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Outer automor phism groups of some ergodic equivalence
relations

Alex Furmarf

Abstract. LetR a be countable ergodic equivalence relation of typeoH a standard prob-
ability space(X, u). The group OuR of outer automorphisms of R consists of all invertible

Borel measure preserving maps of the space which Riajasses tdr-classes modulo those
which preserve almost eveRrclass. We analyze the group QRifor relationsR generated by
actions of higher rank lattices, providing general conditions on finiteness and triviality & Out
and explicitly computing OuR for the standard actions. The method is based on Zimmer’s
superrigidity for measurable cocycles, Ratner’s theorem and Gromov's Measure Equivalence
construction.
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1. Introduction and statement of the main results

Let(X, 8) be astandard Borel space with a non-atomic probability Lebesgue measure
and letR be a countable measurable relation of typeh (X, 8, ), i.e. measurable,
countable, ergodic and measure preserving equivalence reRtonX x X. For

the abstract definition of this notion the reader is referred to the fundamental work of
Feldman and Moore [1], which in particular demonstrates that any such equivalence
relation can be presented as the orbit relation

RX,F:{(-x,y)EXXX|F}C:Fy}

of anergodic, measure preserving action of some countable grodpon the space

(X, 8, ). In most of the examples in this paper equivalence relations are defined
by ergodic measure-preserving actions of concrete countable groumasnely irre-
ducible lattices in semi-simple connected higher rank real Lie groups.
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In the purely measure-theoretical context of this paper all objects are considered
modulo sets of zerge-measure, denoted (mod 0). Following this convention the
measure space automorphism group (Xutw) is the group of all invertible Borel
mapsT: X — X with T,u = u, where two such maps which agree on a set of
full u-measure are identified. In a similar fashion two equivalence relaRpR5on
(X, n) are identified if there exists a subsét € X with u(X’) = 1 on which the
restrictions ofR andR’ coincide.

Given an equivalence relatigd on (X, ) consider the group afelation auto-
mor phisms

AutR = {T € Aut(X, ) | T x T(R) =R}

and the subgroup InR of inner automor phisms, also known as th&ull group of R,
consisting of sucl’ € Aut(X, w) that(x, Tx) € R for u-a.e.x € X. The full group
InNR is normal in AutR and theouter automor phism group OutR is defined as the
guotient

1—> INNR —> AUtR - OutR —> 1.

Elements of OuR represent measurable ways to pernielasses oniX, ). The

full group InnR is always very large (see Lemma 2.1). For the unigomenable
equivalence relatioRam of type Il; the outer automorphism group Ry, is also
enormous. The purpose of this paper is to analyzeRQut for orbit relationsRx r
generated by m.p. ergodic actions of higher rank lattices, in particular presenting
many natural examples of relatioRswith trivial OutR. Such examples were first
constructed by S. Gefter in [6], [7] (Theorem 1.5 below).

Prior to stating the results let us define two special subgroups iRQuatthe
case where is the orbit relatiorRx r generated by some measure-preserving ac-
tion (X, u, I') of some countable group. In such a situation consider the group
Aut(X, I") of action automorphisms of the system(X, u, I')

Aut(X,T) :={T e Aut(X,uw) | T(y -x) =y - T(x) forall y e T'}.

This is the centralizer of" in Aut(X, u). For a group automorphism € AutT’
define
Aut™ (X, T) == {T € Aut(X, ) | T(y - x) = y* - T(x)}

and let Aut(X, T") be the union of Aut(X,T') overt € AutI'. (If the I'"-action
is faithful Aut*(X, T") is the normalizer of" in Aut(X, u)). We shall denote by
A(X,T') andA*(X, I') the images of the groups AW, I') and Aut(X, I") under
the factor map AuRx LN OutRy r. Observe that the-image in OuRy r of the
coset Aut (X, I') depends only on the outer cldsg € OutI” and therefore can be
denoted byAl*1(X, I'). The groupA(X, I') is normal inA*(X, T') and the factor group
A*(X,T)/A(X,T) is (a factor of) a subgroup of Olit In general, the subgroups
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A(X,T) € A*(X, T') of OutRy  depend on the specific presentation of the relation
R as the orbit relatiox r of an action(X, u, I').

Inthis paper we are mostly interested in ergodic m.p. actions of higher rank lattices
and will be using the following terminology and notations:

« Forlocally compact, secondly countable grati@ left-invariant Haar measure
will be denoted byng. If ' C G is adiscrete group so th&t/ I" carries a finite
G-invariant measure we say tHaforms alatticein G and will denote byn g, r
the uniqueG-invariant probability measure asi/ T

« The termsemi-simple Lie group will mean semi-simple, connected, center-free,
real Lie groupG = [] G; without non-trivial compact factors, unless stated
otherwise. A latticd” in a semi-simple Lie grous = [] G; is irreducible if
I" does not contain a finite index subgrolipwhich splits as a direct product
of lattices in subfactors. B¥yigher rank lattice hereafter we shall mean an
irreducible lattice in a semi-simple Lie groupwith rkr(G) > 2.

« A measure-preserving actiei, u, I') of a latticel” in a semi-simple Lie group
G =[] G, isirreducibleif the action of every simple factag; in the induced
G-action on(G xr X, mg,r x p) is ergodic. Clearly, ifG is simple then any
latticeI’ C G is irreducible and any ergodic-action is irreducible.

« For an arbitrary group’ a m.p. action Xo, o, I') is a (C-equivariant)quotient
of another m.p. actioX, u, I') if there exists a measurable map X — Xo
with mou = poands(y - x) = y - w(x) for u-a.e.x € Xand ally € I'.

« Ameasure-preserving actioX, u, I') of an arbitrary group' is calledaperiodic
if every finite atomic quotient ofX, w, I') is trivial; equivalently if every finite
index subgroupg™ c I acts ergodically oniX, w).

Remarks. (a) Everymixing ergodic action(X, u, I') of an irreducible latticd™ in a
semi-simple Lie groud is irreducible and aperiodic.

(b) By the result of Stuck and Zimmer [14] any ergodic non-atomic m.p. action
of an irreducible latticd™ in a semi-simple Lie grougs with property (T) isfree
(mod 0). Recall that a higher rank semi-simpldas property (T) iff it does not have
simple factors locally isomorphic to §@, 1) or SU(n, 1).

(c) For any free, ergodic actiofX, u, I') of an irreducible latticd™ in a semi-
simple Lie groupG the map

Aut(X,T') - A(X, T
is an isomorphism and the homomorphism
A*(X,T)/A(X,T) — Outl’

is an embedding (Lemma 2.3 below).
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(d) It follows from the Strong Rigidity (Mostow, Prasad, Margulis) that for an
irreducible latticd™ C G % SL»(R) the automorphism group Alitis isomorphic to
the normalizeNayi () of CiINAut G 2 Ad G = G. Sincel'y := Nagig(I) 2T
is a closed subgroup properly contained in A&ytit forms a lattice in AuG, and
OutI’ =TI,/ T is always finite.

Thus for an irreducible aperiodic free m.p. action of a higher rank laRitiee

analysis of OuRy r reduces to the analysis of the quotient @wtr /A*(X, I') and
the subgroug\* (X, I') which, up to at most finite index, is isomorphic to Akt I").

Theorem 1.1. Let G be a semi-simple, connected, center-free, real Lie group with-
out non-trivial compact factors and with rkg (G) > 2. LetI" C G bean irreducible
latticeand (X, u, I') beameasure preserving, ergodic, irreducible, aperiodic, essen-
tially freeI"-action. Assumethat (X, u, I') does not admit measurable I'-equivariant
quotients of the form (G/ T, mg,r, T') where T C G is alattice isomorphic to I
andT actsby y: gI'" — ygI'’. Then

OutRyr = A*(X,T)
while A*(X, T') = Aut(X, T")/T.
More generally, we have:
Theorem 1.2. LetT" C G beahigher rank latticeasin Theorem 1.1and (X, u, I')
be any measure preserving, ergodic, irreducible, aperiodic, essentially free I'-action.

If A*(X,T') hasfiniteindex n > 1in OutRyx r then (X, u, I') has an equivariant
measurable quotient

n—1
7 (X, p) — (G MGn-1pn-1) = H(G/ I',mg/r)
i=1
where the -action on (G" /T, mgu-1,ru-1) is given by

y: (Xi);:ll = (" ‘xi)?:_ll

for some fixed automorphisms z; € AutG,1 <i < n.
If A*(X, ') hasinfiniteindex in OutRy r then (X, u, I') has an infinite product
equivariant quotient space

7 (X, W) — [[G/Tmgr)
i=1

with a diagonal I'-actionon y : (x;);2, = (y%x;);2, for some fixed sequence z; €
AutG,i=12....



Vol. 80 (2005) Outer automorphism groups of some ergodic equivalence relatiod&1

Of course, Theorem 1.1 is just a particular case of 1.2 (contrapositive formulation
for n = 1) since ar-twistedI"-actiony : gI" — y*gI’ on(G/TI", mg,r) is measur-
ably isomorphic to the untwisted-actiony : gI'’ — ygI’ wherel" = t~1(I").
Forand xd matrixAlety (A) := )", log" |1;(A)|, wherelog x = max0, logx}
andj; (A) denote the eigenvalues af Given a semi-simple grou@ andd € N con-
sider all linear representatiops G — GL4(C) (there are finitely many equivalence
classes for any) and let

= i K@)
Wo(d) = max inf o)

Corollary 1.3. LetI" c G and (X, u, I') beasin Theorem 1.2 Denote by 2 (X, y)
the Kolmogorov—Sinai entropy of the single measure-preserving transformation y of
(X, ). Then

. h(X,y)
OutRy,r : A*(X, ] < 1+ inf ——"——.
[OutRx,r : A*(X, )] yar 2 (Ad (7))

If X isa compact manifold with a C1-action of a higher rank lattice I’ ¢ G which
preserves a probability measure © on X so that (X, u, I') is a free (mod 0)action
which is ergodic, irreducible and aperiodic, then

[OUtRy 1 : A*(X, )] < 1+ Wg(dim(X)). (1.2)
The function W; satisfies Wg (d) < d?/8.

(1.1)

Remark. Theorem 1.9 below shows that the inequality (1.1) is sharp. However
the estimate (1.2) is probably not optimal, with a more plausible one beirg 1
dim(X)/dim Lie(G).

Remark. Aswe shall see below, groups Qrif - andA(X, I') can be very large when
considered as abstract groups, but in all cases below the quotieRkQUR* (X, T')

is either finite or countable. This might be a general property of actions of higher rank
lattices. In fact, this property is known for essentially free ergodic acii@n§’) of
groupsl” with Kazhdan'’s property (T). For such groups (and in a slightly more general
situation) Gefter and Golodets introduced a natural topology oR@uitwith respect

to which OutRy r is a Polish (i.e. complete separable) group A, I') is an open
subgroup (see [8], Theorem 2.3, and references throughout Section 2).

In specific cases, in particular in the standard examples of algebraic lattice ac-
tions, it is possible to compute the groups @utr explicitly as we shall do in The-
orems 1.4-1.9 below. In Theorems 1.4-1.8 the systém§') do not haveG /T’ as
measurable quotients and therefore by Theorem 1.1 we hawr,Qut= A*(X,T') =
Aut*(X.I')/T". The latter groups are of algebraic nature, but their explicit descrip-
tions are cumbersome. Thus for readers convenience we have also presented the
groups AutX, I'), which have a more transparent appearance and have at most finite
(< |Outl'|) index inA*(X, T).
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Theorem 1.4. Let G be a simple, connected real Lie group with finite center and
rkr(G) > 2and p: G — SLy(R) be an embedding such that p(G) does not
have non-trivial fixed vectors and assume that G has a lattice I' C G such that
p(I'") € SLy(Z). Then the natural I'-action on the torus TV = R /Z" isergodic,
aperiodic and the orbit relation Ryw - satisfies

OutRpw = A*(TV, ") = NoLy@ (p(I1)/p(I)
AN, T) = Aut(TV, T') = CoLy k) (0(G)) N GLy(Z).

Inparticular, for n > 2the SL, (Z)-actiononT" givesan ergodic relation R s, (z)
which hasno outer automorphismsif n iseven, and a single outer automor phismgiven
by x — —x ifn isodd.

Note that in the above theorem we allowed finite non-trivial centers to accommo-
date the standard examplelof= SL,(Z) acting on the toru&¥” for evenn > 2.

To state the following results we recall the notionaffine transformations of a
homogeneous space (these are needed only for the precise descriptiorRgf Qut
however the spirit of the results is captured by the finite index subgtgip I')
which does not require this notion.

Definition. Let A be a subgroup of a grouli, and letN := (), .y h~1Ah denote
the maximal subgroup af which is normal inH. Given an automorphism of
H/N witho(A/N) = A/N andt € H/N denote by, , the map

g1 hA — to(h)A

of H/A. Such maps will be calledffine, and we shall denote by AftH/A) the
group of all affine maps off /A.

ReplacingH by H/N and A by A/N one does not change the homogeneous
space: H/A = (H/N)/(A/N). Thus hereafter we shall assume thétis
trivial. Under this assumption the map, ) +— a,, defines an epimorphism
Nauwt g (A) x H — Aff (H/A) (which contains{(Ad A, 1) | A € A} in its ker-
nel) and which map$/ = {Id} x H isomorphically onto its image in AffH/A).

This copy ofH in Aff (H/A) has index bounded bput H|.

We shall be interested in situations where some group (a higher rank lattice)
I' is embedded irH, p: I' — H, and acts on the homogeneous spate\ by
left translations. Then the normaliz&g z/a) (0 (")) in Aff (H/A) of this action
consists of those affine mapg; for whicho € Aut H andr € H satisfy

o(A)=A and o(p@) =ttpD)r.

In any case this group containéy (o (I')) as a subgroup of an index bounded by
|OutH|.
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Theorem 1.5 (cf. Gefter [7]). Let T" be a higher rank lattice which admits a dense
embedding p: ' — K into a compact connected Liegroup K. Thenfor every closed
subgroup {e} € L C K theI'-actionon (K/L,mg/.) isergodic, irreducible and
aperiodic and the orbit relation R/, r satisfies

OutRx/r,ry = A*(K/L,T') = Naft (k/r)(p(I))/p(T)
AK/L,T) = Aut(K/L,T) = Ng(L)/L.

In particular, if the compact group K has no outer automor phisms which normalize
L or if I has no outer automor phisms, then

OUtRK/L,r = NK(L)/L.

Remark. A variant of Theorem 1.5 was proved by S. Gefter in [7]. This gave the
first example of type ll equivalence relations without outer automorphisms (see also
Corollary 1.8, Theorem 1.10 and the remarks that follow below). Indeed, by a well
known arithmetic construction (cf. [17], 5.2.12) certain lattifes G := SQ(p, q)
admit dense embeddings into the compact gr&up= SO(n) wheren = p + q.
Takep > g > 2to ensure rk(G) > 2 and letL = SO(n — 1) be the stabilizer of a
pointin K = SO(n) action on the spher&” 1. ThenNg (L) = L and since SO)

has no outer automorphisms, A /L) = Nk (L), which shows that OWR 7 )

is trivial.

In Theorem 1.5 the compact group is taken to beconnected to guarantee
aperiodicity of the action. Higher rank lattices can also be densely embedded in
other compact groups, namely profinite ones. Such embeddings give rise to ergodic
actions which strongly violate aperiodicity condition —they are inverse limits of finite
guotients. A typical example is the standard embedding

I :=PSL,(Z) > K :=PSL,(Z,).

It was observed in [7] (Remark 2.8) that in this case Rufr contains a group
isomorphic to PSL(Q,), in such a way that

AK,T)=EK = PSLn(Zp) C PSLn(Qp) C OutRg r

so thatA(K, T') has infinite index in OuRg . We claim that the last inclusion is
essentially an equality. More generally, the following result holds:

Theorem 1.6. Consider the natural dense embedding of I' = PSL,,(Z), n > 3, in
theprofinitegroup K = [[;_; PSL,(Z,) where{ps, ..., p,} isafiniteset of distinct
primes. Then OutRg r isaZ/2 extension of

H =]]PSL.(@,)

i=1
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with the transpose map (k1, ..., k) — (kj,..., k") of K giving rise to the Z/2
extension.

Another family of standard examples is described by the following

Theorem 1.7. Let ' C G bea higher rank lattice asin Theorem 1.1, H be a con-
nected Liegroup, A C H bea closed subgroup so that H/A carriesan H-invariant
probability measure my, 5, and assume that H does not admit surjective homo-
morphismso: H — G with o(A) € I'. Suppose that there exists a homomor-
phismp: G — H such that each of the simple factors G; of G acts ergodically on
(H/A,mpg ). Thenfor theT"-actionon (H/A, mp, ) one has

OUutR(g a1y = A*(H/A,T) = Nast a/n)(p(T))/p(T)
AH/A,T) =ZAut(H/A,T) = Cagf (H/A)(,O(F)).

Corollary 1.8. Let ' C G be a higher rank lattice as in Theorem 1.1, H be a
connected semi-simpleLiegroupwithtrivial center, p: G — H beanembeddingand
let A C H beanirreduciblelattice. Assumethat either p isa proper embedding, i.e.
G % H,orthatp: G — H isanisomorphismbut A isnot abstractly isomorphictoa
subgroup of finiteindexinI". ThentheI'-actionon (H/A, mpy, ) by lefttranslations
isergodic, irreducible and aperiodic (in fact mixing) and the orbit relation Ry /A, r
has

OutR(g/a,ry = A*(H/A,T) = Nagt (r/a)(p(1))/p ().

This group contains the centralizer Cy (p(G)) as a normal subgroup of finite index
dividing |OutA| - |Outl’|.

Remark. Corollary 1.8 also allows to construct ergodic equivalence relations with-
out outer automorphisms. Indeed if a simple Lie graupgt SLo(R) has no outer
automorphisms, then maximal latticEsn G have trivial Outl” as well. Choosing
two non-commensurable maximal latticESA in such aG one obtains an equiva-
lence relatiorRg, A, Without outer automorphisms. Similarly, one can find proper
embedding€s C H whereG andH are simple higher rank Lie groups with Oaif
OutH, Cy(G) all being trivial. Then for any choice of maximal latticEsc G,

A C H,theT'-action onH /A givesRg, 5 r without outer automorphisms.

Allthe examples discussed so far had the property thatthe original syEtemI™)
did not admit measurable-equivariant quotients of the fora&;/ I, mg, v, T'); and
therefore Theorem 1.1 allowed to conclude that

OutRx. = A*(X,T") = Aut*(X, T')/T.

The following result analyzes what happens if this assumption is not satisfied.
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Theorem 1.9. LetT" C G beahigher ranklatticeasin Theorem1.1andlet I"-act on
(G/T', mg,r) by left trandlations. Then for the corresponding orbit relation Rg, r -

[OutRg,r,r : A*(G/I',T)] =2
A(G/T,T) Z2AU(G/T,T) = {1}

A*(G/T,T) = Ooutl’

OutR(G,r,ry = (Z/2Z) x OutT.

More generally, for any n € N the diagonal left I'-action on the product space
(G"/ re, mGn/rn) satisfies

[OUtR(Gn/Fn,F) : A*(Gn/rn, N =n+1
A(G"/T",T) = Aut(G"/T",T") = &,

A*(G"/T",T) = S, x OutT

OUtR(Gn/rn’r) = n+1 X Ooutl’

where S, denotes the permutation groupon {1, ..., n}.
For the diagonal T"-action on the infinite product (X, u) = (G/ F,mG/[‘)Z, the
index [OutR(x r) : A*(X, I')] isinfinite countable

A(X,T) = Aut(X, T) = Soy
A*(X,T) = S x Outl
OUtR(XI) = Soo+l x OutI’

where S, denotesthefull permutation group on Z, and S..+1 the permutation group
of Z U {pt} to suggest that the embedding A*(X, I') C OutRy r corresponds to the
natural embedding Seo C Soo+1 direct product with OutT.

Let R be an ergodic H-relation on a probability spadeX, 1), andE C X be a
measurable subset with(E) > 0. The restrictiorRg := RN (E x E) of RtO E is
a ll;-ergodic relation with respect to the normalized meagure= u(E) ™1 k.
Since InrR acts transitively on subsets of the same size (Lemma 2.1) foFanyX
with w(F) = w(E) the relationRg on (F, ur) is isomorphic toRg on (E, ug).
Hence given a ll-relationR, for every 0 < r < 1 there is a well defined, up to
isomorphism, ergodic {trelationR, obtained fromR by restriction to a subset of
measure. (Realizing(X, 1) as the unit interval0, 1] one may think ofR, as the
restriction ofR to the sub-intervalo, 1).

If R has an additional property thRt Z R, for all 0 < 7 # s < 1, one says
that R has atrivial fundamental group. Orbit relationsR = Ry r generated by
free, ergodic, irreducible m.p. actions of higher rank lattifealways have trivial
fundamental groups (cf. Gefter and Golodec [8]). Recent work [5] of Gaboriau gives
other classes of such relations.
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Regardless whether the fundamental grougras trivial or not, all restricted
relationsR, obtained from a given ergodiciHrelationR have the same outer auto-
morphism group: OWR, = OutR (see Lemma 2.2). Hence

Theorem 1.10. LetT" ¢ Gand (X, i, I') beasinTheorem1.2 For0 < ¢ < 1letR,
denote the (isomor phism class of ) equivalence relation obtained fromR := Ry r by
arestrictiontoasubset E; ¢ X of measure u(E;) = t. Then {R;}o<;<1 isafamily of
mutually non-isomor phic ergodic equivalencerel ations of typell 1 with the same outer
automorphismgroup OutR, = OutRy r. Inparticular, thereexist uncountably many
mutually non-isomorphic ergodic relations with trivial outer automor phism groups.

Remarks. (a) In [3], Theorems D (1)—(2), it is shown that for an ergodic action
(X, u, I') of a latticeI" in asimple higher rank Lie grouf, there is a countable set
My r c Rsothatforr € (0, 1) \ My r the relationR, cannot be generated byfaee
(mod 0) action ofiny group. Therefore Theorem 1.10 provides a variety of examples
of such exotic relations without outer automorphisms.

(b) In a recent work [11] Monod and Shalom develop a new type of “higher rank”
superrigidity theorems for products of hyperbolic-like groups. Usingthis newtooland
the methods of the current paper Monod and Shalom construct uncountablyomany
weakly equivalent relationsr of type Iy with trivial OutR (see [11], Theorem 1.12).

Organization of thepaper. Section 2 contains some generalfacts abaqutdlations.

In Section 3 we discuss the Measure Equivalence point of view which provides a con-
venient framework for the study of OBty r/A*(X, T"). Special features of higher
rank lattices, especially superrigidity for cocycles, are used in Section 4 in a construc-
tion of I"-equivariantstandard quotients 7 : (X, u) — (G/TI', mg,r) associated to
every[T] € OutRy r \ A*(X, I'), which provide the proof of Theorem 1.1. In Sec-
tion 5 we recall some ergodic-theoretic applications of Ratner’s theorem for actions
on homogeneous spaces. These results are used in Section 6 to assemble the standard
guotients for the proof of Theorem 1.2, and in Sections 7 and 8 to compute the outer
automorphism groups for the standard examples. Section 9 contains the proof of
Theorem 1.6.

2. Generalities

LetR be an ergodic ll relation on a non-atomic probability spacé, ). For readers
convenience we include the proof of the following standard fact

Lemma2.1l. For every measurable E, F C X with u(E) = u(F) > Othere exists
T € InnRsothat W(TEAF) =0.
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Proof. By [1], Theorem 1, there exists an acti@X, n, I') of some countable group

" so thatR = Ry . Such an action is necessarily measure-preserving and ergodic.
For any measurable subsetsB < X letc(A, B) := sup, u(y A N B). Ergodicity
impliesthatc(A, B) > O whenevepu(A) > 0andu(B) > 0. LetEg:= E, Fp:=F

and define by induction om > 1 measurable sef5,, F,, C X and elementg,, € T’

as follows: givenE,, F, choosey, so that

wWynEn NFy) > c(Ey, Fp)/2

andletE, 11 := E,\ v, Fy, Fuy1:= Fy \YnEn. S€tEs := NE,, Foo := NF,. We
haveu(Es) = u(Fy) becauseu(E,) = w(F,) for all finite n. Infactu(Ey) =
w(Fso) = 0. Indeed, otherwise one would hasteE,,, F,,) > ¢ := c(Exo, Fo) > 0
for all n, contrary to the choice of, at the stage wherne(E,, \ E,+1) < ¢/2. Hence
E) = E, \ E,41andF, := F, \ F,41 constitute measurable partitions Bfand F
respectively. Defining’(x) to bey, - x if x € E;, andT (x) = x forx ¢ E, we get
the desired” € InnR. O

Given an ergodic l-relationR on (X, 1), and a positive measure subgeC X
we denote byRg the restricted relatioR N (E x E) on (E, ug), whereug =

u(E)™- ulg.
Lemma2.2. For ameasurableset E C X with u(E) > 0
OutRg = OutR.

Proof. Firstobservethatarl§y € Aut R can be extended tofa e Aut R. To see this
choose some measurable partithtor= FEUX,U---UX y sothatO< w(X;) < w(E);
and choose measurable subgétsC E with w(E;) = n(X;). By Lemma 2.1 there
exist S;, R; € InnR so thatS;(X;) = E; and R;(X;) = T(E;). DefineT by
T(x) = R71oT o Si(x)forx € X; andT(x) = T(x) for x € E to get a desired
T € AutR.

This extension procedure is well defined on the levebuir classes. In other
wordsif7, S € Aut R are some extensions of soffieS € AutRg, then[T] = [S] €
OutRg iff [T] = [S] € OutR. Indeed foru-a.e.x € X choosey € E so thatx ~ y
and observe that

Tx)~T@y)=T(«) and S(y) = S(y) ~ Sx).

HenceT (x) ~ S(x) for p-a.e.x € X iff T(y) ~ S(y) for uz-a.e.y € E.

Thus there is a well defined injective map @&y — OutR, which is easily
seen to be a homomorphism of groups. To verify its surjectivity, note that given any
T € AutR there is anS e InnR with S(T(E)) = E. ThusT’ := S o T mapsE to
itself, and[T] = [T’] € OutR appears as an extension[@f|z] € OutRg. O
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For the rest of the section we consider a free (mod 0) ergodic m.p. @&tion I')
of some countable group, denoting byRx r the corresponding orbit relation.

Lemma 2.3 (Gefter [7], Lemmas 2.6, 3.2).et (X, u, I') be a free m.p. ergodic ac-
tion of a countable group I.

(a) If T hasInfinite Conjugacy Classesthen Aut(X, I') —5 A(X, T) isan isomor-
phism.

(b) If T hasthepropertythatany r € AutT" withy™ = y onafiniteindex subgroup
y € I'g C T hasto be the identity, then

Ker (Aut*(X, ') —> A*(X,T)) = {x > y - x}yer = T.

In particular, the conclusions of (a) and (b) hold for any free ergodic action (X, u, I')
of anirreduciblelattice I" in a semi-simple Lie group G # SL2(R).

Proof. (a) Any T € Aut(X,T') N InnRx r has the formT': x — &, - x for some
measurable — &, € I" and satisfieg'(y - x) =y - T(x). Hence

VSx'x:V'T(x):T(V'x):éj_y-xV'x

which givesé, ., = y&:y 1 because the action is assumed to be free (mod 0).
Thus the distributior, . of & on T is conjugation invariant, and therefore is uni-
form on finite conjugacy classes of T', i.e. supported om. HenceT (x) = x and
Ker(Aut(X, T') — A(X, IN)) is trivial.

(b) Any T € Aut™ (X, T') N InnRy r satisfies

T(x)=&-x, Ty -x)=y" Tk

which givesg,., = y™&y L. Foré e I'let E¢ := {x € X | & = &}. Then
yE¢ = E,rg)-1. Observe that fof # ¢’ e T one hasu(Ee N Eg) = 0 because
the action is free (mod 0). Hence choosifig € T" with u(Eg) > 0 we have
yieoy ! = & (equivalentlygo‘lyfso = y) for all y in afinite index subgroup
g € T'. It follows from the assumption that® = So)/éo_l forall y € T, so that
T:x+— &-x.

Finally, for an irreducible latticd" ¢ G # SLp(R) the ICC is a standard fact
(easy for the groug itself and follows forT" using Borel's density theorem), while
the condition for (b) follows from the Strong Rigidity Theorem. O

GivenT € AutRy r define ameasurablemap: I' x X — T" by

T(y-x)=ar(y,x) - Tx). (2.1)
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Note thatar (y, x) is well defined (mod 0) due to the freeness assumption on the
action. Furthermore, one easily verifies the cocycle property

ar(y2y1, x) = ar(yz2, y1- x)ar(yi, x)

forall y1,y2 € T andu-a.e.x € X. The cocyclaxy: ' x X — T will be called
therearrangement cocycle associated t@ € Aut Ry r. Rearrangement cocycles (as
opposed to general ones) have the following special property:fe.x € X the
correspondencg € I' — «ar(y, x) € I is a permutation of" elements.

Two (general) cocycles, 8: I' x X — I are said to beohomologousin I if
there exists a measurable map> &, € I, such that

aly,x) =&, 1By, )

forall y € ' andu-a.e.x € X. We denote bya]r the equivalence class of
all measurable cocycles cohomologousI(into «. Note the very special cocycle
c1: I'x X — I' givenbyci(y, x) = y,andforageneral € AutT letc;: T x X —

I stand for the cocycle; (y, x) = y*.

Proposition 2.4. Let T, S in AutRx  be relation automorphisms, [T], [S] in
OutRy r the corresponding classes, and let a7, as: I' x X — T denote the as-
sociated rearrangement cocycles. Then

(@) aros(y, x) = ar(as(y, x), S(x)).
(0) ar =c1 & T € Aut(X, IN).

©) ar =c; & T e Aut™ (X, I).

(d) [ar]r = [e:]r & [T]e AFI(X, ).

Proof. ForT, S € AutRx r compute
ToS(y-x)=T(as(y,x) Sx)) =ar(as(y,x), Sx)) - T(S(x)).

This proves (a). Statements (b) and (c) follow from the definitions.

Proof of (d). Any[T] € Al*l(X,T") can be represented iy = A o J where
A e Aut®(X,T) andJ € InnRr is given byJ: x > &1 x. Thenforally e I
andu-a.ex € X

T(y-x)=AE v -x)=(&1v) AW
= (&) VEAET D =0ty TW)

wherez, = (£,)" € I'. Hence
ar (v, x) = £,y (2.2)

and[ar]r = [c]r.
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On the other hand, assuming that the rearrangement cagyassociated with
T € AutRr satisfies (2.2) for some € AutT" and a measurable — ¢, € T, set
& = (g“x)f_l and consider the map: X — X, defined byA(x) := ¢, - T(x). We
have

Ay - x) =Ly - Ty - X) = Lyl by T8x - T(x)
=yT (& T) =y" - AW).

The pushforward measure, i is absolutely continuous with respectitdrecall that
" is countable) and-invariant. Ergodicity of the action implies that,u = u, so

thatA is invertible. ThusA € Aut®™ (X, I'), while the map/ := A~1oT isameasure
space automorphism. Since

Ec-J) =& - AN T() =AY - T) =x

the mapJ(x) = éx_l - x is an inner automorphism. O

3. Measure Equivalence point of view

The following notion of Measure Equivalence Coupling, introduced by Gromov in
[9], 0.5.E, and considered in [2] and [3] by the author, provides a very convenient
point of view on orbit relation automorphisms.

Definition. A Measure Equivalence Coupling of two (infinite) countable groupB
and A is an (infinite) Lebesgue measure sp&te m) with two commuting, free,
measure preserving actions Bfand A , such that each of the actions has a finite
measure fundamental domain.

We shall use left and right notations for theand A actions
yiw— yo, Ao wA

inorderto emphasize that the actions commute. For our current purposes we shall only
needself ME-couplings (€2, m) of T, i.e. Measure Equivalence CouplingsIofvith

itself. Given such a coupling2, m) let X, Y c Q be some fundamental domains

for the right and the lefl"-actions on($2, m) respectively. Define the associated
measurable maps

A=Ax:I'xX—>T, p=py:YxI'>T

by requiring that for a.ex € X (resp. y € Y) one hasyx € XA(y,x) (resp.
yy € p(y,y)Y). The leftI-action onQ2/T" (resp. the righfT-action onI"\2),
always denoted by a dot™; can be identified with the measure preservifigction



Vol. 80 (2005) Outer automorphism groups of some ergodic equivalence relatiodd 1

on X with the finite Lebesgue measurey = m|x (resp. onY with my = m|x)
defined by

y-x=yxi(y. 07N yey=pG.v) yy.
With respect to these left and rightactionsi y andpy become measurable left and
right cocycles respectively, namely satisfy:

Ay1y2, x) = A(yL, v2 - X)A(y2, x),  p(y, y1y2) = p(y, yOe(y - Y1, ¥2).

We shall say that a self ME-couplin§2, m) is ergodic if the I'-action on(X, m|x)
is ergodic, which is equivalent to the ergodicity of thex I'-action on the infinite
space(2, m) (see [2], Lemma 2.2).

With the fundamental domaix c € for /T being fixed, all fundamental
domainsX’ c Q for /T are in one-to-one correspondence with measurable maps
x > &, € I': given a fundamental domaiX’ one setg, = y, if xy € X', while
given a measurable— &, € I" one takes

X = {x& | x € X}.

The leftI"-actions onX’ andX are naturally identified vid: X — X’,0: x — x&,,
and the cocyclesx: I' x X — I', Ax.: I’ x X’ — T are conjugate

Ay (v, 0(x)) = &, 2Ax (v, X)éx. (3.1)

Similar statements hold for the right actions, their fundamental domains and the
associated cocycles.

If X ¢ Qisafundamental domain for both left and rigtiactions, we shall say
thatX is atwo-sided fundamental domain.

Lemma 3.1 (see [3], Theorem 3.3)Let (2, m) be an ergodic self ME-coupling
of some group I', and let X, Y C € be right and left fundamental domains for
/T and I'\Q2 respectively. Then © admits a two-sided fundamental domain Z iff
m(X) =m(Y).

Proof. Obviously all left fundamental domains have the sameneasure and the
same holds for right fundamental domains. Thus the existence of a two-sided funda-
mental domairZ impliesm(X) = m(Z) = m(Y). Now assume that(X) = m(Y).

Itis well known that ergodic m.p. actions on finite or infinite Lebesgue spaces the full
group acts transitively on sets of the same measure (Lemma 2.1 for the finite measure
case). Usingthe ergodicity of tliex I'-action on(€2, m) the conditionn (X) = m(Y)

implies that there exist measurable partitions= {J; ; X;,;, ¥ =, ; ¥i,;, and el-

ementsy/ e T andy]f/ eI',sothaty; ; = yl/_lx,-,jy]f/. Then

U Xi,j)’]/'/ and U V,'/Yi,j
i,j i,j
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give the same set C Q. Being formed by piecewise righttranslatesok = Q/ T,
the setZ is a right fundamental domain fe/ I'; and at the same time being formed
by piecewise lefi"-translates ofr = I'\2, the same sef is a left fundamental
domain forl"\ Q. O

Now consider a free m.p. actiaiX, «, I') of some countable group and let
Rx.r be the corresponding orbit relation. GivEne AutRyx r consider the infinite
measure spad®2, m) := (X x I', u x mr) with two commutingl"-actions, as usual
written from the left and from the right:

)/1(X, V) = (Vl - X, OlT(Vl’ X)]/), (x9 )/)VZ = (x’ yyZ)

wherexr: T x X — T is the rearrangement cocycle associated With Aut Ry .
The spacé<2, m) with thus defined" x I"'-actions forms an ergodic self ME-coupling
of I', becauseX := X x {er} C Q is a two-sided fundamental domain. The fact
thatX is a right fundamental domain is obvious. To see fias a left fundamental
domain recall that for a.e. € X the mapy — a7 (y, x) is a bijection ofl", so for
m-a.e.(x, y1) there is a unique € T with ar(y, x) = yl‘l which gives

y(x,y1) =y -x,ar(y, x)y1) € X = X x {e}.

Also observe that
)&)}(V»x) :aT(V,X)- (32)

Lemma3.2. Let (2, m) = (X xTI', u x mr) beaself ME-coupling corresponding to
T € Aut Ry r. Thereisaone-to-onecorrespondence between two-sided fundamental

domains X' ¢ Q and
T' € AutRy  With [T'] = [T] € OutRy 1 (3.3)
where X' = {(x, &) | x € X} correspondsto 7”: x > £%- T (x). Moreover
ar (Y, x) = Ag (v, (x, ) = 5}7,1()»;((% (x,e)éx = é;iar(% x)Ex.

Proof. Suppose thak’ ¢ € = X x I is a two-sided fundamental domain. The
fact that bothX = X x {e} and X’ are right fundamental domains implies ttétis
of the form{(x, &,) | x € X} for some measurabke: X — T'. In order to verify
(3.3) for the magl’: X — X, T': x > £71- T (x), it suffices to check thaf’ is
one-to-one (mod 0), the relations between the cocyejesiy,, A andar being
straightforward.

Assume thaf’’(x) = T’(y) which meang ! - T(x) = &1 T(y). ThenT (x)
andT (y) are on the samE-orbit in X, and so are andy, i.e.y = y - x for some
y € T'. Thus

EL T =61 Ty -x) =& ar(y,x) T(x)
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which means tha, .. = ar(y, x)&;. In Q we have
)/(x, ‘i:x) = (V 'x’aT(yﬂx)éx) = (V © X, Ey-x)

with both(x, &) and(y - x, &,.,) in X'. SinceX’ is a two-sided fundamental domain,
in particular a left fundamental domain, it follows that= ¢ andx = y. Hence
T’ is indeed a measure space automorphisiXofi) and the rest of its properties
follow automatically. The factthat’ as in (3.3) gives rise to a two-sided fundamental
domainX’ is proved by back tracking the above argument. O

Next consider an equivariant quotient m&p (2, m) — (R0, mo) of self ME-
couplings ofT", i.e. a measurable map: Q2 — Qg such that

®,m=mo and @ (y1wy2) = y1P(w)y2.

Observe that the preimagé := ®~1(Xo) (resp.Y := & 1(¥p)) of any right fun-
damental domaiXg C Qo (resp. any left fundamental domalg C o) is a right
(resp. left) fundamental domain 2. If X = ®~1(X() we shall say thak c © and
Xo C Qo ared-compatible. Note also that i{€2, m) is an ergodic coupling then so
is (20, mg), and if (2, m) admits a two-sided fundamental domain then

mo(Xo) = m(X) = m(Y) = mo(Yo)

so that(2g, mo) also admits a two-sided fundamental domZy) and takingZ :=
®~1(Z0) we obtain awo-sided fundamental domain for (2, m) which is®-compat-
ible with Zg C Qo.
Observe that fob-compatible right fundamental domaiXsc Q andXgy C Qo
one has
Ax(y, @) = Axo(y, ®()).

Realizing the natural leff-action on($2, m)/ ' by theT"-action
yix>yx=yxix(y,x)

on a®-compatible fundamental domaki C €2, one obtains & -equivariant quo-

tient mapX 2, Xo which is a concrete realization of the Idftequivariant map
(2,m)/T — (R0, mp)/ " defined by®. This discussion is summarized by the
following

Proposition 3.3. Let (X, u, I') be a free, ergodic, measure preserving action, T €
Aut Ry r andlet (27}, m) bethe corresponding self ME-coupling of I". Assumethat
([, m) has an equivariant quotient ME-coupling ®: (27, m) — (Qo, mo). Fix
a two sided fundamental domain Xo C 9, denote by (Xo, uo, I') the left I'-action
on (Xo, no) = (R0, mo)/ T, and let

7 (X, 1, T) = (Xo, no, I')
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denote the I'-equivariant quotient map induced by ®. Then there exists a T e
AutRy r with [T] = [T] € OutRy r so that

ap(y, x) = Axo(y, w(x)).

4. Superrigidity and standard quotients

In this section we specialize to actions of irreducible lattices higher rank semi-
simple Lie groupss.

Proposition 4.1 (see [2], Theorem 4.1)Let G be a semi-simple, connected, center-
free, real Lie group without non-trivial compact factors and with rkg(G) > 2. Let
' C G bean irreducible lattice and (X, u, I') be a measure preserving, ergodic,
irreducible, essentially free I'-action. Givenany 7' € AutRy r let (27}, m) bethe
associated self ME-coupling as in Section 3. Then there exists a well defined class
[z] € OutG so that given any representative t of [t] there exists a measurable map
®: Q) — G defined uniquely (mod 0 so that

O (y1wy2) = y{ P(w)y2 (y1,12€T)

and one of the following two alternatives holds:

(a) either ®,m coincides with the Haar measure mg on G, normalized so that I’
has covolume one, or
(b) ®.m isan atomic measure of the form

where {g;}¥ ¢ G aresuch that {giT, ..., gI'} isasingle finite r(I")-orbit on
G/T. Inparticular, ' has a subgroup I'; of index k so that ¢ (I'1) hasindex k
ingilg;t, and 7(I") and I" are commensurable,

If the T"-action on (X, ) is aperiodic, then either (a) holds or in alternative (b) we
have k = 1 which means that

(b) ®,.m coincides with the counting measure mr» on I’ = (I') C G where
(') = gl'g~1 for some g € G.

This proposition is essentially Theorem 4.1 in [2], the proof of which is based
on Zimmer’s superrigidity for cocycles and Ratner’s theorem. In [2] the statement
is formulated in a slightly different form and only for lattices in higher raitkple
Lie groups. Since we need some details of the proof to be used later, we include the
main arguments here.
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Proof. FixaT € AutRy r representing7’] and consider the rearrangement cocycle
ar: ' x X — I' C G as aG-valued cocycle. This cocycle is Zariski denseGn
(this is a form of Borel's density theorem, see [17], p. 99, or [2], Lemma 4.2). Thus
the assumption thdt is a higher rank lattice with airreducible action on(X, )
allows to apply Zimmer’s superrigidity for measurable cocycles theorem [17] (in [2],
Theorem 4.1, we did not use irreducibility of the action and therefore had to restrict
the discussion to lattices in higher rasiknple groupsG). Hence there exists a Borel
map¢: X — G and a homomorphism: I' — G, so that

ar(y,x) =¢(y - x) Ly px) (4.1)

fory e I andu-a.e.x € X. By Margulis’ superrigidityr extends to aG-automor-
phism and we denote by e Aut G this extension. Defining the map

P Qr=XxI' > G

by
D(x,y) =0 (x)y (4.2)

one verifies

D(y1(x, Y)y2) = P(y1-x, ar(yr, x)yy2) = ¢(y1- x)ar(y1, x)yy2
= (- 0910 Y Py 2
=y P(x, ¥)y2.

ChooseF C G a Borel fundamental domain fa@/T" and letX’ := &~ 1(F).
HenceX' C Q7 is a fundamental domain fa2[7)/ " so thatm(X’) = 1. This im-
plies that the pushforward measurg := ®.m onG hasno(F) = 1(in particulasmng
is finite on compact sets) while the restrictiap| r defines a regular Borel probability
measurewg on G/ ', which is invariant and ergodic for the leftI")-action.

An application of Ratner’s theorem (see [2], Lemma 4.6, with an easy modification
needed to handle semi-simple rather simple Lie groups) impliesdhit either (i)
uo = mg,r —the normalized Haar measung;, r, or (i) is an atomic measure.

In case (i) the mag defined in (4.2) clearly maps on(7; to the Haar measure
mg as in Proposition 4.1 (a). The unigueness statements in Proposition 4.1 follow
from [2], Theorem 4.1.

In case (ii) the atomie (I')-invariant measurgo on G/ I' has to be concentrated
on a single finiter (I')-orbit {g1T, ..., gx '} with equal weights k. LetI'; be the
stabilizer ofgiI" € G/T'. Then[I" : I'1] = k andt(I'1)g1I" = g1 i.e. 7 (T"1) has
indexk in g1lg; ™.

The preimageR; = ®1(g1I") is I'1 x I-invariant set which gives rise to a
measurabld’;-invariant subseX; of X with ©(X1) = 1/k. If I'-action on(X, w)

is aperiodic, then necessarity= 1 andmg = Zye[‘ 8¢y andr(I') = glg™. O
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Remark. The uniqueness @b;7; in particular implies that the rearrangement cocycle
ar can be written in the form (4.1) with the measurable igapX — G being
uniquely defined (mod 0) as soon as a representatigeAut G of [t] € OutG is
chosen. Hereafter this unique “straightening” ng¢ewill be denoted bypr ;.

Theorem 4.2 (Standard Quotients)L.et G be a semi-simple, connected, center-free,
real Lie group without non-trivial compact factors and with rkg(G) > 2, ' € G
an irreducible lattice and (X, u, I') be a measure preserving, ergodic, irreducible,
essentially free I'-action. Then every [T] € OutRy  defines a unique class 7] €
OutG such that given any representative t € Aut G of [t] there is a measurable
mapr: X — G/ T, defined uniquely (mod 0 and satisfying

w(y-x)=1t(y) -m(x)
for u-a.e. x € X andall y € I'. There are two alternatives.
Either the following equivalent conditions hold:

(al) the distribution of ¢7 . (x) on G is absolutely continuous with respect to the
Haar measure mg,

(a2) myp = mg,r —the G-invariant probability measureon G/ T,

(a3) thereexists T € AutRy  with [T] = [T]and 7w (x) = d)i’r(x)f‘;

or the following equivalent conditions hold:

(b1) thedistribution of ¢ . (x) on G is purely atomic,

(02) 7 = k™1 Y% 8, where {g1T, ..., g T} is a finite ¢(I")-orbit on G/ T, T
contains a subgroup I'1 of index k so that =(I'1) is a subgroup of index k in
gll“gl‘l; and X1 = 7w 1({g1I'}) is a I'1-ergodic components of (X, 1) with
pn(X1) = 1/k; .

(b3) thereexists T € AutRy, r with [T] = [T] and

¢; . (x) =g1 foru-aex e X1 C X.

If '-action on (X, ) isaperiodic then conditions (al)—(a3)above are equivalent to
(@d) [T]1 ¢ A*(X, ),

while their alternatives (b1)—(b3)are equivalent to

(b4) [T] € A*(X,T);

moreover in (b2)—(b3)one has k = 1 and these conditions take the following form:
(b2) 7 = 8er Where g € G satisfies 7(I') = glg™ L

(b3) thereexists T € AutRy r with[T] = [T] and

¢; (x) =g foru-aexeX.
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Proof. Consider the self ME-coupling27}, m) with the corresponding outer class
[t] € OutG. Given a choice € Aut G of [1] let

o Q[T] —- G

be ther (") x I'-equivariant map as in Proposition 4.1. Theruniquely defines a
measurable map

7 (X, 1. T) = (Qry.m)/T — G/T. m(y -x)=y" n().

Letus show that the alternatives (a) and (b) in Proposition 4.1 yield mutually exclusive
conditions (al)—(a3) and (b1)—(b3) respectively.

In case (a) wher@,.m = mg, (al)—(a3) follow from Proposition 3.3 and the
construction (4.2) ofb.

Case (b):®.m = k1 Zle > yer 8giy Where{gil', ..., gI'} is a singler (I')-
orbitonG/T'. Condition (b1) is clearly satisfied. Let

Mi={yel|y'gl=gl} and X; = ({gI).

wherenr: X — {g1l, ..., g['} is the'-equivariant map above. Then conjugate
groups; haveindex inT", andl” permutes the disjoint seks (and squ(X;) = 1/k)
while eachX; is I';-invariant fori = 1, ..., k. MoreoverI’; acts ergodically orX;
becaus®yx; r; = Rx.r N (X; x X;). This proves (b2).

The setXo = {g1, ..., gk} forms a fundamental domain for th€I") x I'"-action
onG. The corresponding cocycley, satisfies

Axo(V1, 81) = gl_lyfgl (y1 € I'y).
Applying Proposition 3.3 we obtaifi € Aut Rx.r with [T]1=[T] e OutRy,r and
a; (v, %) = Axo(y, T(x)) = g1 ¥ g1 (4.3)

forall y € 'y and a.ex € X1 = n - 1{gI'}) = ®1({g1}). We deduce that
¢7 . (x) = g1 forx € Xy, proving (b3).

If the T'-action(X, ) is aperiodic, one has= 1 so that (b2), (b3) take the form
of (b2), (b3"). Condition (b3) follows from (4.3) and Proposition 2.4 (c). The latter
also explains why (b4) is incompatible with (al)—(a3). O

Proof of Theorem 1.1 Fort € Aut G theI'-action onG /t ~1(I") is isomorphic to the
r-twistedI'-action onG/ I', both with the Haar measure. Sincé, u, I') is assumed

not to have these actions among its measurable quotients] anyAut Ry r fails
condition(a?2) in Theorem 4.2, while satisfies the alternatives (b1-4), which means
that[7] € A*(X, T). O
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5. Some applications of Ratner’'s Theorem

In this section we recall some applications of Ratner’s Theorem (see [12] and refer-
ences therein). Note that in these results there are no restrictions on the rank of the
semi-simple groug. In fact the results remain true whenevgis a connected Lie
group generated by Ad -unipotent elements End G is a closed subgroup so that

G/ T carries aG-invariant probability measure.

Theorem 5.1 (cf. Ratner, [12], Theorem E2).et " be an irreducible lattice in a
semi-simple connected real Lie group G, A and A’ be lattices in some connected
Liegroups H and H', p: G — H and p’: G — H’ be continuous homomor phisms
such that the T"-actions

Y:hA— p(Y)hA, y: WA +— p'(y)h'A

on (H/A,mpgya) and (H'/A',mp,5r) are ergodic. Assume that there exists a
measurable I'-equivariant quotient map

T (H/A,mH/A) — (H//A/,mH//A/).

Then thereexistsat € H' and a surjective continuous homomorphismo : H — H’
such that

(i) o(A) isafiniteindex subgroup of A’,
(i) m(hA) =to(h)N forae h e H,
(i) ocop(y)=tp'(y)t~Lfory eTl.
If 7 isone-to-onetheno : H — H’isanisomorphismando(A) = A’. Inparticular,
for the above I'-actionon (H /A, mp/A)

Aut*(H/A, mp/n, T) = Nast a/0)(p(T)).

In [15] Witte considers a more general question of a classification of all measurable
equivariant quotientsH /A, mp,A) — (Y, v) showing that(Y, v) has an algebraic
description (slightly more general thai’/A’ as above). However Theorem 5.1
suffices for our purposes. It is deduced from the more general Theorem 5.2 below
by considering the measuveon H/A x H'/A’ obtained by the lift ofn /4 to the
graphofr: H/A — H'/A'.

Theorem 5.2 (cf. Ratner [12], TheoremE3)Let ' ¢ G, A C H, A’ C H/,
p:G— Handp': G — H' beasinTheorem5.1 Let v be a probability measure
onH/A x H'/A"whichprojectsontom g, andm p /s, andisinvariant and ergodic
for the diagonal I"-action

yi(hA B A') = (o()hA, p' (y)R'A).
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Then there exist closed normal subgroups N <« H, N’ < H’, an elementt € H'/N’
and a continuous isomorphism oy from Hy := H/N to H; := H'/N’, so that
() A1:=AN C Hiand A} := AN’ C Hj arelattices,

(ii) therearefiniteindex subgroups A1 € A1, A} € A sothat o1(A1) = Af;

(i) o10p(y) =1p'(y)r~tfory er;

(iv) the measure v is N x N’-invariant and its projection vy to H1/A1 x Hj/A}
can be obtained fromthelift m ; of m 1, , to the graph of Hi/Ay —2 H{/A]
where f(hA1) = to1(h) Az, byvi = p.m ¢ where p isafinite-to-one projection

(H1/A1) x (Hy/Ay) -2 (Hy/A1) x (Hp/A)).

Theorem E3in[12] andits corollary E2 were proved by M. Ratner as an application
of the main theorem ([12], Theorem 1). In all these results the acting group is assumed
to be generated by Ad -unipotent elements. In order to deduce the results for actions
of latticesT" C G, needed for our purposes, one uses the suspension construction
replacing thd -invariant measure on H/A x H'/A’ by theG-invariant measuré
onG xr H/A x H'/A" and applying Ratner’s classification of invariant measures
([12], Theorem 1) to the action of the semi-simple gra&pvhich is generated by
Ad -unipotents. The reader is referred to the paper [13] of Shah (Corollary 1.4) or
Witte ([15], proof of Corollary 5.8) for the precise argument.

6. Proofsof Theorem 1.2 and Corollary 1.3

Proof of Theorem1.2 LetT’ ¢ G and(X, u, I') be as in Theorem 1.2, and let=
[OutRyr : A*(X,T)] € {1,2,...,00}. If n = 1 there is nothing to prove. If
1 < n < oo setTp = Id and choose representativEse AutRx r, 1 <i < n, for
the coset®\*(X, I')\OutRx r. In other words choosg so thatfor0<i # j <n
we have

[TIT;17 ¢ A*(X, T).

Since[T;] € A*(X,T) for 1 < i < n, by Theorem 4.2 (a) there atg € Aut G and
measurable maps : X — G/ T satisfying

(m)spe =mgyr, Wy -x)=y" - m(x).
It remains to prove that the map

n—1

7. X — 1_[ G/T, n(x)=(mi(x),m2(x),...)
i=1
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takesu onto the product measuneg.-1,pn-1 = ]"[f’;llmc/r. We shall prove by in-
duction orfinitek in the range 1< k < n thatthe mapr® (x) := (m1(x), ..., T (x))
satisfies

ﬂﬂgk)/,L = mGk/rk. (61)
(Note that this is sufficient even if = oo because the infinite product measure

is determined by its values on finite cylinder sets). The éase 1 is covered by
Theorem 4.2 (a2). Assuming (6.1) for— 1 we apply Theorem 5.2 to

H:=G"1 A:=rk1 PI=T1 X - X Tp—1
H =G AN =T o =1

and the probability measune := 7*u on H/A x H'/A' = G*/Tk. By the
induction hypothesis projects ontan 4, 5 in the first factor, and &g} ] ¢ A*(X, I),

v projects ontan g/ as in the second factor. IN = H = G*~1 then necessarily
N’ = H' = G, so that

V= mg/A X er/A/ = mGk/Fk

proving the induction step.

It remains to show that the other alternative, namély G¥~1 andN’ < G being
proper normal subgroups, cannot occur. By Theorem 5.A@G)= I'N’ ¢ G/N’
forms a lattice inG/N’ which is possible only ifN’ = {e} becausd” C G is
irreducible. ThusV < G¥1is such thaG*~1/N = G andI’*~1N forms a lattice in
G*1/N = G. This means that for somee {1, ...,k — 1}

N={g1....ex-1) G |gj=e¢}
o1((g1, .- -, &—VN) =0 (gj)

whereo € Aut G is such that for somee G,o071(g) = tte(g)t~tando (A) = A
for some finite index subgroups, A’ € T'. In this case the distributiom of the
pairs(z;(x), mi(x)) onG/I" x G/ T is a projection under the finite-to-one map

G/AxG/AN — G/T xG/T
of the measure:  which is a lift of mg,a to the graph of
f:G/A— G/AN, f(gA) =to(g)A .

By Theorem 4.2 (a3) there exigf and 7} € AutRy r with [T;] = [T}], [Tx] = [Ti]
so that fori = j, k the rearrangement cocycles

ai:=afi:FxX—>F
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satisfy a; (v, x) = ¢;(y - x)"Ly%¢;(x) with ;(x) = ¢;(x)I". The structure of
the distributionwy of (i (x), 7« (x)) described above implies that the distribution of
(¢;(x)7) ¢ (x) on G is purely atomic. LetS := Tj o fj‘l € AutRy r and let
o’ € AutG andy = ¢5,: X — G be such that

as(y.x) =Yy )y Px).

Applying Proposition 2.4 (a) td; = S o T; we obtain that for aly € I andu-a.e.
xeX

Dy - )y i (x) = oy, x) = as (o (v, x), Tj (x)

= Y (aj(r, ) - T0) i (v, 07 Y (T00)

— (T -0) i -0 Y ;0) ¥(T;())

= (¢ (r -0 Y (@i (y - 0)) Y% (907 W ().
Replacings’ by o € Aut G (so thatry = o o 7;) and changing/ = ¢s . t0 ¢s o
accordingly, we deduce that

P (x) = ¢ (0)° 5.0 (T7(x))
(@ () pr(x) = 5.0 (T (x)).
Since the distribution 0(¢j(x)")‘1¢k(x) is purely atomic, it follows from Theo-
rem 4.2 (b) thafS] € A*(X, ') and
[S1= [Tk o T, 11 = [TAIT;] " € A*(X, T)

contrary to the choice dff;]-s. Hence the induction step is verified and the proof of
Theorem 1.2 is completed. O

Proof of Corollary 1.3 Suppose thaiOutRx r : A*(X,I')] > n > 1. Theorem 1.2
provides al"-equivariant quotient map

7 (X, w, 1) — (G YT mgu-1ypa-1, T)

where inthe right hand sideacts diagonally in each of the fact@s/ I', mg/r, T'™).
For diagonal actions the entropy is additive, so for eyery I" one has

h(X,y) = h(G" /T mgu-1/pa1, )

n—1

=Y h(G/T.mgr,y™) = —1)- x(Ady)
i=1

which gives (1.1).



182 A. Furman CMH

In the context of smooth actions &f on a compact/-manifold X another ap-
plication of superrigidity for cocycles allows to express the entropies u, y) of
elementy e I' via eigenvalues af-dimensionalG-representations. More precisely,
(see Furstenberg [4], Theorem 8.3, or Zimmer [17], 9.4.15) ehli&; 1, y) = 0
forally e ', orh(X, u, y) = x(p(y)), y € T, for some representatign: G —
GL4(C). In particular one has

Cch(X, w,y) . x(p(y)
inf ———— < max inf .
vy x(Ady) T dimp<d v x(Ady)

(6.2)

Let us point out that in the above cited referencedtfaetion onX and the measure
n were assumed to b&2-smooth, in order to apply Pesin’s formula. However for
theinequality (6.2) one only needs the upper bound

h(X,u,y) < max x(p(y)), yel
dimp<d

which, being based on Margulis—Ruelle inequality, holds ur@feassumption on
the action and does not require any regularity assumptions on the megasure

Using Borel's density theorem one may extend the inf in (6.2) fora T to
g € G, obtaining the claimed estimate

[OutRx r : A*(X, )] < 14 Wg(d).

For a givenG the functionWg (d) can be computed explicitly in terms of the weights

of irreducible representations, but here let us confine the discussion to a general
estimateWg (d) < d?/8, suggested to me by Dave Witte, whom | would like to
thank. Fork > 2 leto; denote the (unique!) irreducible representatipof SLo(R)
indimensiork. If & denotes the element digg e 1) € SLy(R), thenthe eigenvalues

of ox(h) are{ekt1-2 | i =1, ..., k} so that

X(ouh) = > (k+1-2i) <k?/4
i<k/2

Given ad-dimensionalG-representatiop choose a subgroup S(R) ~ Gg C G,
and letg € G correspond té& € Go above. The restrictiop|g, of p to Gg splits as
a direct sum of irreducibl&o-representations,;, with > d; = d. Thus

X(p(@) =) x(oq(h) <1/4) d? <d*/4
At the same timegg (Ad (g)) > x (Ad si,m®)(h)) = 2, which gives

W (d) < d?/8. O
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7. Standard exampleswithout G/ T quotients

In this section we prove 1.4-1.8 applying Theorem 1.1.

Proof of Theorem 1.4. Let us first verify the ergodicity and aperiodicity of the
action onTV. Let f € L2(TV) — f € ¢2(Z") denote the Fourier transform. For
A € SLy(Z) one hasf/o\A = A’f. Therefore iff € L2(TV) is an invariant vector
for a subgroupA C SLy(Z) then f e ¢2(ZV) is a A’-invariant vector, and is
supported on finite\’-orbits onZ". Thus ifI" fails to act ergodically o™, then
o (I has a non-trivial finite orbit o" , and for some finite index subgrolip € T
there is a non-trivial fixed vector fgs(I'")" in ZV¥ < RV. Sincep: G — SLy(R)
is rational, Borel's density theorem implies that all@fG)’ c SLy(R) has a non-
trivial fixed vector, and since(G) is totally reducibleo (G) also has non-trivial fixed
vectors contrary to the assumption. THusacts ergodically o™, and since the
arguments apply to any finite index subgroudothis action is aperiodic.

The I'-action onTV can be assumed to be free. Indeedy8L) acts freely
(mod 0) onT? and so doep(I') = T".

Next we claim that the systeT", I') does not havéAd G/I'/, AdT") as a
measurable quotient. In the caselbfz SL,(Z) acting onT", n > 2, this is easily
seen from the entropy comparison: ok SL,(Z) with eigenvalueg., ..., A, one
has

WT" y) =) log" [l h(AdG/T'.y) =) log" |ri/a;]
1 12¥)
wherel is any lattice in AdG = PSL,(R). Since|dety| =1,i.e.> log|x;| =0,
one has a strict inequality(T”, y) < h(Ad G/ T, y) as soon ay has at least one
eigenvalue off the unit circle. For the general case we resort to a more complicated
argument described below.

Now Theorem 1.1 (or rather its simple modification needed to handle finite center)

gives
OutRpy = A*(TY, T) = Aut*(TV, I)/T.

Evidently anyo € GLy(Z) which normalizes (') gives rise to the map, : x —
o (x) of TV which lies in Aut(TV, I).
Claim 7.1. The correspondence o — T, isan isomorphism

NoLy @) (p(I) = Aut*(TV, ).

The correspondence — T, is clearly a monomorphism of groups. To show
its surjectivity consider a generdl € Aut™(TV, T') and letv denote the lift of the
Lebesgue probability measure.y on TV to the graph off". Thusv is a probability
measure oY x TV = (RY x RY)/(ZN x ZV) which is invariant and ergodic for
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the(p x pot)(I')-actiony : (x, y) — (p(y)(x), p(¥")(»)). Witte's Corollary 5.8 in
[15] (based on Ratner’s theorem) allows to concludeitlimahomogeneous measure
for some closed subgroup

MC (pxpor)I)x RN xRV).

The connected componebfy of the identity of M can be viewed as a subgroup of
RN xRN, The factthav is a lift of m~ to a graph of am.p. bijectiofi: TV — TV,
and the fact thaR" is connected whil&Z" is discrete, leads to the conclusion
that My ¢ RY x RY projects ontoR” in both factors in a one-to-one fashion.
HenceMy = {(x,0(x)) | x € RV} whereo € AutR" which preserveg”, i.e.

o € GLy(Z), andT has the formT (x) = o (x) + t wherer € TV is such that

ocop(y)x)+t=py o) +1).

The latter means thatis p(I")-fixed andop(y)o ~1 = p(y7). An argument similar
to the one for aperiodicity of the action (based on the assumptioptidat has no
non-trivial fixed vectors), implies thathas to be trivial, so thaf is of the formT,
whereo € Ny z)(p(I')). The claim is proved.

It remains to show thaf" does not have A/ I' as a measurablé-equivariant
quotient. It follows from Witte's Corollary 5.8 ([15]) that measurableequivariant
quotients ofTV = RY/Z" have the formK\R" /A whereZ" < A € R isa
closedr -invariant subgroup andl is a closed subgroup of ARRY /A) centralizing
I'; moreoverk is acting non-ergodically oR" /A. The latter space can be identified
with a quotient torudl”, n < N, on whichT still acts by automorphisms, so th&t
becomes a subgroup of GLZ) x T". We claim that tha"-action onK'\T" cannot
be measurably isomorphic to thieaction on AdG/ I because the former cannot
be extended to &-action. In fact the -action onK\T” cannot be extended to a
measurable action of the smaller group — the commensurator

A:=Commg(I) ={geG|[[:g rgNT] < oo}

which is a dense subgroup @ (this follows from Margulis’ arithmeticity results
[10]). Indeed, letg — T,, g € A, denote a hypothetical extension of theaction

on K\T" to some measure-preservingaction. For any € A there are finite index
subgroupd™;, I'; € I' so thatrg: y +— gyg~tis an isomorphisni’y — I'o. Thus

T, satisfiesT, (y - x) = 14(y) - Ty (x) fora.e.x € K\T" and ally € I'1. Arguing as

in the proof of Claim 7.1 one shows that suthhas to have an “algebraic” form, i.e.
to be induced by a linear magp(g) € SL,(R) which has to preserve the lattiZ.
The fact that the embeddiig— SL, (Z) cannot be extended to the commensurator
A D T gives the required contradiction. O

Proof of Theorem 1.5. By Margulis’ Normal Subgroup Theorem ([10], (4.10)) the
homomorphismp: I' — K is actually anembedding (recall thatG and hence"
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are assumed to be center free). Thus without loss of generality we can assume
that the proper subgroup C K does not contain non-trivial normal factors &f
(otherwise dividing by these factors we still remain in the same setup). This means
that theK-actionky: kL — kikL is free (mod 0) and so is the ergodicaction
(K/L,mg,r,I'). ThisT-action is aperiodic: being connect&dadmits no proper
closed subgroups of finite index, and therefore any subgrfaup T" of finite index

has a dense image(I'1) in K and acts ergodically o0k, mg) as well as on its
quotient(K /L, mg,r). Furthermore, such an action is irreducible — see Zimmer
[16], Proposition 2.4. Clearly the discrete spectrliraction onK /L cannot have
equivarient quotients of the ford/I". Hence Theorem 1.1 gives

OUtR(K/L,F) =A*(K/L,T).

In Theorem 1.5 /L is a homogeneous space (recall that being conndctieds
to be a Lie group). However, Theorem 1.7 (or Ratner’s theorem, in general) does
not apply to this situation because the acting group is not generated by Ad -unipotent
elements. Yet the following general result describing*Akt/L, I") can easily be
obtained by direct methods.

Proposition 7.2. Let K bea compact group, I' ¢ K adensesubgroupand L € K
a closed subgroup. Then the left I'-actionon (K /L, mk ;) isergodic and

Aut(K/L,T) = Ng(L)/L
Aut*(K/L,T) = Natt (k1) (D).

Remark. In the particular case df = {e} the first assertion, i.e. the isomorphism
Aut(K,T) = K, is easy seen as follows. Arfy € Aut(K, mg) can be written as
T k) = ktk_l wherek +— t, € K is a measurable map. Th@hy - k) =y - T (k)
translates into an a.e. identity., = 7. Sincel" acts ergodically oK, mg) the
mapk — t; is a.e. a constant € K, i.e. T(k) = kt. The correspondencE e
Aut(K,T) — t € K is easily seen to be an isomorphism of groups.

Proof of Proposition 7.2 GivenT € Aut®(K/L,T') letv be the lift ofm g, to the
graphofT onK /L x K/L, and let

R = {(ki, k2) € K x K | (k1, k2)wv = v}.

R C K x K forms a closed (hence compact) group, contaidingy®) | y € I'}.
The projectiong; (R) of R to K are closed and contalih Hencer projects ontak
in both coordinates. We claim that

Ri=lkeK|(k,e)e R}, Ry:={ke K| (ek)€R}
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are closed normal subgroups &1 Indeed, forr; € Ry andk € K there exists a
ko € K so that(k, k») € R, and

(k, k2)"L(r1, e)(k, ko) = (kK Yrik,e) € R

shows thak ~1r1k € R1. ThusRy < K and similarlyR, < K.

Sincev disintegrates into Dirac measures with respeokg; under the pro-
jectionsp;: (K/L) x (K/L) — K /L, theR;-actions onkK /L should fixm g, -a.e.
point of K/L. This means thaR; € L, and sinceL is assumed not to contain
non-trivial normal factors oK, R; = {e} fori = 1, 2. HencerR has the form

R ={(k,0(k)) | k € K}

for some bijectiorf: K — K which has to be a continuous isomorphism, because
R C K x K is a closed subgroup.

By definition of R forallk € K andm ;. -a.e k1L, the pointtkki L, 6 (k)T (k1L))
is on the graph of, i.e. T (kk1L) = 6(k)T (k1L). ThusT has the fornl' (kL) =
0(k)tL wheret € K is such that (L) = rLt~1. SuchT can also be written as
T(kL) = to (k)L whereo (k) = t~10(k)t, in which cases € Nayx(L). Thus
T comes from araffine mapa,; € Aff (K/L). We conclude that AG{K /L, T")
coincides WithNagf (k /1) ().

Finally, an affine maj, , is in Aut(K/L,T') ifforall y € T and a.ekL

yto(k)L =to(yk)L =to(y)o(k)L.

Inview of the standing assumption tHatloes not contain normal subgroupsbothis
meansthat (y) = r 1yt fory e I'. Sincel  is dense irk we haves (k) = ¢~k for
allk € K ando (L) = L means € Ng(L). Henceas;: kL +— (tt Ykt L = ktL
andr,t’ € Nk (L) give rise to the same map of AiK /L) iff /'t—1 e L. This gives
the desired identification

Aut(K/L,T) = Nk (L)/L. O
This completes the proof of Theorem 1.5. O

Proof of Theorem1.7. By Theorem 5.1 the systetH /A, mg 4, I') has ar'-equi-
variant quotient map

w: (H/A,mpujp) — (G/T',mg,r)

only if there exists a surjective continuous homomorphisn — G with o (A) C
I = I ando o p(y) = tyr—! for somer € G. An existence of such a homo-
morphismo was explicitly excluded by the assumption, so that Theorem 1.1 gives
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OutRy/ar = AH/A,T) = Aut*(H/A,T)/T. To identify Aut‘(H/A,T) we
invoke Theorem 5.1 again to conclude that

Aut*(H/A,T) = Natt (a/a)(p(T))

which present®\*(H/A,T") as the quotient oNag 77/ (0 (")) by the image of
r 2 H < Aff (H/A).One also has AUH /A, T") = Casf (/) (p(I)). O

Proof of Corollary 1.8 If p: G — H is an embedding (or isomorphism) 6finto
another semi-simple real Lie group (center free and without compact factors) and

A C H is an irreducible lattice, then th@-action on(H /A, mpy,4) is free and

by Howe—Moore’s theorem is not only ergodic but actually mixing. Hence also the
restriction of this action td'-action is free and mixing, and in particular irreducible
and aperiodic. The assumptions of the Corollary guarantee that there does not exits
an epimorphisno : H — G with o (A) C T, so that Theorem 1.7 applies showing

OUtRy A = A*(H/A,T) = AUt*(H/A,T)/T = Nag (1) (p(T)/p (D).

Recall that AfiitH/A) containsH as a subgroup of finite index dividin@ut A |.
Hence, upon passing to a subgroup of index dividgt A |, the group OuR /A r =
Natt /0y (p(I7))/p(T") can be reduced Wy (o (")) /p(I"), which contains the cen-
tralizerCgy (p(I')) = Cy(p(G)) as a subgroup of index dividin@utI"|. O

8. Proof of Theorem 1.9

Case (G/T,T). Choose a two-sided fundamental dom&irc G for I and define
the transformatiod : X — X by 7: x — x~1I' N X. Note that bothx andX — are
two-sided, in particular right, fundamental domains and therefasea measurable
bijection of X. Moreover,

Iy -x) =I(yxA(y,x)™) =2y, x)x TN X = Ay, x) - 1 (x)

which means that e Aut R, r,r) and the corresponding rearrangement cocygle
isA=Ax: I x X — I'. Observe that

y -x = yxi(y,x)”t meansthat A(y,x) = (y -x) lyx

(with the usual multiplication irG on the right hand side), so that the embedding
X — G is precisely the “straightening map’corresponding to the cocyalg = 1x
and the trivial automorphisnag: y + y; in other words¢; ,(x) = x. From
Theorem 4.2 (al) we conclude tHa] ¢ A*(G/ T, I') and therefore

[OUtR(G/ r,r - AYG/T, )] =2 (8.1)
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while Theorem 1.2 (or Corollary 1.3) show that this index is at most two proving an
equality in (8.1). Theorem 5.1 gives

AUt*(G/ r, F) = NAff (G/I‘)(F)‘

Note that an affine mag, ; € Aff (G/T') (ag;: gT +— to(g)T wheres € Naytg(I')
and: € G) satisfies

ag (v -g0) = y" - as,(g7)
iff o(y) =t"1r(y)t, in particularr € Ng(TI'). Thus
Aut*(G/T,T) = Naft (/)(I") = Nauwtg (),

with ¢gT' — ¢'T", T € Nauwtg(I') = Aut T, giving all twisted action automorphisms.
HenceA*(G/T,T) = AutT'/T" = OutTl'. Since this group commutes wifti], we
obtain

OutRG/r,ry = Z/27 x Out(I")

as claimed.

Before turning to the systen{&”/I'"*, ') for general finiten > 1, observe that
G/ T can be viewed as the factor 6€ := {(g, g™1) € G x G | g € G} modulo the
relation(g, g=1) ~ (gy1, 1 1¢), y1 € T'. With this identificationG/ T = (G2/ ~)
the left"-action onG/ I" corresponds to the quotient of the actipn (g, g~%) —
(yg, g~y ~H modulo~, while the magpl arises from the fligg, g~1) — (g7 1, g).

Case (G"/TI",T),n € N. Given a general finite consider the set
G ={(g0.....8) € Gl g0 gu = ¢}
with the natural measure and an equivalencgefined by
(80, 81 - -+ 8n—1.8n) ~ (SOVL * V181¥5 *s s Vao18nVy o Yn&n)
foryi, ..., v, € I'. ThRe mapp: G — (G/TI')" = G"/ T given by

p: (8o, ..., 8&n) > (gol', gogil', ..., gog1- - gn-11")

factors through a bijectiop: (G"*1/ ~) — G"/I'"*. Note that the following-
action onG7*1

Y1 (80s 81+ -s 8n1s &n) > (V80 8Ls -+ » 8n1, EnV D)

descends to an action @G”*+1/ ~) which is isomorphic, viaz, to the diagonal
I'-action onG"/T'"

y:(gil, ..., g. ) — (yeil, ..., yg.D).



Vol. 80 (2005) Outer automorphism groups of some ergodic equivalence relatiod89
The cyclic permutatior” of order(n + 1)

T: (80, 81r--++8&n—1.8n) > (81,82, ...+ &n» £0)

is easily seen to preserve theorbits on(G"+1/ ~) = G"/ T and thereby defines
a relation automorphisi € AutRgn/ =  with [T"*1] € A(G"/T", T).

We would like to preseril’ as an explicit transformation ¢&" /I'", mgn rn) as
follows. The cocycle.y : I' x X — T corresponding to the two-sided fundamental
domainX C G can be extended to a cocycle@fi.e.A. = Ax: G x X — T sitill
defined bygx € XX (g, x). The leftG-action onX = G/ T can thus be written as

g x =gxi(g.x)"

where on the right hand side we use the usual multiplicatio&.inUsing these
notations and viewing € X C G both as points of the spacéand asG-elements
one obtains an explicit form fcF:

T:(x1,...,%X) — (xl_l-xz,x1_1~x3, ...,xl_l-xn,l(xl)).
Observe that
T(y - (x1,....x2) = T(yxih(y, x0) "5 o yxad(y, x) D)

= (O (y, x)xp Y x2, Ay, xD)xg X3, Ay, x1) - 1 (x1)
= Ay, x1) - T(x1,...,x,).

HenceT e AutR»,r= 1) with the rearrangement cocycle being
ar(y, (X1, ..., xp)) = A(y, x1).
A similar computation shows that for4 k < n one has
ark(y, (x1, ..., xn)) = Ay, xx)
and therefore the corresponding “straightening” map is given by
ngk’ro(xl, o Xp) =x; €G.

It now follows from Theorem 4.2 (al) that ¢ A*(G"/T™, I fork=1,...,n.In
particular
[OUutRGn/rn.r) : A*(G"/T", )] > n +1
which is, in fact, an equality due to the upper bound- 1) provided by Theorem 1.2
(or Corollary 1.3).
To identify A*(G"/T'", ') we invoke the second part of Theorem 5.1 with=
G" andA := I'" and note that affine maps 6"/ """ have the form

(gl ..., gnD) > (118 y) T ""t”g;n(n)r)
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wherep € S, is a permutation ofl, ..., n}, t; € Nautg(T') = AutT andy; € G.
One easily checks that such a map normalizes the diagbaation ifft;y = --- =
1, = tandy = --- =1, =t wheret € Ng(I'). Hence Aut(G"/TI'", ') consists
of the maps
Sp,‘l,’ : (glrv ey gnF) = (g;(l)r’ cee g;(n)r)

wherep € S, andt € Nautg(I')). The obvious relatior§, ; o S,/ = Sy v
gives Aut'(G"/T", T) = S,, x Nay (I') and

A*(G"/T" T) = S, x (Nawt (I)/T) = S, x Out(I").

OutR(Gn/r» 1) is generated byT'] andA*(G"/I'", I'), and the explicit form ofl
ands, . allows one to check that

OUtR(Gn/rn’r) = S,4+1 x Out(I')
as claimed.
Case (G*°/T*°,T). Finally, let us turn to the case af = oo, i.e. the diagonal

I-action on(X, i) := (G/T',mg,r)?. Choose a two-sided fundamental domain

X C G,sothaty = X% andleth = 1x: G x X — I'andl: X — X be as before.
Consider the mafy': X — X defined by

-1 -1
T:(..,x-1,x0,x1,...) = (.., xy " -x0, [ (x1), xy " - x2,...)

so that fork £ 0
(Trz) =t xipn i #1—k
I (x) i=1—k

and observe that
THy - %) = Ay, x) - TH@).

As before, fork # 0 we havear(y,x) = A(y, xk) and¢zx , (¥) = xi SO that
[T1F ¢ A*(X, T).
Claim 8.1. OutR . isgenerated by [T] and A*(X,T).

(Note that in previous cases similar statement followed immediately from the upper
bound provided by Corollary 1.3). Choose sie AutRy . \ A*(X,T) and let

m:X - G/T, mp=mgr, 7y %)=y 7@
be the standard quotient map provided by Theorem 4.2.

Lemma8.2. n(x) = x; for somek € Zandt € Nauytg(I').
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Proof. Denote byw the probability measure ofG/I')% x (G/T") obtained by the
lift of i to the graph ofr. Fix anr € N, let

H:=1L[G A::lL[F
—r —r

and letp: G* — H be the projection ofi—r, . .., r}-coordinates. Denote by
the p x Id-projection ofv to H/A x G/T'. Then one can deduce from Theorem 5.2
that either

0] ) = mg/a X mg,r, or
(ii) thereexistk e{—r,...,r},7 € Nautg(I') sothatforany e C.(H/A x G/T)

/FdU(r) =/F(xl,...,xk,...,xn,x,f)dm(;/r(xl)---de/r(xn).

As r — oo case (i) cannot persist forever, because that would imply that
it x mg,r Which is impossible. On the other hand as soon as (ii) occurs, the index
k andt € Nautg(I") do not change. This proves the lemma. O

With the explicit form ofz: X — G/T provided by Lemma 8.2 we invoke
Theorem 4.2 (a3) to conclude that there existe AutRy . with [S] = [S], T €
Nautg (') andk #£ 0 € Z so that

b5 (BT = ()T

Recalling that also fof * we havengk’,o()E) = x; one concludes thafS] = [3] €

[TK1A*(X, I') using the same argument asin the proof of Theorem 1.2. This completes
the proof of Claim 8.1. O

Any permutationp of Z and anyr € Nautg(I') give rise to the mags, , €
Aut®(X,T)
Sprt (giD)iez = (8, Diez.

On the other hand i§ € Aut*(X,T) letv on X x X be the lift of iz to the graph
of S and letv” be the projection of this measuref¢_, G/I" x [[_, G/T. Then
applying the Joining Theorem 5.2 to tffiisite dimensional situation successively for
r — 00, one concludes that suc¢hhas to be of the forns,, .. Hence

AUt*(X,T) = Soo X Nautc(I)
A*(X,T) = So x OutT.
Finally, the explicit form of 7] and[S,, . ] allows to conclude that

OUtR(X, ') & Soor1 x OUtT
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where the symbolS., andS..+1 can be interpreted as the inclusion of the permutation
group ofZ in the permutation group &t U { pt}.

9. Proof of Theorem 1.6

Throughout this sectiod = PSL,(Z), G = PSL,(R) andn > 3. LetSy =
{pr1,..., pr} be agiven finite set of primes and consider the ergbdaction on the
compact profinite grou = [] s, PSL.(Z,). We denotel] = [] s, PSL.(Q))
andA = PSL,,(Z[So‘l]) C H. ThenA is a dense countable subgroup of locally
compact totally disconnected groipandl’ = AN K.

Following Gefter [7] we first observe that ORk  containsH . Indeed restricting
the type I, relationR g 4 to K we obtainatype lirelationRg r = Ry AN(K x K)
and

OUtRK’r = OUtRH’A DAH,AN=EH

using the straight forward J-type generalizations of Lemmas 2.2, 2.3(a) and the
remark following 7.2 respectively.
We need to find explicit representativés € AutRg r for h € H, so that
h +— [T,] is the above imbedding. Sindé is open andA is dense inH, given any
h € H, there exiskg € A andkg € K so thath = Agkg. The maps

Ty: x — xh and Té:xr—)kalxh (x € H)

are in AutRy A and[7},] = [T,;] € OutRy 5. Denoting the open compact subgroup
roKagt N K by K1, note that

T, (K1) C K becausd (x) = A5 xroko € (Ag K1ro)ko C K.
Thus forx, y € K1 we have
(x,y) € Rk,r =Rualx  iff  (T](x), T)(»)) € Ru.alk = Ri.r

Thereforef}”;(1 is a restriction of somé&}, € AutRg r, with its outer clas$7;]
OutRg r being uniquely defined by the initiale H. Denotingl'y := xomgl Nnr

a finite index subgroup df' which is dense iK1, we observe that the restriction of
the rearrangement cocyalg, toI'y x Ky is

ar, (Y1, x1) = Agtyiko  (y1 € T1, ae x1 € Ky). (9.1)

The automorphisnyy +— Aglylxo of the latticeI'; C G extends to an inner (given
by A0 € G) automorphism of5, so in terms of the Standard Quotients Theorem 4.2
the clasgtr] € OutG associated to sucff;] € OutRg r is always trivial. On
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the other hand the transpose m&p (k1, ..., k) — (k}, ..., k%) which is clearly
in AutRg r defines the unique outer elemdni € OutG (taket(g) = gH ™.
One easily checks that the group generate@ifloyand[7,], # € H, in OutRg r is
7./ 2-extension of .

We shall now prove that the latter group is all of @Rt . Take any[T] €
OutRg r. Possibly composing witlflp we may assume th@t] € OutG = 7Z/2
associated witiT'] is trivial, and will show that suchT] is [T}] for someh € H.
Applying the Standard Quotients Theorem we may take be the identity orG.
Since(K, I') cannot havéG/ I', mg,r, I') among its measurable quotients, we de-
duce the following:

(1) There exists a finit&-orbit F = {g1I", ..., g«I'} € G/T', and a measurable
I-equivariant mapr : K — F with

m(yx)=yn(x) (yerl, x eK).

(2) Letl'; =T'N ging_l, i =1,..., k—these are conjugate subgroups of inéex
in I'; the setsX; = =~ 1({g;I"}) C K arel;-invariant and ergodic measurable
subsets withu(X;) = 1/k; if K; is the closure of; in K thenX; = K;y;
(mod 0) — cosets oK;-s; as the latter are open and compact subsefs ofe
obtain an open partition into disjoint sets which we still denotexby Up to
reordering we may assume théf contains the identity oK, i.e. X; = K.

(3) There existd" € AutRg - with [7] = [T] € OutRg.r so that

oz (y1, x1) = 81_17/181 (y1 € 'y, x1 € X).

Note thatthe lastformularesembles (9.1). Property (1) meangitka@ommg (') =
PSL, (Q).

Claim 9.1. g1 € A = PSL,(Z[1/p1, ..., 1/p,]) = PSL,(Z[Sy D).

Proof. Let us expand the notations slightly: for an arbitrary finite$ef primes let

Ks=[]PSL(Z,). As=PSL(zIS™)
peS

and letug denote the normalized Haar measurekn We shall denote by“_lS the
closure of the indeX subgroupl’y = I' N gngl_l c I''in Kg. TheTl'j-ergodic
componentX; C K = K, is a coset of the open compact subgrcﬁTifP of K and
by (2)

1 5o
© = XD = o).

Let S; be the set of primes appearing in the denominatogg of PSL,(Q), i.e. S1
is the smallest set of primes (possibly empty) such ghat Ag, .
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It follows from the Strong Approximation Theorem thasit= S'uL S” is a disjoint
union of two finite sets of primes, then

TS=0% xT CKgx Ky =K
1 =11 X1 SRy X Rgr = Kg,

andl;"" = Ky if and only if S’ N S; = @. On the other hand i§; C §’ then it is
easy to see that

(F—S/) B 1 1
Rela ) =g T«
Writing S = Sp U S1 = So U S2 whereS, = §1 \ So we have
1 =5, =5 =5 = 1 1
= mso(F2%) = ws(F0) - s, (M%) = us(Ty) = Ty &

So,uSZ(ITlSZ) = 1, that isITlS2 = Ks,, which means thas, = ¢ andS1 € Sp as
claimed. O

Having proved thag1 € A, we recall that by (3) the origindl € AutRx r can
be replaced by with [T] = [T] € OutRg S0 that

T (y1x1) = g1 tyigaT (x1) (9.2)
forall y1 € I'1 andu-a.e.x; € X1. We have also made sure théf = K1 — the

closure off; =T N gilg; tin K.

Claim 9.2. T (k) = gy *kgiz1 for somefixedz; € K anda.e k € K1.

Proof. The mapy1 +— gl_lylgl is an isomorphism between finite index subgroups

'y —r]:= gl_lrgl NT of . It extends to an isomorphisiki; — K; between
open compact subgroups &f, whereK; is the closure off’; in K. (Note that
K1 =K NgiKg;tandK; = g Kg1 N K as subsets o).

LetX) = T(X1) C K. Inview of (9.2),X7 is one of thd™}-ergodic components
of X1, and therefore is a singké; -coset X; = K;y forsomey € X7. LetR: K1 —
K1 be the composition of the following maps

Ki=X1— Xy — K; —> K1, Rk =giT(k)y gt
In view of (9.2) we have for aly € I'1 andu-a.e.k € Kj:
R(yk) = gigy ' yeaT )y 'gr = yR(k).

Sincel'; is dense in the compact grouf,, we haveR(k) = kko for some fixed
ko € K1 and a.ek € K; (see Proposition 7.2 and the following remark). This allows
us to compute

T (k) = g7 kkog1y = g7 kg1z1  Wherezs = (g7 *kog1)y € K. O
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Takingh = g1z1 € H we observe that the maf, € AutRg r, discussed in the

first part of this section, agrees with on a positive measure subsét c K, and
therefore (as in the proof of Lemma 2.2)

[T]=[T]=I[T;] € OutRg 1

which completes the proof of the theorem.
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