spectral radii satisfy:rsp (π(µ)) < 1 andrsp (π ⊗ π(µ)) < 1.

In particular, for simple Lie groups we deduce a result which is stronger than the one
for discrete groups (compare with Theorem 6.3).

THEOREM 6.10. Let G be a connected non-compact simple Lie group with finite center,
and letµ be a probability measure onG, which is not supported on a coset of a closed
amenable subgroup inG. Then for anyG-action on(X,m) the following conditions are
equivalent:
(i) ‖π(µ)‖ < 1;
(ii) ‖π ⊗ π(µ)‖ < 1;
(iii) theG-action on(X,m) is strongly ergodic;
(iv) 1G 6≺ π .

Moreover, if any of the above conditions hold, then for every closed non-amenable
subgroupH ⊆ G, theH -action on(X,m) is strongly ergodic as well.

Proof. For any locally compact group, both (i) and (ii) imply (iv). The implication (iii)
⇒ (iv), follows from Theorem 1.6. By Theorem 6.9 (iv) implies (i) and (ii), once we
notice that under the assumption onµ, the measurěµ ∗ µ is not supported on a closed
amenable subgroup, andrsp(π(µ̌ ∗ µ)) = ‖π(µ̌ ∗ µ)‖ = ‖π(µ)‖2 . To prove that
(iv) implies (iii), as well as the last assertion, consider any finitely generated subgroup
H1 ⊆ H with non-amenable closure. Then, taking a measureµ supported on generators
and using Theorems 6.9 and 6.3, one obtains that already theH1-action on(X,m) is
strongly ergodic. 2

Notice that, as in the case of automorphisms of a compact abelian group, the conditions
‖π(µ)‖ < 1 and‖π ⊗ π(µ)‖ < 1 are equivalent. Thus, strong ergodicity implies also the
mixing results of §4.

A primary object in the ergodic theory of semisimple groups is the action on
homogeneous spacesG/0, where0 is a lattice (i.e.0 is a discrete subgroup with finite
co-volume inG). If 0 is a uniform (i.e. co-compact) lattice in any locally compact group
G, then it is not difficult to show (see, for example, [Ma, III.1.10]):

1G 6≺ π for the representation(π,L2
0(G/0)). (6.1)

However, (6.1) does not hold for general non-uniform lattices: in [BL ] a tree lattice is
constructed, which is a counterexample (we thank A. Lubotzky for bringing this fact to our
attention). Nevertheless, whenG is a connected semisimple Lie group and0 ⊆ G is any
(also non-uniform) lattice, (6.1) holds, a fact which relies on rather deep results concerning
the geometry of such spaces (for a proof see [Be]). As remarked in [KM1 ], it seems very
reasonable that actually for any irreducible lattice0 in a semisimple Lie groupG = 5Gi ,
for everyi one has 1Gi 6≺ π |Gi (this is shown in [KM2 ] for any non-uniform0). This
information is required in order to apply Theorem 6.9. As in general we know only the
weaker property (6.1), the following is needed.
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THEOREM 6.11. [Sh1] Let G = 5Gi be as in Theorem 6.9 and letπ be a unitary
G-representation, such that1G 6≺ π . Then statement (i) in Theorem 6.9 holds, if we
assume that the projection ofH to everysimple factor does not have an amenable closure.
Statement (ii) holds if we assume that the projection ofµ to everysimple factor is not
supported on a closed amenable subgroup.

Theorem 1.8 of the Introduction follows easily from the above result, by taking an
appropriate measureµ, exactly as in the proof of 6.10. The caseH = G in Theorem 1.8
was treated in [Be].

Appendix A. On a coboundary problem
Recall that ifG is a locally compact group, acting ergodically on a probability measure
space(X,m), then a measurable functionα : G×X→ H with values in a locally compact
groupH , is said to be a (measurable)cocycleif for every g1, g2 ∈ G: α(g1g2, x) =
α(g1, g2x)·α(g2, x) for m-a.e.x ∈ X. A cocycleα is said to be a (measurable)coboundary
in H , if there exists a measurable functionφ : X → H , such that for everyg ∈ G and
m-a.e.x ∈ X, α(g, x) = φ(gx)φ−1(x).

Remark A.1.Let F = 〈S〉 be a free group (whereS is a set of free generators), acting
ergodically on a probability space(X,m), and letH be any locally compact group. Then
any collection of measurable functionsfs : X→ H , s ∈ S, uniquely defines a measurable
H -valued cocycleα : F ×X→ H , such thatα(s, x) = fs(x).

Our goal is to prove the following.

PROPOSITION A.2. Let G be a countable group, acting ergodically on a probability
measure space(X,m), µ be a generating probability measure onG, and let f be a
measurable function on(X,m). Supposef is a measurable coboundary as anR-function
on(�̄×X, P̄ ×m,T ), i.e. there exists a measurable functionh(ω, x) on�̄×X, such that

f (x) = (h ◦ T − h)(ω, x) = h(θω,ω1x)− h(ω, x), P̄ ×m-a.e. (A.1)

Thenh does not depend onω, i.e. h(ω, x) = φ(x), andφ(gx) = φ(x) for µ̌ ∗ µ-a.e.
g ∈ G.

First observe that Proposition 3.4 follows from Proposition A.2. Indeed, in the case
whereµ is aperiodic andG acts ergodically,φ is a.e. a constant, and hencef (x) = 0
almost everywhere as required. The case where the spectral gap condition‖π(µ)‖ < 1 is
satisfied, together with the assumption thath ∈ L2 in (A.1), is established as follows: by
Proposition A.2,h(ω, x) = φ(x) is in L2

0(X,m) andφ(gx) = φ(x) for µ̌ ∗ µ-a.e.g ∈ G.
Thus,

‖φ‖2 = 〈π(µ̌ ∗ µ)φ, φ〉 = ‖π(µ)φ‖2
and‖π(µ)‖ < 1 impliesf (x) = φ(x) = 0.

For the proof of Proposition A.2 we shall need some auxiliary results.

LEMMA A.3. LetG be a locally compact group, acting ergodically on a probability space
(X,m), and letα : H × X → S1 be a measurable cocycle. Suppose that theα-defined
skew-product(X×α S1,G), given byg(x, eit ) = (gx, α(g, x) ·eit ) is not ergodic. Then for
some integern ≥ 1, αn is a coboundary, i.e.αn(g, x) = φ(gx)/φ(x) for some measurable
φ : X→ S1.
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Proof. (This is essentially Zimmer’s ‘cocycle reduction lemma’; see [Zi , 5.2.11].) Let
F : X × S1 → R be a non-trivialG-invariantL2

0-function. By Fubini’s theorem,F(x, ·)
is a family ofL2(S1)-functions, satisfying

F(gx, ·) = α(g, x) · F(x, ·). (A.2)

Since
∫ 2π

0 F(x, eit ) dt is a G-invariant zero-mean function onX, we conclude that for
m-a.e.x ∈ X, F(x, ·) has zero mean onS1, i.e.F(x, ·) ∈ L2

0(S
1).

Now consider the spaceV = L2
0(S

1) as a Borel space with the naturalS1-action given
by the translations. SinceS1 is compact, theS1-action onV is smooth, namely, the space of
S1-orbits inV is countably separated, in the sense that there exists a countable collection
{Vi} of Borel S1-invariant subsetsVi of V , which separateS1-orbits in V . This holds
for any compact group action (see [Zi , 2.1.21]), although in our particular case, such
separating sets may be constructed explicitly using the Fourier coefficients.

Now, considering the measurable setsEi = {x ∈ X | F(x, ·) ∈ Vi}, we note that by
(A.2) the setsEi areG-invariant, and therefore havem-measure zero or one. Intersecting
thoseEi ’s which have fullm-measure and the complements of all otherEi ’s, we are left
with a singleS1 orbit in V , supportingm-a.e.F(x, ·). Hence,F(x, ·) = φ(x)v0 for some
(measurable)φ : X → S1 andv0 ∈ V . In particular,α(g, x)φ(x)v0 = φ(gx)v0, so
thatα(g, x)φ(x)/φ(gx) takes values in the stabilizer ofv0. Since the only proper closed
subgroups ofS1 are finite, we conclude that for somen ≥ 1, αn(g, x) = φ(gx)/φ(x) is a
coboundary. 2

We shall need the following application of results due to Moore and Schmidt,
characterizing coboundaries by their mappings to circles.

THEOREM A.4. [MS] Let G be a locally compact group acting measurably on a
probability space(X,m), and leta : G×X→ R be a measurable cocycle. LetBa ⊆ R be
the set of allλ, such that the cocycleαλ : G×X→ S1, defined by:αλ(g, x) = ei·λ·a(g,x)

is a measurable coboundary inS1, i.e. αλ(g, x) = φλ(gx)/φλ(x). ThenBa is a Borel
subgroup ofR, hence if it has positive Lebesgue measure, thenBa = R. Moreover, in
that casea(g, x) is a measurable coboundary inR: a(g, x) = b(gx) − b(x) for some
measurableb : X→ R.

Proof. Measurability ofBa is the contents of Proposition 4.1 in [MS]. The second
statement follows from Theorem 4.3 in [MS]. 2

Proof of Proposition A.2.We first claim that without loss of generality, the groupG can
assume to be free. Indeed, there exists a free groupG̃ with at most a countable setS of
generators, a probability measureµ̃ with supp(µ̃) = S, and a homomorphismp : G̃→ G,
such thatp(µ̃(n)) = µ(n) (one can take supp(µ) as the setS of free generators for̃G, with
the µ̃-weights given byµ). Defining theG̃-action byg̃x = p(g̃)x, we may, and shall,
replaceG by G̃ andµ by µ̃ in the assumptions and conclusions of Proposition A.2.

Hence, we assume hereafter that the groupG is free, and the measureµ is supported
on the setS of free generators. With this assumption the measurable functionf : X→ R
uniquely defines a cocyclea : G × X → R by a(g, x) = f (x) for g ∈ S (see
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Remark A.1). For eachλ ∈ R consider the measurable cocycleαλ : G × X → S1,
given by:αλ(g, x) = ei·λ·a(g,x), and theαλ-defined skew-product(X ×αλ S1,G).

Observe that the skew-product(�̄×ω1 (X ×αλ S1), T1) where

T1(ω, (x, eit )) = (θω, ω1(x, eit )) = (θω, (ω1x, ei(t+λf (x)))), (A.3)

with (�̄, θ) being the base, and(X ×αλ S1,G) as the fiber, is naturally isomorphic to the
λf -defined skew-product((�̄×ω1 X)×λ·f S1, T2) where

T2((ω, x), eit ) = (T (ω, x), ei(t+λf (x))) = ((θω, ω1x), ei(t+λf(x))), (A.4)

with (�̄ × X, T ) being the base, andS1 the fiber (this is the associativity of the skew-
product construction).

By the assumption, the functionf (as well asλ · f ) forms a coboundary on(�̄×ω1 X).
Therefore, for eachλ ∈ R the system (A.4), and hence (A.3), is also not ergodic. Sinceµ

generatesG, Kakutani’s random ergodic theorem implies that theG-action on(X×αλ S1)

is not ergodic. By Lemma A.3, everyαλ has a powernλ such thatαnλ

λ = αnλ·λ is a
coboundary inS1. This implies that for eachλ, there existsnλ such thatnλ · λ ∈ Ba (see
the notation of Theorem A.4). But this implies thatBa has positive Lebesgue measure,
and thus, by Theorem A.4, the cocyclea(g, x) is a measurable coboundary, i.e. for some
measurableφ : X→ R: a(g, x) = φ(gx)− φ(x) holds for allg ∈ G. In particular,

∀g ∈ supp(µ) : f (x) = φ(gx)− φ(x).

This shows that (A.1) holds withh(ω, x) = φ(x). Since�̄ × X is ergodic, the equation
(A.1) determinesh uniquely up to a constant, and thus,h(ω, x) = φ(x) (φ is now chosen
to have zero mean). We have forµ-a.e.g ∈ G, φ(gx) = φ(x)+ f (x), and thereforeφ is
invariant undeřµ ∗ µ-a.e.g ∈ G. 2

Remark A.5.Proposition A.2 holds for a general locally compact groupG. The assumption
that G is countable was used to construct a free groupG̃ which acts on theλf (x)-
defined skew-product(X × S1). However, the topological structure of the groupG̃ is
immaterial, since Kakutani’s theorem holds for anymeasurable familyof transformations.
The elements ofG with the distributionµ form such a family, each giving rise to a
measurableλf (x)-defined transformation on(X × S1).

Appendix B.(�̄×X, P̄ ×m,T ) is aK-system
In this section we prove an incidental result, concerning the structure of the skew-product
(�̄ × X, P̄ × m,T ). The following theorem is a generalization of theZ-case, proven
in [Me].

THEOREM B.1. Let G be a locally compact group, acting ergodically on a probability
measure space(X,m). Let µ be a probability measure onG, such thatπ(µ(n)) → 0 in
the strong operator topology. ThenT is an exact endomorphism of(�×X,P × m), and
the invertible system(�̄×X, P̄ ×m,T ) is aK-system.

The assumptionπ(µ(n))→ 0 is satisfied if either one of the following properties holds:
(i) µ is symmetricandaperiodic; or
(ii) for somek ≥ 1, the convolution powersµ(k) andµ(k+1) are not mutually singular.
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Proof of Theorem B.1.Assuming that limn→∞ ‖π(µ(n)φ)‖ = 0 for everyφ ∈ L2
0(X,m),

we shall prove that(�̄×X, P̄×m,T ) is aK-system. Since an inverse limit ofK-systems
is aK-system, it is enough to construct a sequence{ξk} of (finite) measurable partitions,
so thatF =∨ ξk moduloµ, and eachξ satisfies the following ‘uniform mixing’ property

∀f ∈ L2
0(ξ) lim

n→∞ sup

{
|〈f, g〉| | g ∈ L2

0

( −n∨
−∞

T iξ

)
, ‖g‖ = 1

}
= 0. (B.1)

We shall use partitionsξ of the formξ = α ∨ β, whereα is any partition of(�̄, P̄),
depending on afinitenumber of coordinatesωi, |i| ≤ N . The partitionβ will be any finite
measurable partition ofX, i.e.β ⊂ B. Since suchξ ’s generate allF , it is enough to show
(B.1) for ξ = α ∨ β. Observe thatξ ⊂∨N

−N T iB, and therefore

L2
0

( −n∨
−∞

T iξ

)
⊂ L2

0

(−n+N∨
−∞

T iB
)
, L2

0(ξ) ⊂ L2
0

( ∞∨
−N

T iB
)
.

We can now apply the first inequality in (3.4) of Lemma 3.3 to deduce (B.1), thereby
proving the first assertion.

We are left with the second part. Assume (i), i.e.µ is symmetric and aperiodic. Then
π(µ) is a self-adjoint operator, and thus, by the spectral representation

‖π(µ̌)nφ‖2 = 〈π(µ)2nφ, φ〉 =
∫ 1

−1
t2n dνφ(t), (B.2)

whereνφ on [−1, 1] is the spectral measure corresponding toπ(µ) = π(µ̌) andφ. By the
dominated convergence theorem the expression in (B.2) converges to zero, as soon as we
show thatνφ{−1} = νφ{1} = 0. If the latter does not hold, there existsψ ∈ L2

0(X,m) with
π(µ)ψ = ±ψ so thatπ(µ̌ ∗µ)ψ = ψ. By convexity,π(g)ψ = ψ for (µ̌ ∗µ)-a.e.g ∈ G,
and hence, for all theg’s in the smallest closed groupH ⊂ G, supportingµ̌ ∗ µ. Sinceµ

is aperiodic,H = G, and we contradict the fact thatG has no fixed vectors inL2
0(X,m).

Now assume that condition (ii) is satisfied. Then denotingS = π(µ̌), its adjoint
operator isS∗ = π(µ). The assumption thatµ(k) andµ(k+1) are not mutually singular,
implies that the operator norm satisfies‖Sk − Sk+1‖ = ‖π(µ̌(k) − µ̌(k+1))‖ < 2. By the
‘0–2’ law (see [KT ]) this implies that for anyψ:

lim
n→∞‖(S

n − Sn+1)ψ‖ = lim
n→∞‖S

n(1− S)ψ‖ = 0.

In our case the operator(1− S) is onto, since the dual operator(1− S∗) = (1− π(µ)) is
one-to-one (this follows from ergodicity of theG-action and the fact thatµ is generating).
Therefore, for anyφ ∈ L2

0(X,m), there existsψ ∈ L2
0(X,m) with ‖Snφ‖ = ‖Sn(1 −

S)ψ‖ → 0. 2
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