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1. Introduction and statement of the main results

Let � be a �nitely generated virtually nilpotent group. The topic of this paper may

be viewed from three slightly di�erent perspectives.

(i) As a generalization of the result of Pansu [12] showing that the asymp-

totic cone of an invariant inner metric d on � is the Carnot group G1 (the

graded nilpotent Lie group associated with the Mal’cev completion G of �)

equipped with a certain Carnot–Carathéodory metric d1. Here we show that

if one replaces a single invariant metric d by an equivariant ergodic fam-
ily ¹dxW x 2 Xº of inner metrics on �, then a.e. .�; dx; e/ has the same as-

ymptotic cone which is the Carnot group G1 equipped with a �xed Carnot–

Carathéodory metric associated to certain averages of the family ¹dxW x 2 Xº.

(ii) As a result about asymptotic shape for �rst passage percolation model over �

driven by a general ergodic process � Õ .X; m/. (The case of independent

times was recently studied by Benjamini and Tessera [2]).

(iii) As a subadditive ergodic theorem over a general ergodic probability measure

preserving (hereafter p.m.p.) action � Õ .X; m/. Given a measurable

function cW � � X ! R, satisfying

c.
1
2; x/ � c.
1; 
2:x/ C c.
2; x/ .
1; 
2 2 �/;

and some additional conditions, we show that for a.e. x 2 X there is a unique

limit to c.
; x/ suitably normalized; the limit is described on the Carnot group

G1 using a Carnot–Carathéodory construction.

Let us recall some facts about nilpotent groups. Upon passing to a �nite index

subgroup and dividing by a �nite normal subgroup, we assume hereafter that

our group � is a torsion-free nilpotent group with torsion-free abelianization

�ab Š Zd ; this adjustment does not change the problem - see §2.4 below. By

the classical work of Mal’cev, a �nitely generated, torsion-free, nilpotent group

� can be embedded as a discrete subgroup of a connected, simply connected,

nilpotent real Lie group G so that G=� is compact. Moreover, such an embedding

� < G is unique up to automorphisms of G. This G is often called the Mal’cev
completion of �. Associated with G one has the graded nilpotent connected,

simply connected, real Lie group G1, that is constructed from the quotient spaces

gi =giC1 of the descending central series g D g1 > g2 > � � � > grC1 D ¹0º of the

Lie algebra of G (see below). In particular, one can identify the abelianizations

Gab WD G=ŒG; G� and Gab
1 D G1=ŒG1; G1� via g=g2 Š g1=g2

1. The graded

Lie group G1 admits a one parameter family ¹ıt W t > 0º of automorphisms that

induce the linear homotheties �t on the real vector space Gab
1 Š gab Š gab

1. Such

a group G1 (with the family of homotheties, or similarities) is sometimes called

a Carnot group.
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Example 1.1. The integral Heisenberg group HZ embeds in the 3-dimensional

real Heisenberg group

HR D

´

Mx;y;z D

 

1 x z

0 1 y

0 0 1

!

W x; y; z 2 R

µ

by restricting x; y; z to be integers. In this case G D HR is itself graded:

G D G1. The abelianization Gab is two dimensional, and G ! Gab is given

by Mx;y;z 7! .x; y/. The homotheties are given by

ıt .Mx;y;z/ D Mtx;ty;t2z :

Let d be a an inner right-invariant1 metric d on �, e.g. d.
1; 
2/ D j
1
�1
2 jS ,

where j
 jS is the length of a shortest word representing 
 using elements of a �xed

generating set S for �. In [12] Pansu proved that associated with such d there is a

right-invariant proper metric d1 on G1, that is homogeneous in the sense that

d1.ıt .g/; ıt .g
0// D t � d1.g; g0/ .g; g0 2 G1; t > 0/

and such that there is Gromov–Hausdor� convergence

�

�;
1

t
� d; e

�

�! .G1; d1; e/: (1.1)

The metric d1 is a result of Carnot–Carathéodry construction applied to a certain

norm on Gab Š Gab
1, associated to d .

To state our results we need to �x some further notations. Let � be a �nitely

generated, torsion-free, nilpotent group, denote by G its Mal’cev completion, and

by G1 the associated Carnot group with homotheties ¹ıt W t > 0º. Fix a right-

invariant inner metric d on �, e.g. a word metric as above, and let d1 on G1 be

the associated Carnot–Carathéodory metric as in Pansu’s theorem.

Given a function f W � ! R one can consider an asymptotic cone of its graph

in � � R, i.e. possible Gromov–Hausdor� limits of

Graph.f / D ¹.
; f .
//W 
 2 �º � � � R

with .e; 0/ being the marked point. The functions f that will appear below, will

be special in several ways:

1 One often considers left-invariant metrics; our choice of right-invariance is dictated by our
notation for sub-additive cocycles.
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(f1) the rescaled graphs Graph.f / actually have a unique Gromov–Hausdor�

limit;

(f2) this limit is given by a graph Graph.ˆ/ of a function ˆW G1 ! R;

(f3) the function ˆW G1 ! R appears in a Carnot–Carathéodory construction; in

particular, it is homogeneous: ˆ.ıt .g// D t � ˆ.g/ for g 2 G1 and t > 0.

The convergence in (f2) implies that

t�1
i � f .
i / �! ˆ.g/ whenever sclti .
i / ! g 2 G1;

where the latter relates to the Gromov–Hausdor� limit (1.1) with ti ! 1. Let us

say that two functions f; f 0W � ! R are asymptotically equivalent if

f .
/ � f 0.
/ D o.j
 jS /:

Then f satis�es (f1)-(f3) with ˆ if and only if f 0 does. One might say that ˆ is

the unique homogeneous representative of the asymptotic equivalence class of f

(here the uniqueness statement follows from the fact that di�erent homogeneous

functions cannot be asymptotically equivalent).

Theorem A. Let � be a �nitely generated virtually nilpotent group, � Õ .X; m/

an ergodic probability measure-preserving action, and cW � � X ! RC a mea-
surable subadditive cocycle. Assume that

(i) for some 0 < k � K < C1 one has k � j
 jS � c.
; x/ � K � j
 jS for a.e.
x 2 X ;

(ii) for a.e. x 2 X for every � > 0 there is a �nite set F � � so that for every
x0 2 �:x any 
 2 � can be written as 
 D ın : : : ı2ı1 with ıi 2 F and

c.ı1; x0/ C c.ı2; ı1:x0/ C � � � C c.ın; ın�1 : : : ı1:x0/ � .1 C �/ � c.
; x0/:

Then for a full measure set of x 2 X the functions c.�; x/W � ! R are asymp-
totically equivalent to each other and are represented by a unique homogeneous
function ˆW G1 ! R, that is obtained in the following construction.

Construction 1.2. Given a subadditive cocycle cW � � X ! RC over an ergodic

action � Õ .X; m/ of a �nitely generated virtually nilpotent group �.

� Up to �nite index and �nite kernel (once � Õ .X; m/ and cW � �X ! RC are

adjusted accordingly) we are reduced to the case that � is a �nitely generated

nilpotent group that is torsion free and has torsion-free abelianization �ab.

� De�ne a subadditive function NcW � ! RC by integration:

Nc.
/ WD

Z

X

c.
; x/ dm.x/:
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� De�ne a subadditive function f W �ab�!RC by minimizing F over �bers:

f .
ab/ WD inf¹ Nc.
1/W 
ab D 
ab
1 º:

� De�ne �W gab
1 ! RC by viewing �ab as a lattice in the vector space �ab ˝ R

and observing that there is a unique homogeneous subadditive function

(a possibly asymmetric norm)

�W �ab ˝ R�!RC

representing f W �ab�!RC.

� De�ne ˆW G1 ! RC to be the homogeneous function associated to � viewed

as an asymmetric norm on �ab ˝ R Š Gab Š gab Š gab
1 and applying the

Carnot–Carathéodory construction.

For more details see §§2.2–2.4.

Recall that a metric d on a metric space M is called inner if given � > 0 there

is R < 1 so that for any p; q 2 M one can �nd n 2 N and p0; : : : ; pn so that

p0 D p, pn D q, d.pi�1; pi / < R for 1 � i � n, and

d.p0; p1/ C d.p1; p2/ C � � � C d.pn�1; pn/ � .1 C �/ � d.p; q/:

The following result can be viewed as a generalization of Pansu’s result on a single

right-invariant inner metric on � to equivariant ergodic families of inner metrics.

Theorem B. Let � be a �nitely generated virtually nilpotent group, � Õ .X; m/

an ergodic p.m.p. action, and let ¹dx W x 2 Xº be a measurable family of inner
metrics on � that is right-equivariant:

dx.
1; 
2/ D d
:x.
1
�1; 
2
�1/ .
; 
1; 
2 2 �/; (1.2)

and satis�es a uniform bi-Lipschitz estimate 0 < a � dx=d � b < 1 where d is
some right-invariant word metric on �.

Then there exists a right-invariant homogeneous metric d� on G1 so that for
a.e. x 2 X there is Gromov–Hausdor� convergence

�

�;
1

t
� dx ; e

�

GH
�! .G1; d� ; e/:

Here d�.g1; g2/ D ˆ.g2g�1
1 / with ˆ from Construction 1.2 corresponding to

c.
; x/ WD dx.e; 
/: (1.3)
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One can also start from a sub-additive cocycle cW � � X ! RC and de�ne

dx.
1; 
2/ WD c.
2
�1
1 ; 
1:x/ .x 2 X; 
1; 
2 2 �/: (1.4)

The resulting measurable family of functions is equivariant (as in (1.2)), and each

is a (possibly asymmetric) metric on �; condition A(ii) on c corresponds to dx

being inner.

A natural example of an equivariant family of metrics as above appears in the

following setting, known as �rst passage percolation model. Fix a Cayley graph

.V; E/ for � de�ned by some �nite symmetric generating set S � � (so V D �

and E D ¹.
; s
/W 
 2 �; s 2 Sº), and �x a 0 < a < b < 1. De�ne X WD Œa; b�E

– the space of functions xW E ! Œa; b�; we think of x.v;v0/ as the time it takes to

cross edge .v; v0/ 2 E. Since � acts by automorphisms on .V; E/, it also acts

continuously on the compact metric space X . Let m be some �-invariant ergodic

Borel probability measure on X , e.g. the Bernoulli measure m D �E where � is

some probability measure on Œa; b�. Every x 2 X de�nes the time it takes to cross

any given edge e 2 E and we can de�ne

dx.v; v0/ D inf
°

n
X

iD1

x.vi�1;vi /W v0 D v; vn D v0; .vi�1; vi/ 2 E
±

to be the minimal travel time from v to v0 in the particular realization x 2 X of the

con�guration of passage times of edges. One is now interested in the asymptotic
shape as T ! 1 of the set

B�
x .T / WD ¹v 2 V W dx.e; v/ < T º

of vertices that can be reached from the origin e 2 V in time < T , for a typical

con�guration x 2 X .

Corollary C. With the notations as above, there exists a homogeneous function
ˆW G1 ! RC, given in Construction 1.2, so that for m-a.e. x 2 X the sets B�

x .T /

are within o.T /-approximation from

¹g 2 G1W ˆ.g/ < T º

which is a ıT image of a �xed set:

B�
x .T / � ¹g 2 G1W ˆ.g/ < T º D ıT .¹g 2 G1W ˆ.g/ < 1º/ :

Thus ¹g 2 G1W ˆ.g/ < 1º gives the asymptotic shape of a.e. B�
x .T / rescaled by

T for T � 1.
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It follows from Theorem A that for m-a.e. x 2 X for any � > 0 for T > T .x; �/

¹g 2 G1W ˆ.g/ < 1 � �º � sclT .B�
x .T // � ¹g 2 G1W ˆ.g/ < 1 C �º

which is equivalent to the statement of the Corollary.

Let us make some remarks about these results.

(1) I. Banjamini and R. Tessera [2] recently established the asymptotic shape

theorem for the �rst passage percolation model (Corollary C) for the case of

an independent distribution on edges, i.e. the measure m D �E . In this

framework their result is stronger: the assumption is weaker (rather than

compact support the distribution � is assumed to have a �nite exponential

moment) and they can quantify the convergence to the asymptotic shape.

However, the proofs, being based on probabilistic techniques, do not seem to

apply to the general ergodic case as in Corollary C.

(2) The abelian case � D Zd was considered by Boivin [4] in the context of �rst

passage percolation as in Corollary C, and then by Björkland [3] in the more

general context of sub-additive cocycles as in Theorem A. Both results are

proved under weaker integrability condition, namely c.
; �/ 2 Ld;1.X; m/

(Lorentz space). This integrability condition is known to be sharp for sub-

additive cocycles over general ergodic Zd -actions [6]. We note that in [3] no

a priori innerness assumption is imposed, but in retrospect it is satis�ed.

(3) Assumption (ii) in Theorem A (and the corresponding assumption of inner-

ness of metrics in Theorem B) is necessary for the limit object ˆ (and d�) to

be geodesic. Yet, it will become clear from the proof below that this condition

is not needed for the inequality

lim sup
sclt .
/�!g

1

t
� c.
; x/ � ˆ.g/ .g 2 G1/

for m-a.e. x 2 X . In fact, the proof of this inequality (see §4.1) does

not require the lower estimate in Theorem A(i); it only uses the inequality

c.
; x/ � K � j
 jS , which is equivalent to c.
; �/ 2 L1.X; m/ for 
 2 S a

generating set for �.

(4) It is possible that assumption (i) in Theorem A can be relaxed. Yet, note

that already in the Abelian case � D Zd pointwise convergence requires

Ld;1.X; m/-integrability.
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(5) Let � < G and G1 be as above. Theorems A and B show that asymptotic

shapes are classi�ed by ˆ (and d�) for some unique, possibly asymmetric,

norm �W gab
1 ! RC. The converse also holds: for every asymmetric norm �

the associated Carnot–Carathéodory ˆ and d� arise as an asymptotic shape

for some cocycle over �, in fact from a subadditive function F W � ! RC.

However, the question of which asymptotic shapes (equivalently norms) can

appear in �rst passage percolation with independent distribution on edges

remains widely open.

We would like to emphasize the following remark.

Remark 1.3. An important example of subadditive cocycles over group actions

are

c.
; x/ D log kA.
; x/k

where AW � � X ! SLd .R/ is a matrix valued cocycle, i.e. satis�es A.
1
2; x/ D

A.
1; 
2:x/A.
2; x/. If � is not Abelian, then the results of this paper do not

apply to such cocycles – they systematically fail the innerness assumption. Yet, for

any amenable group � (in particular, nilpotent) one can describe the asymptotic

behavior of such cocycles: they are asymptotically equivalent to a homogeneous

subadditive function, namely the pull-back of a norm � on the abelianization

�ab
1 ˝R for some �nite index subgroup �1 < �. More precisely, the norm has the

form

�.
/ D max
1�j �d

j�j .
ab/j

for some characters �1; : : : ; �d W �1
ab ˝R ! R. In particular, if � is a non-abelian

nilpotent group, such homogeneous functions do not grow along the commutator

subgroup unlike Carnot–Carathéodry metrics. This can be shown by applying a

form of Zimmer’s Cocycle Reduction lemma (using the fact that � is amenable)

that allows one to bring the cocycle to an upper triangular form and read o� the

growth from the diagonal.

Plan of the paper. In Section 2 we recall some background on graded nilpotent

Lie groups, the Carnot–Carathéodory construction, Pansu’s fundamental result

on the asymptotic cone of nilpotent groups, and the construction of �, ˆ and d�

associated with the sub-additive cocycle cW � � X ! RC. Section 3 contains

two basic preliminary results needed for the proofs of the main theorems. One

results concerns approximation of admissible curves in the asymptotic cone G1

by expressions of the form T n
k

: : : T n
2 T n

1 that we call polygonal paths in �. The

second result (Theorem 3.3) is of independent interest; it is an ergodic theorem

for sub-additive cocycles along above mentioned polygonal paths. With these

preparations at hand we prove Theorems A and B in Section 4.
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2. The Carnot group as the asymptotic cone

In this section we recall Pansu’s construction of the asymptotic cone .G1; d1/

of a �nitely generated nilpotent group and give our construction of .G1; d�/, the

almost sure asymptotic cone of the random (pseudo) metric space .�; dx/.

2.1. The graded Lie algebra/group. Let � be a �nitely generated, torsion-free,

nilpotent group and G be its Mal’cev completion. In this subsection we construct

the associated Carnot group. Since the Lie groups here are connected and simply

connected, one can work with the Lie algebras. Let g be the Lie algebra of G, and

set

g
1 WD g; g

iC1 WD Œg; gi �:

Being nilpotent, G satis�es grC1 D ¹0º for some r 2 N. Since Œgi ; gj � � giCj

(and in particular ŒgiC1; gj �; Œgi ; gj C1� � giCj C1) the Lie bracket on g de�nes a

bilinear map

.gi=giC1/ ˝ .gj =gj C1/ �! .giCj =giCj C1/;

which can then be used to de�ne the Lie bracket Œ�; ��1 on

g1 WD

r
M

iD1

vi ; where vi WD g
i =giC1 (2.1)

by extending the above maps linearly. The resulting pair .g1; Œ�; ��1/ is called

the graded Lie algebra associated to g. Note that the linear maps

ıt W g1 �! g1; ıt .v1; : : : ; vr/ D .t � v1; t2 � v2; : : : ; t r � vr/;

satisfy ıt .Œv; w�1/ D Œıt .v/; ıt.w/�1 and ıts D ıt ı ıs for v; w 2 g1, t; s > 0.

Hence ¹ıt W t > 0º is a one-parameter family of automorphisms of the Lie algebra

g1, and therefore de�ne a one-parameter family of automorphisms of the Lie

group G1 WD exp1.g1/, that we will still denote by ¹ıt W t > 0º. (Here we denote

the exponential map g1 ! G1 by exp1 to distinguish it from expW g ! G).

The graded Lie algebra naturally appears in the following limiting procedure.

Choose a splitting of g as a direct sum of vector subspaces

g D V1 ˚ � � � ˚ Vr ; so that gi D Vi ˚ � � � ˚ Vr ; (2.2)

and choose a vector space identi�cation LW g ! g1 so that L.Vi / D vi the i th

summand of g1. For t > 0 de�ne the vector space automorphism �t of g by
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setting �t .v/ D t i � v for v 2 Vi (i D 1; : : : ; r). Then the Lie brackets Œ�; ��t on g,

given by

Œv; w�t WD �1=t.Œ�t .v/; �t.w/�/;

de�nes a Lie algebra structure on g that is isomorphic to the original Œ�; �� D

Œ�; ��1 via �t . However, one has

ŒL.v/; L.w/�1 D lim
t�!1

Œv; w�t

due to the fact that for v 2 Vi , w 2 Vj the “leading term” of Œv; w� lies in ViCj ,

while the higher terms that belong to ViCj C1˚� � �˚Vr become insigni�cant under

the rescaling (see [12]).

Using the logW G ! g and exp1W g1 ! G1 maps we obtain a family of maps

sclt .�/ W �
<

�! G
log
�! g

�
t�1

���! g
L

�! g1

exp1
����! G1 .t > 0/ (2.3)

that explains the asymptotic cone description of Pansu [12] as follows. Let d be

an inner right-invariant metric d on � and

�

�;
1

t
� d; e

�

GH
�! .G1; d1; e/

the Gromov–Hausdor� convergence. Then a sequence 
i 2 �, rescaled by t�1
i

with ti ! 1 as i ! 1, converges to g 2 G1 if and only if sclti .
i / ! g in G1.

We shall often write

g D lim
i�!1

1

ti
� 
i instead of sclti .
i / �! g:

The metric part of the statement shows that for ti ! 1 and 
i ; 
 0
i 2 �

g D lim
i�!1

1

ti
� 
i ; g0 D lim

i�!1

1

ti
� 
 0

i H) d1.g; g0/ D lim
i�!1

1

ti
� d.
i ; 
 0

i/:

(2.4)

The limiting distance d1 on G1 is homogeneous in the sense that

d1.ıs.g/; ıs.g
0// D s � d1.g; g0/ .g; g0 2 G1; s > 0/:

This distance is right-invariant (this follows from Lemma 2.2). The distance d1

appears in the sub-Finsler Carnot–Carathéodory construction discussed below.

Meanwhile let us point out two Lemmas.

Lemma 2.1. For 
 2 � one has

lim
n�!1

1

n
� 
n D exp1.L ı � ı log.
// D exp1.�1 ı L ı log.
//;

where � W g ! V1 and �1W g1W g1 ! v1 are the linear projection corresponding
to (2.2) and (2.1).
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Proof. Denote by �k W g ! Vk (k D 1; : : : ; r) the linear projections according

to (2.2), so � D �1. Then

1

n
� 
n D exp1

�

r
X

kD1

1

nk
� L ı �k ı log.
n/

�

D exp1

�

L ı �1 ı log.
/ C

r
X

kD2

1

nk�1
� L ı �k ı log.
/

�

and, since n�kC1 � L ı �k ı log.
/ ! 0 for 2 � k � r , the statement is clear. �

Lemma 2.2. Given sequences ti ! 1, 
i ; 
 0
i 2 � with 1

ti
�
i ! g and 1

ti
�
 0

i ! g0

then 1
ti

� 
i

0
i ! gg0.

Proof. This follows from the Baker–Campbell–Hausdor� formula (cf. §3.3 and

the proof of Lemma 5.5 in [5]). �

2.2. Carnot–Carathéodory constructions. We follow [12, (17)-(20)]. Denote

by gab
1 the abelianization of the graded Lie algebra g1. It is isomorphic to the

abelianization gab of g, and can also be identi�ed with the direct summand v1 of

g1:

g
ab
1 Š g

ab Š v1 <

r
M

iD1

vi D g1:

Vectors in v1 < g1 are called horizontal. A tangent vector v 2 TgG1 at g 2 G1

is horizontal if its right-translate under g�1 is in v1 < g1 D TeG1. Hence the

horizontal vectors form a sub-bundle of the tangent bundle T G1; this is a totally

non-integrable sub-bundle because g1 is generated as a Lie algebra by v1. Let

us say that a continuous piecewise smooth curve �W Œa; b� ! G1 whose tangent

vectors � 0.t / are horizontal for Lebesgue a.e. t 2 Œa; b� are admissible. Any two

points g1; g2 2 G1 can be connected by an admissible curve – this follows from

total non-integrability of the sub-bundle of horizontal vectors by Chow’s theorem.

Let �W gab
1 ! RC be an asymmetric norm (or rather a not necessarily sym-

metric norm), that is assume � satis�es for all v; w 2 gab
1, t > 0, and some

0 < a � b < 1:

�.v C w/ � �.v/ C �.w/; (2.5a)

�.t � v/ D t � �.v/; (2.5b)

a � kvk � �.v/ � b � kvk (2.5c)
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for some reference Euclidean norm k � k. Such an asymmetric norm � can be

used to measure horizontal vectors in T G1 by right-translating them back to

v1 < g1 D TeG1. Given a curve �W Œ˛; ˇ� ! G1 as above its �-length is de�ned

to be

length�.�/ WD

ˇ
Z

˛

�.� 0.t /�.t /�1/ dt: (2.6)

We de�ne the �-distance by

d�.g1; g2/ WD inf¹length�.�/W � is an admissible curve from g1 to g2º:

Starting from a �xed Euclidean norm k�k on gab
1, one obtains the sub-Riemannian

metric dk�k on G1, also known as a Carnot–Carathéodory metric; it is right-

invariant, homogeneous with respect to the homotheties ¹ıt W t > 0º, and de�nes

the usual topology on G1.

For a general asymmetric norm �W gab
1 ! RC as in (2.5) we obtain

d� W G1 � G1 �! RC;

that is a right-invariant, homogeneous, asymmetric metric, bi-Lipschitz to a

Carnot–Carathéodory metric:

d�.g1g; g2g/ D d�.g1; g2/; (2.7a)

d�.ıt .g1/; ıt.g2// D t � d�.g1; g2/; (2.7b)

d�.g1; g2/ � d�.g1; h/ C d�.h; g2/; (2.7c)

a � dk�k.g1; g2/ � d�.g1; g2/ � b � dk�k.g1; g2/: (2.7d)

Being right-invariant d� is completely determined by the function

ˆW G1 �! R; ˆ.g/ WD d�.e; g/; d�.g1; g2/ D ˆ.g2g�1
1 /:

This function ˆ is sub-additive, homogeneous, and bi-Lipschitz to a Carnot–

Carathéodory norm

ˆ.ıt .g// D t � ˆ.g/; (2.8a)

ˆ.g1g2/ � ˆ.g1/ C ˆ.g2/; (2.8b)

a � dk�k.e; g/ � ˆ.g/ � b � dk�k.e; g/: (2.8c)

If � is actually a norm, i.e. �.�v/ D v, then ˆ and d� are also symmetric:

ˆ.g�1/ D ˆ.g/ and d�.g1; g2/ D d�.g2; g1/. In this case d� is a sub-Finsler

Carnot–Carathéodory metric on G1 de�ned by the norm �. Hereafter we shall
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use the term Carnot–Carathéodory metric (or just a CC-metric) when referring to

a possibly asymmetric d� associated to � as in (2.5). Pansu’s metric d1 on G1,

referred to in the previous section, is the Carnot–Carathéodory metric associated

to a certain norm on g1, that itself is determined by the given inner right-invariant

metric d on � [12]. The proof does not really use the symmetry assumption,

so it can be applied almost verbatim to asymmetric norms. The in�mum in the

de�nition of d�.g1; g2/ is achieved by a (unique) curve, that will be called a

d�-geodesic. But we shall use this fact only in reference to d1 (or the classical

dk�k).

The notion of �-length can be extended to curves �W Œ0; 1� ! G1 that are

d1-recti�able, i.e. ones for which

sup
°

n
X

j D1

d1.�.sj �1/; �.sj //W n 2 N; 0 D s0 < s1 < � � � < sn D 1
±

< C1:

Pansu shows ([12]) that such a curve is absolutely continuous, a.e. di�erentiable

on Œ0; 1�, and that its derivative is a.e. horizontal, so the integral (2.6) makes sense.

The �-length of such curves can also be de�ned by

length�.�/ D sup
°

n
X

j D1

d�.�.sj �1/; �.sj //W n 2 N; 0 D s0 < s1 < � � � < sn D 1
±

:

2.3. From a sub-additive function F W � ! RC to a CC-metric on G1.

Consider a sub-additive function F W � ! RC that is bi-Lipschitz to a word metric,

i.e. satis�es

F.
1
2/ � F.
1/ C F.
2/; (2.9a)

a � d.e; 
/ � F.
/ � b � d.e; 
/; (2.9b)

for some constants 0 < a � b < 1. Note that the upper linear bound F.
/ �

bd.e; 
/ follows automatically from subadditivity and the fact that � is �nitely

generated; so the content of the second assumption is the lower linear bound for

F W � ! RC.

Such a function induces a subadditive function

f W �ab �! RC

using the following general construction.
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Lemma 2.3. Let 1 ! � ! � ! ƒ ! 1 be a short exact sequence of groups,
and F W � ! RC a subadditive function. Then the function

f W ƒ �! RC

de�ned by
f .
�/ WD inf¹F.
ı/W ı 2 �º

is subadditive.

Proof. Given �1; �2 2 ƒ and � > 0 choose 
1; 
2 2 � so that �i D 
i� and

F.
i / � f .�i/ C � for i D 1; 2. Then �1�2 D 
1
2�, so

f .�1�2/ � F.
1
2/ � F.
1/ C F.
2/ � f .�1/ C f .�2/ C 2�:

Since � > 0 is arbitrary we get f .�1�2/ � f .�1/ C f .�2/. �

Now recall that � is a uniform lattice in its Mal’cev completion G. In fact,

viewing G as the R-points G D GR of a Q-algebraic group G, we may think of �

as (commensurable to) GZ. Taking the abelianization is a Q-algebraic operation,

hence �ab is (commensurable to) Gab
Z

, a lattice in Gab
R

D Gab. Hence �ab, that is

abstractly isomorphic to Zd , is a lattice in Gab, that is continuously isomorphic to

Rd with d D dim v1. One often writes

Gab D �ab ˝ R

to emphasize that �ab is a lattice in the real vector space Gab.

Lemma 2.4. Let ƒ be a lattice in a �nite dimensional real vector space V , and
f W ƒ ! RC be a subadditive function. Then there exists a unique homogeneous
subadditive function �W V ! RC so that f is asymptotically equivalent to �jƒ;
in particular

�.�/ D lim
n�!1

1

n
f .n�/ D inf

n�1

1

n
f .n�/:

Moreover, if c1 � f .�/=k�k � c2 on ƒ, then c1 � �.v/=kvk � c2 on V n ¹0º.

This is an easy and well known fact; but see Burago’s [7] for much �ner results

in case of a coarsely geodesic metric.

Remark 2.5. It follows that any subadditive function f WZd ! RC is automati-

cally inner in the following sense: given � > 0 there is R < 1 so that any � 2 Zd

can be written as � D �1 C � � � C �n with

f .�i / � R .i D 1; : : : ; n/; f .�1/ C � � � C f .�n/ � .1 C �/ � f .�/:

Indeed, this is clear for the asymmetric norm �WRd ! RC associated with f in

Lemma 2.4, and translates to f by the virtue of the approximation.
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Lemma 2.6. Let F W � ! RC be a subadditive function, f W �ab ! RC and
�W �ab ˝ R ! RC be de�ned by Lemmas 2.3 and 2.4. Then for any 
 2 �

one has

lim
n�!1

1

n
F.
n/ D inf

n�1

1

n
F.
n/

D lim
n�!1

1

n
f ..
ab/n/

D inf
n�1

1

n
f ..
ab/n/

D �.
ab/

for any 
 2 � with 
ab D 
Œ�; �� denoting the image in �ab.

Proof. The sequence an D F.
n/ is sub-additive, i.e. anCm � an C am for all

n; m 2 N; hence an=n converges to inf an=n. Next we note that Lemmas 2.1 and

relation (2.4) imply that whenever 
1; 
2 2 � satisfy 
ab
1 D 
ab

2 one has

lim
n�!1

1

n
� d.
n

1 ; 
n
2 / D 0:

Since any sub-additive function is automatically Lipschitz with respect to the word

metric, it follows that lim F.
n
1 /=n D lim F.
n

2 /=n. Thus this limit of F.
n/=n

depends only on 
ab, and is easily seen to be lim f ..
ab/n/=n, i.e. �.
ab/. �

We can now apply the Carnot–Carathéodory construction to de�ne a (possibly

asymmetric) metric d� on G1 by

d�.g; g0/ WD inf¹length�.�/W � is an admissible curve from g to g0º: (2.10)

2.4. From a cocycle cW � � X ! RC to the CC-metric. Let � be a �nitely

generated, virtually nilpotent group, � Õ .X; m/ an ergodic p.m.p. action, and

cW � � X ! RC a subadditive cocycle with c.
; �/ 2 L1.X; m/ for every 
 2 �.

We start with a couple of remarks about passing to �nite index subgroups and

dividing by �nite kernels.

Let � 0 < � be a subgroup of �nite index. The action of � 0 on .X; m/ has at most

Œ�W � 0�-many ergodic components permuted by the �-action. Let c0W � 0�X 0 ! RC

be the restriction of c to one of the � 0-ergodic components X 0 � X . If one shows

that there is some function ˆW G1 ! RC so that for a.e. x0 2 X 0 the function

c0.�; x0/W � 0 ! RC is asymptotically equivalent to ˆ, then the same would apply

to c.�; x/W � ! RC for a.e. x 2 X . Indeed choosing representatives 
1; : : : ; 
n

for � 0n� for every 
 2 � one can write

c.
; x/ D c.
 0
i ; x/ � c.
 0; 
i :x/ C kc.
i ; x/k1
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for some 
 0 2 � 0; similarly

c.
 0; x/ D c.

�1
i ; x/ � c.
; 
�1

i :x/ C kc.
�1
i ; x/k1:

Hence c.
; x/ is at uniformly bounded distance from c.
 0; 
˙1
i :x/, and therefore

has the same asymptotic behavior.

Let N be a �nite normal subgroup of �. Then �1 WD �=N acts ergodically

by p.m.p. transformations on .X1; m1/ WD .X; m/=N . A subadditive cocycle

cW � � X ! RC de�nes c1W �1 � X1 ! RC by

c1.
1; x1/ WD max¹c.
; x/W pr.
/ D 
1; pr.x/ D x1º:

Then c1W �1�X1 ! RC is a sub-additive cocycle, and it is within bounded distance

from c.
; x/.

Furthermore we note that conditions (i) and (ii) of Theorem A pass to c0 and c1

as above. (Condition (ii) for c0 is an easy exercise using subadditivity and inner-

ness; the others are immediate.) Hence in the context of Theorem A (and Theo-

rem B) we may assume without loss of generality that � itself is �nitely-generated,

torsion-free, nilpotent group with torsion-free abelianization �ab. Hereafter we

shall make this assumption.

Let us de�ne the function

NcW � �! RC

by setting

Nc.
/ WD

Z

X

c.
; x/ dm.x/:

Observe that Nc is a sub-additive function, because sub-additivity of c and �-

invariance of m imply

Nc.
1
2/ D

Z

X

c.
1
2; x/ dm.x/

�

Z

X

c.
1; 
2x/ dm.x/ C

Z

X

c.
2; x/ dm.x/

D Nc.
1/ C Nc.
2/:

Moreover one always has an upper linear estimate

Nc.
/ � K1 � j
 jS with K1 WD max¹ Nc.s/W s 2 Sº:

The de�nition of Nc requires only L1-integrability of the functions c.
; x/. We note

the point-wise bi-Lipschitz condition (i) passes to the average, and we have

k � j
 jS � Nc.
/ � K1 � j
 jS (2.11)

with constants 0 < k � K1 < C1 and any 
 2 �.
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Remark 2.7. It does not seem to be obvious why the condition of being inner for

the sub-additive cocycle cW � � X ! RC (condition (ii) in Theorem A) should

imply innerness for the average sub-additive function NcW � ! RC. It will follow

from our results that for an L1-cocycle c over an ergodic �-action the average

Nc is indeed inner as it is asymptotically equivalent to a Carnot–Carathéodory

function ˆ.

We can now summarize the construction

Proposition 2.8. Let � Õ .X; m/ and cW � � X ! RC be a subadditive cocycle
satisfying condition (i) in Theorem A.

� The average function

Nc.
/ WD

Z

X

c.
; x/ dm.x/

is a subadditive function on �, satisfying bi-Lipschitz condition (2.11).

� This subadditive function de�nes a subadditive, homogeneous

�W �ab ˝ R �! RC;

such that

lim
n�!1

1

n
Nc.
n/ D �.
ab/ .
 2 �/:

Moreover, for some 0 < a � b < 1 one has a � kvk � �.v/ � b � kvk for all
v 2 �ab ˝ R Š gab

1.

� The Carnot–Carathéodory construction de�nes an asymmetric distance on
G1

d� W G1 � G1 �! RC

that is right-invariant, homogeneous, and bi-Lipschitz to d1 as in (2.7).
We denote

ˆ.g/ WD d�.e; g/ .g 2 G1/:

3. Preparation for the main proofs

In this section we prepare two tools for the proof of the main results. The �rst tool

is a purely geometric fact that allows one to approximate an admissible curve in

the asymptotic cone G1 of � by rescaled sequences of the form T n
k

: : : T n
2 T n

1 in �;

we call such sequences polygonal paths. The second tool is an ergodic theorem

for a sub-additive cocycle along polygonal paths over a general ergodic, p.m.p.

action of a nilpotent group.
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3.1. Approximating curves in G1 by polygonal paths in � . This subsection

concerns purely geometric aspects of the convergence of � to its asymptotic cone

G1 (and is unrelated to the action � Õ .X; m/ and the cocycle cW � � X ! RC).

As before, � is a �nitely generated, torsion-free, nilpotent group with torsion-

free abelianization, d is a right-invariant word metric on �, .G1; d1/ is the

asymptotic cone, and

sclt .�/ W ��!G1 .t > 0/

are the maps de�ned in (2.3) that realize the Gromov–Hausdor� convergence

�

�;
1

t
� d; e�

�

�! .G1; d1; e/:

We also �x a (possibly) asymmetric norm

�W gab
1 �! RC

satisfying (2.5) and use it to associate length length�.�/ to admissible curves

�W Œ0; 1� ! G1. We denote the balls in G1 by

B.g; �/ WD ¹g0 2 G1W d1.g; g0/ < �º:

Proposition 3.1 (approximation of curves by polygonal paths). Given a Lipschitz
curve �W Œ0; 1� ! G1 with �.0/ D e, and � > 0 one can �nd k; p; n0 2 N,
T1; : : : ; Tk 2 � so that for n � n0 one has

k
X

j D1

d1

� 1

np
� T n

j : : : T n
2 T n

1 ; �
�j

k

��

< �;

and
ˇ

ˇ

ˇ

ˇ

1

p
� .�.T ab

k / C � � � C �.T ab
1 // � length�.�/

ˇ

ˇ

ˇ

ˇ

< �:

We emphasize the order of the main quanti�ers: the elements T1; : : : ; Tk and

p 2 N depend only on the required accuracy � > 0 (and of course the curve �),

and provide �-good approximation at all su�ciently large scales.
We shall need this proposition (in combination with Theorem 3.3) in two cases.

� In § 4.1 we choose � to be a �-geodesic connecting e to some g. In this case

� is a smooth admissible curve and we are interested in the inequality

1

p
� .�.T ab

k / C � � � C �.T ab
1 // � length�.�/ C � D ˆ.g/ C �

while d1

�

1
np

� T n
k

: : : T n
2 T n

1 ; g
�

< �.
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� In § 4.2 we get a Lipschitz curve � connecting e to some g. In this case we

are interested in the inequality

1

p
� .�.T ab

k / C � � � C �.T ab
1 // � length�.�/ � � � ˆ.g/ � �

while requiring

k
X

j D1

d1

� 1

np
� T n

k : : : T n
2 T n

1 ; �
�j

k

��

< �

which is stronger than just d1

�

1
np

� T n
k

: : : T n
2 T n

1 ; g
�

< �.

Proof of Proposition 3.1. First we work in G1. Our goal is to �nd k 2 N and

horizontal vectors

v1; : : : ; vk 2 v1 � g1

so that, denoting hj WD exp1.vj / one has

k
X

j D1

d1

�

hj : : : h1; �
�j

k

��

<
1

2
�;

ˇ

ˇ

ˇ

ˇ

ˇ

k
X

j D1

�.vj / � length�.�/

ˇ

ˇ

ˇ

ˇ

ˇ

<
1

2
�: (3.1)

For a �xed k 2 N, that we will take to be su�ciently large, we de�ne v1; : : : ; vk

inductively as follows. Set

v1 WD �1 ı log1

�

�
� 1

k

��

; h1 WD exp1.v1/:

Assuming v1; : : : ; vj �1 were chosen, set

vj WD �1 ı log1

�

�
� 1

k

�

.hj �1 : : : h1�.0//�1
�

; hj WD exp1.vj /:

Here �1W g1 ! v1 is the linear projection corresponding to the decomposition

g1 D ˚r
iD1vi .

Let us now show that by choosing k large enough we can guarantee (3.1).

To this end we need the fact ([12, Lemme (18)]) that in the unit ball in G1 the

“horizontal component” gives an approximation with at most quadratic error.

More precisely, there is a constant C1 so that for all g 2 B.e; 1/:

d1.g; exp1 ı�1 ı log1.g// � C1 � d1.e; g/2:
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Hence for large k one has for j D 1; : : : ; k:

d1

�

hj : : : h1; �
�j

k

��

� C1 � d1

�

hj �1 : : : h1; �
�j

k

��2

� C1 �
�

d1

�

hj �1 : : : h1; �
�j � 1

k

��

C d1

�

�
�j � 1

k

�

; �
�j

k

���2

� C2 �
1

k2

for some C2 depending on C1 and the Lipschitz constant of �. Hence for all k large

enough
k
X

j D1

d1

�

hj : : : h1; �
�j

k

��

< C2 � k �
1

k2
D

C2

k
<

1

2
�:

The second fact that we want to use is that a Lipschitz curve �W Œ0; 1� ! G1 is

recti�able. Therefore

length�.�/ D lim
k�!1

k
X

j D1

d�

�

�
�j � 1

k

�

; �
�j

k

��

:

One also has a constant C so that

jd�.g; g0/ � � ı �1 ı log1.g0g�1/j � C � d1.g; g0/2

whenever g0 2 B.g; 1/. Thus for all su�ciently large k and for each j D 1; : : : ; k,

we have
ˇ

ˇ

ˇ

ˇ

d�

�

�
�j � 1

k

�

; �
�j

k

��

� �.vj /

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

d�

�

hj �1 : : : h1; �
�j

k

��

� �.vj /

ˇ

ˇ

ˇ

ˇ

C d�

�

hj �1 : : : h1; �
�j � 1

k

��

� C3 �
1

k2

and the second inequality in (3.1) follows.

We have now found k 2 N and horizontal vectors v1; : : : ; vk 2 v1 satisfy-

ing (3.1), and need to �nd T1; : : : ; Tk 2 �, p 2 N, and n0 > 0 as in the Proposition.

We need the following

Lemma 3.2. Given a horizontal vector v 2 v1 < g1 and �0 > 0 there exist � 2 �,
p 2 N and n0 so that

ˇ

ˇ

ˇ

ˇ

1

p
�.�ab/ � �.v/

ˇ

ˇ

ˇ

ˇ

< �0; d1

� 1

np
� �n; exp1.v/

�

< �0 .n > n0/

where exp1W g1 ! G1 is the exponential map on G1.
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Proof. Since 1
p

� � becomes denser and denser in G1 as p ! 1, one can �nd

p 2 N and 
 2 � so that 1
p

� 
 is close to exp1.v/. Recall that

1

p
� 
 D exp1

� 1

p
� L ı �1 ı log.
/ C

1

p2
� L ı �2 ı log.
/ C � � �

C
1

pr
� L ı �r ı log.
/

�

where �j W g ! Vj D L�1.vj / are the linear projections. Since v 2 v1 D L.�1.g//,

it follows that p�1 � L ı �1 ı log.
/ and v are close. Hence we may choose p and


 (to be called �) so that

d1

�

exp1

� 1

p
� L ı �1 ı log.
/

�

; exp1.v/
�

< �0

and
ˇ

ˇ

ˇ

ˇ

�
� 1

p
� L ı �1 ı log.
/

�

� �.v/

ˇ

ˇ

ˇ

ˇ

< �0:

Now considering powers 1
n

� 
n we are done by applying Lemma 2.1. This proves

Lemma 3.2. 4

Choose �0 2 .0; �=2k/ small enough to ensure that whenever h0
1; : : : ; h0

k
2 G1

are �0-close to h1; : : : ; hk, respectively, one has

k
X

j D1

d1.h0
j : : : h0

2h0
1; hj : : : h2h1/ <

1

2
�:

Let us now apply Lemma 3.2 with �0 > 0 as above to obtain elements �1; : : : ; �k

and p1; : : : ; pk 2 N so that the pairs .�j ; pj / satisfy

ˇ

ˇ

ˇ

ˇ

1

pj

�.�ab
j / � �.vj /

ˇ

ˇ

ˇ

ˇ

< �0 <
�

2k
; d1

� 1

npj

� �n
j ; hj

�

< �0 .j D 1; : : : ; k/:

Replacing a pair .�j ; pj / by .�
q
j ; q � pj / with any q 2 N, the above inequal-

ities clearly remain valid. So taking p WD p1 : : : pk and replacing .�j ; pj / by

.Tj WD �
p=pj

j ; p/ we get elements T1; : : : ; Tk 2 � so that for n � 1

d1

� 1

np
� T n

j ; hj

�

< �0 and

ˇ

ˇ

ˇ

ˇ

1

p
�.T ab

j / � �.vj /

ˇ

ˇ

ˇ

ˇ

< �0 <
�

2k
.j D 1; : : : ; k/:

In view of Lemma 2.2 we know that for every j D 1; : : : ; k

d1

� 1

np
� .T n

j : : : T n
1 /;

� 1

np
� T n

j

�

: : :
� 1

np
� T n

1

��

�! 0:
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Thus for all n large enough, we have

k
X

j D1

d1

� 1

np
� T n

j : : : T n
1 ; hj : : : h1

�

<
1

2
�;

while
ˇ

ˇ

ˇ

ˇ

ˇ

1

p
�

k
X

j D1

�.T ab
j / �

k
X

j D1

�.vj /

ˇ

ˇ

ˇ

ˇ

ˇ

<
1

2
�:

Combined with (3.1) this establishes the required inequalities. This completes the

proof of Proposition 3.1. �

3.2. An Ergodic Theorem along polygonal paths. The goal of this subsection

is to prove the following result that might have an independent interest.

Theorem 3.3 (ergodic theorem along polygonal paths). Let � be a �nitely gener-
ated torsion-free nilpotent group with torsion-free abelianization, � Õ .X; m/ an
ergodic p.m.p. action, cW � � X ! RC a measurable, non-negative, subadditive
cocycle with c.
; �/ 2 L1.X; m/ for every 
 2 �, and Nc and � as above. Then
for any T1; : : : ; Tk 2 � one has m-a.e. and L1.X; m/-convergence

lim
n�!1

1

n
� c.T n

j ; T n
j �1 : : : T n

1 x/ D �.T ab
j /

for each j D 1; : : : ; k, and consequently

lim
n�!1

1

n
.c.T n

k ; T n
k�1 : : : T n

1 x/ C � � � C c.T n
2 ; T n

1 x/ C c.T n
1 ; x//

D �.T ab
k / C � � � C �.T ab

1 /:

The L1 convergence holds under a weaker assumption: c.
; �/ 2 L1.X; m/.

The case k D 1 was shown by Austin [1] under the weaker assumption that

c.
; �/ 2 L1.X; m/ for every 
 2 �. For reader’s convenience we include a proof.

Theorem 3.4 (Austin [1]). Let cW � � X ! RC be a subadditive cocycle with
c.
; �/ 2 L1.X; m/ for every 
 2 �. Then for any T 2 � one has

lim
n�!1

1

n
c.T n; x/ D �.T ab/

for m-a.e. x 2 X and in L1.X; m/.
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Proof. Kingman’s subadditive ergodic theorem, applied to the sub-additive cocy-

cle hn.x/ WD c.T n; x/ over .X; m; T /, gives an m-a.e. and L1 convergence

lim
n�!1

1

n
c.T n; x/ D h.x/;

where h.x/ is a measurable T -invariant function, satisfying

Z

X

h.x/ dm.x/ D lim
n�!1

1

n
�

Z

X

hn.x/ dm.x/ D lim
n�!1

1

n
Nc.T n/ D �.T ab/:

(We used Lemma 2.6 in the last equality). Fix 
 2 � and denote 
n WD T n
T �n.

Since 
nT n D T n
 we have

c.T n; x/ � c.
�1
n ; 
nT n:x/ � c.
nT n; x/ D c.T n
; x/ � c.T n; 
:x/ C c.
; x/:

(3.2)

Denote fn.x/ D n�1.c.
n; x/ C c.
�1
n ; 
nT n:x// and observe that since one has

j
�1
n jS D j
njS D o.n/ (cf. Breuillard [5, Lemma 5.6])

kfnk1 �
K1

n
� 2j
njS �! 0; where K1 D max

s2S
kc.s; �/k1:

Thus there is a sequence ni ! 1 so that fni
.x/ ! 0 for m-a.e. x 2 X .

Dividing (3.2) by n, and taking the limit along the subsequence ni , one obtains

h.x/ � h.
:x/:

Since this is true a.e. for every 
 2 �, h is �-invariant. By ergodicity it is constant.

This constant is �.T ab/ by integration. �

In the general case of k � 2 the term n�1 � c.T n
1 ; x/ converges to �.T ab

1 / by

the above, but dealing with the next terms, such as n�1 � c.T n
2 ; T n

1 :x/, one faces

a “moving target” problem. We shall overcome this di�culty by �nding regions

Z2; : : : ; Zk � X , where n�1c.T n
`

; z/ D �.T ab
`

/ C o.1/ for z 2 Z`, and perturbing

the polygonal path T n
k

: : : T n
2 T n

1 slightly to make sure to land in the appropriate

regions at appropriate times. We need several lemmas.

Lemma 3.5 (parallelogram inequality). Given ˛; ˇ; �; � 0 2 � one has

jc.�; ˛:x/ � c.� 0; ˇ:x/j � K � .d.˛; ˇ/ C d.�˛; � 0ˇ//

for K D maxs2S kc.s; �/k1.
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Proof. Let us write ˇ D ı˛ and � 0ˇ D !�˛, so

jıj D jı�1j D d.˛; ˇ/; j!j D j!�1j D d.�˛; � 0ˇ/:

Since � 0 D !�ı�1 we have

c.� 0; ˇ:x/ D c.!�ı�1; ˇ:x/

� c.!; �˛:x/ C c.�; ˛:x/ C c.ı�1; ˇ:x/

� c.�; ˛:x/ C K � .j!j C jı�1j/:

Conversely

c.�; ˛:x/ D c.!�1� 0ı; ˛:x/

� c.!�1; � 0ˇ:x/ C c.� 0; ˇ:x/ C c.ı; ˛:x/

� c.� 0; ˇ:x/ C K � .j!�1j C jıj/: �

Lemma 3.6. Let T 2 �, ı > 0, and a measurable subset E � X be given. Then
the set

E� WD
°

x 2 X W lim inf
n�!1

#¹n0 < ı � nW T n�n0

:x 2 Eº

ı � n
> 0

±

has m.E�/ � m.E/. Moreover, given � > 0 there is N so that the set

E�
N WD

°

x 2 X W for all n � N;
#¹n0 < ı � nW T n�n0

:x 2 Eº

ı � n
> 0

±

has m.E�
N / > m.E/ � �.

Proof. Given a function f 2 L1.X; m/ and integers 1 � k < n consider the

averaged function

An
kf .x/ WD

1

n � k
�

n�1
X

j Dk

f .T j :x/:

Birkho�’s pointwise ergodic theorem asserts m-a.e. convergence

lim
n�!1

An
0f D E.f WBT /

to the conditional expectation of f with respect to the the sub-�-algebra of T -

invariant sets BT . (The conditional expectation is de�ned only up to null sets, but

so is the above convergence). We observe that since

An
0f .x/ D

k

n
� Ak

0f .x/ C
n � k

n
� An

kf .x/;
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taking k D d.1 � ı/ne with 0 < ı < 1 �xed and letting n ! 1, it follows that for

m-a.e. x 2 X

1

� � n

n
X

d.1��/ne

f ı T j �! E.f WBT /:

Applying this to the characteristic function f D 1E of E � X , we deduce that

for m-a.e. x 2 X

lim
n�!1

#¹d.1 � ı/ne � j � nW T j :x 2 Eº

ı � n
D hE .x/;

where hE WD E.EWBT / is the the conditional expectation of 1E . Since 0 �

hE .x/ � 1 a.e. while
R

hE D m.E/, it follows that the set ¹x 2 X W hE .x/ > 0º

has measure � m.E/. Yet the set ¹xW hE.x/ > 0º is, up to null sets, precisely E�.

Hence m.E�/ � m.E/.

For the second statement, note that ¹E�
N º is an increasing sequence of measur-

able sets whose union (=limit) is E�. �

Lemma 3.7 (Small perturbations of polygonal paths). Given T1; : : : ; Tk 2 � and
� > 0, there is ı > 0 and N so that for all n � N we have

1

n
� d.T

n�nk

k
T

n�n2

2 T
n�n1

1 ; T n
k T n

k�1 : : : T n
2 T n

1 / < �

for any 0 � n1; : : : ; nk � ı � n.

This Lemma can also be shown by rescaling and passing to the Gromov–

Hausdor� limit in G1 and relying on Lemma 2.2. Here we give a more direct

argument.

Proof. It su�ces to show that for �xed k 2 N, T; T1; : : : ; Tk 2 �, �0 > 0, there is

ı > 0 so that for n � 1 one has

d.T n
k : : : T n

2 T n
1 T �m; T n

k : : : T n
2 T n

1 / < �0 � n .for all m < ı � n/: (3.3)

Indeed, applying such an argument to Tj C1; : : : ; T` and T D Tj with �0 D �=k we

get

1

n
.T n

` : : : T n
j C1T

n�nj

j T
n�nj �1

j �1 : : : T
n�n1

1 ; T n
` : : : T n

j C1T n
j T

n�nj �1

j �1 : : : T
n�n1

1 / < �0;

and summing these inequalities over j D 1; : : : ; `�1, we get the estimate ` ��0 � �

as required.
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To establish (3.3) use the general group-theoretic identity ba D aŒa�1; b�b

to push terms from the right to the left creating some commutator factors. More

precisely

T n
k : : : T n

2 T n
1 T �m

D T n
k : : : T n

2 � .T �m � ŒT m; T n
1 �/ � T n

1

D T n
k : : : T n

3 .T �m � ŒT m; T n
2 � � ŒT m; T n

1 � � ŒŒT m; T n
1 ��1; T n

2 �/ T n
2 T n

1

:::

D .T �mŒT m; T n
k � : : : ŒT m; T n

1 � : : : / � T n
k : : : T n

2 T n
1

where the expression in the parentheses is a product of O.k/ factors each being a

higher commutator of the form

Œ: : : ŒŒT m; T n
j1

��1; T n
j2

� : : : ; T n
js

�:

We need to show that the word length of the expression in parentheses is < �n,

and it su�ces to show that each of the O.k/-commutator expressions has length

< �0n, where �0 depends on � and k. Iterated commutators of order s above the

nilpotency degree r give identity. For s � r one has (cf. [5, Lemma 3.8])

Œ: : : ŒT m; T n
j1

��1; : : : ; T n
js

� D Œ: : : ŒT; Tj1
�; : : : ; Tjs

�˙m�ns

(3.4)

For each one of the �nitely many elements 
 D Œ: : : ŒT; Tj1
�; : : : ; Tjs

� as above, we

have

j
pjS � C
 � p
1

sC1 .p � 1/;

because such 
 lies in the .sC1/-term of the lower central series �sC1 D Œ�; �s� D

Œ�; Œ� : : : ��, and the growth rate on this subgroup is asymptotically scaled by t sC1

(recall that in the asymptotic cone G1 the homothety ıt acts by multiplication by

t j on the gj =gj C1-subspace of g1). Therefore the length of the elements in (3.4)

is bounded by

C.m � ns/
1

sC1 < C.ı � nsC1/
1

sC1 D Cı
1

sC1 � n

which can be made < 2�k� by choosing ı > 0 small enough. �

Finally, we are ready for the proof of the Ergodic Theorem along Polygonal

Paths.

Proof of Theorem 3.3. Fix � > 0 and let ı > 0 and N be as in Lemma 3.7.

Choose a small � > 0 and let M 2 N be large enough so that for each

j D 1; : : : ; k the set

Yj WD

²

y 2 X W for all n � M W

ˇ

ˇ

ˇ

ˇ

1

n
� c.T n

j ; y/ � �.T ab
j /

ˇ

ˇ

ˇ

ˇ

< �

³

as m.Yj / > 1 � �:
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Let Zk WD Yk, and apply Lemma 3.6 with E D Zk to �nd Mk 2 N so that the set

.Zk/�
Mk

WD
°

z 2 X W for all n > Mk ;
#¹n0 < ı � nW T n�n0

:z 2 Zkº

ı � n
> 0

±

satis�es m..Zk/�
Mk

/ > m.Zk/ � � > 1 � 2�. De�ne

Zk�1 WD Yk�1 \ .Zk/�
Mk

;

and observe that

m.Zk�1/ > 1 � 3�:

One then continues inductively to de�ne

Zj �1 WD .Zj /�
Mj

\ Yj �1 (for j D k � 1; : : : ; 3; 2),

where Mj 2 N is chosen large enough to ensure that the set

.Zj /�
Mj

WD
°

z 2 X W for all n > Mj ;
#¹n0 < ı � nW T n�n0

:z 2 Zj º

ı � n
> 0

±

has

m..Zj /�
Mj

/ > m.Zj / � �:

The sets Z1; Z2; : : : ; Zk that are de�ned in this manner satisfy

m.Z1/ > m.Z2/ � 2�

> m.Z3/ � 4�

:::

> m.Zk/ � 2.k � 1/�

> 1 � .2k � 1/�:

Let N WD max.M; M1; : : : ; Mk/. Then for every n > N and every z 2 Zj , there

is nj < ı � n so that T n�nj :z 2 Zj C1 and

ˇ

ˇ

ˇ

ˇ

1

n
� c.T n

j ; z/ � �.T ab
j /

ˇ

ˇ

ˇ

ˇ

< �:

Thus for z in a set Z1 of size > 1 � .2k � 1/� and every n � N , there exist

n1; : : : ; nk all bounded by ı � n, so that

ˇ

ˇ

ˇ

ˇ

1

n
� c.T n

j ; T
n�nj �1

j �1 : : : T
n�n2

2 T
n�n1

1 :z/ � �.T ab
j /

ˇ

ˇ

ˇ

ˇ

< �:
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Applying Lemma 3.7 we have for each j D 1; : : : ; k:

d.T n
j T

n�nj �1

j �1 : : : T
n�n2

2 T
n�n1

1 ; T n
j T n

j �1 : : : T n
2 T n

1 / < n�;

d.T
n�nj �1

j �1 : : : T
n�n2

2 T
n�n1

1 ; T n
j �1 : : : T n

2 T n
1 / < n�:

So by Lemma 3.5 and the Lipschitz property we have

jc.T n
j ; T

n�nj �1

j �1 : : : T
n�n2

2 T
n�n1

1 :z/ � c.T n
j ; T n

j �1 : : : T n
2 T n

1 :z/j < 2Kn�: (3.5)

Therefore for every x 2 Z1 and n > N one has

ˇ

ˇ

ˇ

ˇ

1

n
� c.T n

j ; T n
j �1 : : : T n

2 T n
1 :x/ � �.T ab

j /

ˇ

ˇ

ˇ

ˇ

< .2K C 1/� .j D 1; : : : ; k/: (3.6)

Applying this argument with a sequence of � ! 0, m-a.e. x 2 X would belong to

at least one of the sets Z1, and therefore would satisfy (3.6) for all n > N.x; �/.

As � > 0 was arbitrary, this proves that for m-a.e. x 2 X

lim
n�!1

1

n
� c.T n

j ; T n
j �1 : : : T n

2 T n
1 :x/ D �.T ab

j / .j D 1; : : : ; k/

which in turn gives the convergence of the sum over j D 1; : : : ; k to �.T ab
1 /C� � �C

�.T ab
k

/. The L1-convergence here follows by Lebesgue’s Dominated convergence,

because under the L1-assumption the terms are uniformly bounded.

However, the latter conclusion of L1-convergence does not require the as-

sumption c.
; �/ 2 L1.X; m/, and holds under the weaker assumption c.
; �/ 2

L1.X; m/ for 
 2 �. In the pointwise convergence argument, for every x from a set

Z1 of large measure, for all n large enough we compared the values of the cocycle

along a polygonal path with that for a perturbed path (3.5) and used Lemma 3.5 to

show that the values are close. In the L1-context it is more natural to compare a

polygonal path with the average of all perturbations:

c.T n
j ; T n

j �1 : : : T n
1 :x/ �

1

.ın/j �1
�

bınc
X

nj �1D0

� � �

bınc
X

n1D0

c.T n
j ; T

n�nj �1

j �1 : : : T
n�n1

1 :x/

and replace Lemma 3.5 by its L1-version:

Z

X

jc.�; ˛:x/ � c.� 0; ˇ:x/j dm.x/ � K1 � .d.˛; ˇ/ C d.�˛; � 0ˇ//

where K1 WD max¹kc.s; �/k1W s 2 Sº. We leave out the rather obvious details for

this argument, as it it is not needed here. �
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4. Proof of Theorems A, B

Throughout this section �, � Õ .X; m/, and cW � �X ! RC are as in Theorem A,

and

�W �ab ˝ R Š g1 �! RC; ˆW G1 �! RC; d� W G1 � G1 �! RC

are as in Proposition 2.8. We denote by d1 the corresponding right-invariant,

homogeneous metric on G1 that appears in Pansu’s Carnot–Carathéodory con-

struction. We denote

B.g; �/ WD ¹g0 2 G1W d1.g; g0/ < �º

the corresponding balls in G1. Consider the functions

c�.g; x/ WD lim
�&0

lim sup
t�!1

sup
sclt .
/2B.g;�/

1

t
c.
; x/;

c�.g; x/ WD lim
�&0

lim inf
t�!1

inf
sclt .
/2B.g;�/

1

t
c.
; x/:

While this is not necessary for our argument, it is impossible to ignore the fact

that c�.g; �/ and c�.g; �/ are a.e. constant.

Lemma 4.1. For each g 2 G1 the functions c�.g; �/, c�.g; �/ are m-a.e.
constants, denoted c�.g/, c�.g/, respectively.

Proof. For any �xed g 2 G1 the functions c�.g; �/; c�.g; �/W X ! RC are

measurable. Fix 
0 2 �. Then for any � > 0 for all t > t.g; 
0; �/ one has

1

t
� 
 2 B.g; �/ H)

1

t
� 

0;

1

t
� 

�1

0 2 B.g; 2�/:

Since for every x 2 X

1

t
c.

0; x/ �

1

t
c.
; 
0:x/ C

1

t
c.
0; x/

it follows that c�.g; x/ � c�.g; 
0:x/ and c�.g; x/ � c�.g; 
0:x/. Apply-

ing the same argument to 
�1
0 and 
0:x we observe that c�.g; �/ and c�.g; �/

are measurable �-invariant functions. Hence they are a.e. constants, because

� Õ .X; m/ is ergodic. �
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In the following subsections we shall proceed in the following steps.

(1) Show that c�.g/ � ˆ.g/ for all g 2 G1.

(2) Show that ˆ.g/ � c�.g/ for all g 2 G1.

(3) The obvious inequality c� � c� combined with the above implies that

t�1
i � c.
i ; x/ ! ˆ.g/ whenever sclti .
i / ! g in G1. We shall show that

for a.e. x 2 X the above convergence is uniform over g 2 B.e; 1/ and will

deduce Theorem A by rescaling.

(4) We will prove Theorem B by combining the ideas of the previous steps.

Let X0 � X be the set of x 2 X for which c�.g; x/ D c�.g/, c�.g; x/ D

c�.g/, and Theorem 3.3 holds for all k 2 N and every choice of T1; : : : ; Tk 2

�. We imposed countably many condition where each holds m-a.e., therefore

m.X n X0/ D 0.

4.1. The upper bound: c�.g/ � ˆ.g/. Fix x 2 X0, and assume, towards

contradiction, that there exists � > 0 and sequences ti ! 1 and 
i 2 � so

that

lim
i�!1

1

ti
� 
i D g; while

1

ti
c.
i ; x/ > d�.e; g/ C �: (4.1)

Fix a small � > 0, namely � D �=.K C3/, where K is as in Theorem A(i). Choose

a �-geodesic �W Œ0; 1� ! G1, i.e. a smooth admissible curve such that

�.0/ D e; �.1/ D g; length�.�/ D ˆ.g/

(we could choose any smooth curve from e to g with length�.�/ < ˆ.g/ C � with

a su�ciently small � > 0). Applying Proposition 3.1 we �nd k 2 N, elements

T1; : : : ; Tk 2 �, and a multiple p 2 N that give �-approximation to the curve �.

Set

ni WD
j ti

p

k

; Si WD T
ni

k
: : : T

ni

2 T
ni

1 :

Note that

lim sup
i�!1

1

ti
� d.Si ; 
i/ D lim sup

i�!1

d1

� 1

ti
� Si ;

1

ti
� 
i

�

D lim sup
i�!1

d1

� 1

ti
� Si ; g

�

< �:
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Since c.�; x/W � ! RC is K-Lipschitz, we have for all su�ciently large i � 1.

1

nip
�

k
X

j D1

c.T
ni

j ; T
ni

j �1 : : : T
ni

1 :x/ �
1

nip
� c.Si ; x/

>
1

ti
� c.Si ; x/ � �

>
1

ti
� c.
i ; x/ � K � � � �

> ˆ.g/ C .� � .K C 1/�/:

The above inequalities use sub-additivity, the fact that ni p=ti ! 1, the Lipschitz

property of c.�; x/, and the assumption (4.1) that we try to refute. Applying

Theorem 3.3 we have

lim
i�!1

1

nip
�

k
X

j D1

c.T
ni

j ; T
ni

j �1 : : : T
ni

1 :x/ D
1

p
� .�.T ab

k / C � � � C �.T ab
1 //:

However, by part (ii) of Proposition 3.1, one also has

1

p
� .�.T ab

k / C � � � C �.T ab
1 // < length�.�/ C � < ˆ.g/ C �:

This leads to a contradiction, due to our choice of � D �=.K C 3/. Thus (4.1) is

impossible.

4.2. The lower bound: c�.g/ � ˆ.g/. Let us now prove the inequality c�.g/ �

ˆ.g/. Fix g 2 G1, x 2 X0, and assume, towards contradiction, that there exists

� > 0 and sequences ti ! 1 and 
i 2 � so that

lim
i�!1

1

ti
� 
i D g while

1

ti
c.
i ; x/ < ˆ.g/ � �: (4.2)

We take a small � > 0 and an associated �nite set F � � as in condition (ii)

of Theorem A. Apply the following argument to each 
i from the sequence

satisfying (4.2).

Each 
i can be written as a product


i D ıi;si
: : : ıi;2ıi;1;

where ıi;j 2 F for all 1 � j � si and

si
X

j D1

c.ıi;j ; ıi;j �1 : : : ıi;1:x/ < .1 C �/ � c.
i ; x/:
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Consider the sequence of points

gi;j WD
1

ti
� ıi;j : : : ıi;1 .j D 1; : : : ; si /:

De�ne a piecewise d1-geodesic curve

�i W Œ0; 1��!G1

connecting e to 1
ti

� 
i D gi;si
via the points gi;j , which are to be visited at times

�i

� ci;1 C � � � C ci;j

ci;1 C � � � C ci;si

�

D gi;j ; where ci;j WD c.ıi;j ; ıi;r�1 : : : ıi;1:x/:

Between these times �i .�/ follows an appropriately rescaled g1-geodesic. So �i

traces in G1 the points associated to partial products representing a discrete path

from e to 
i , with time parameter chosen according to the ci;j -steps.

The bi-Lipschitz condition for c.�; x/ in terms of d (condition (i) in Theo-

rem A), implies that �i W Œ0; 1� ! G1 is a uniformly Lipschitz sequence of maps

with �i .0/ D e. Hence by Arzelà–Ascoli, upon passing to a subsequence, we may

assume that �i converge (uniformly) to a Lipschitz curve

�W Œ0; 1� �! G1; �.0/ D e; �.1/ D g:

Since we are working towards a contradiction to (4.2) which holds for sub-

sequences, we may assume that �i ! � without complicating our notations any

further.

With the Lipschitz curve � at hand and small � > 0, Proposition 3.1 provides

k 2 N, T1; : : : ; Tk 2 � and p 2 N that give �-good approximation for the curve

�: In particular, for large i � 1 and ni WD bti=pc one has

k
X

j D1

d1

� 1

nip
� .T

ni

j : : : T
ni

2 T
ni

1 /; �
�j

k

��

< �:

For each i 2 N, choose 0 D ri .0/ < ri .1/ < � � � < ri .k/ D si so that for

j D 1; : : : ; k:

ci;ri .j �1/C1 C � � � C ci;ri .j /

ci;1 C � � � C ci;si

�!
1

k
;

and write 
i D �i;k : : : �i;2�i;1 with �i;j WD ıi;ri .j / : : : ıi;ri .j �1/C1. Then

�i;j : : : �i;2�i;1 D ıi;ri .j / : : : ıi;2ıi;1 .j D 1; : : : ; k/:
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We have

�
�j

k

�

D lim
i�!1

�i

�j

k

�

D lim
i�!1

1

ni p
� �i;j : : : �i;2�i;1:

Thus for all large enough i :

k
X

j D1

d1

� 1

nip
� T

ni

j : : : T
ni

2 T
ni

1 ;
1

nip
� �i;j : : : �i;2�i;1

�

< �

and therefore for all large enough i :

k
X

j D1

1

nip
� d.T

ni

j : : : T
ni

2 T
ni

1 ; �i;j : : : �i;2�i;1/ < �:

We now apply Lemma 3.5 with

˛ D T
ni

j �1 : : : T
ni

1 ; � D T
ni

j ; ˇ D �i;j �1 : : : �i;1; � 0 D �i;j

to deduce that for all large enough i :

k
X

j D1

1

ni p
� jc.T

ni

j ; T
ni

j �1 : : : T
ni

1 :x/ � c.�i;j ; �i;j �1 : : : �i;1:x/j < 2K�:

For i � 1 we have

1

ti
� c.
i ; x/ >

ni p

.1 C �/ti
�

1

nip
�

si
X

rD1

c.ıi;r ; ıi;r�1 : : : ıi;1:x/

� .1 � �/ �
1

ni p
�

k
X

j D1

ri .j /
X

rDri .j �1/C1

c.ıi;r ; ıi;r�1 : : : ıi;1:x/

� .1 � �/ �
1

ni p
�

k
X

j D1

c.�i;j ; �i;j �1 : : : �i;1:x/

> .1 � �/ �
� 1

ni p
�

k
X

j D1

c.T
ni

j ; T
ni

j �1 : : : T
ni

1 :x/ � 2K�
�

using sub-additivity of c in the third inequality. Theorem 3.3 gives

lim
i�!1

1

nip
�

k
X

j D1

c.T
ni

j ; T
ni

j �1 : : : T
ni

1 :x/ D
1

p
.�.T ab

k / C � � � C �.T ab
1 //

> length�.�/ � �:
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Since � is only one of many possible admissible curves connecting �.0/ D e to

�.1/ D g (and most likely is sub-optimal in terms of the �-length), one has

length�.�/ � d�.e; g/ D ˆ.g/:

Therefore we deduce

lim inf
i�!1

1

ti
� c.
i ; x/ � .1 � �/ � .ˆ.g/ � .2K C 1/�/ :

A choice of small enough � > 0 contradicts (4.2). This proves the claimed

inequality

ˆ.g/ � c�.g/:

4.3. Proof of Theorem A. The results of the two previous subsections giving

c�.g/ � ˆ.g/ � c�.g/, combined with the trivial inequality c�.g/ � c�.g/, show

c�.g/ D c�.g/ D ˆ.g/:

Equivalently

lim
�&0

lim sup
t�!1

sup

²ˇ

ˇ

ˇ

ˇ

1

t
� c.
; x/ � ˆ.g/

ˇ

ˇ

ˇ

ˇ

W
1

t
� 
 2 B.g; �/

³

D 0: (4.3)

We need to prove that for m-a.e. x 2 X (or rather every x 2 X0) one has

for all � > 0 there exists R < 1 such that

j
 jS � R H) jc.
; x/ � ˆ.scl1 .
//j < � � j
 jS :

Indeed, if the claim were not true, we could �nd �0 > 0 and a sequence 
n 2 �

with j
njS ! 1, so that

jc.
n; x/ � ˆ.scl1 .
n//j � �0 � j
njS :

The sequence

gn WD
1

j
njS
� 
n

has

lim sup
n�!1

d1.gn; e/ � 1:

Hence ¹gnW n 2 Nº is bounded. Since balls in G1 are precompact, there is a

subsequence 
ni
converging to some g 2 G1 (in fact g 2 B.e; 1/). Denote

ti WD j
ni
jS . We note that

d1

� 1

ti
� 
ni

; ı 1
ti

.scl1.
ni
//
�

�! 0
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and therefore

lim
i�!1

1

ti
� ˆ.scl1.
ni

// D lim
i�!1

ˆ.ı 1
ti

.scl1.
ni
/// D ˆ

�

lim
i�!1

1

ti
� 
ni

�

D ˆ.g/:

Finally (4.3) implies

1

ti
jc.
ni

; x/ � ti � ˆ.g/j �! 0

contrary to the assumption. This proves Theorem A.

4.4. Proof of Theorem B. The main claim is that given any g; g0 2 G1 and

sequences ti ! 1, 
i ; 
 0
i 2 �, so that

lim
i�!1

1

ti
� 
i �! g and lim

i�!1

1

ti
� 
 0

i D g0 (4.4)

one necessarily has for every x 2 X0:

lim
i�!1

1

ti
� c.
 0

i

�1
i ; 
i :x/ D d�.g; g0/:

To show this we employ a variant on the upper bound argument §4.1 and on the

lower bound argument §4.2. In both of these arguments we use a �xed admissible

curve �0 connecting e to g in G1, concatenated with an appropriate curve �

connecting g to g0 in G1.

Denote by �1W Œ0; 2� ! G1 the curve that connects e to g0 via g:

�1.0/ D e; �1.1/ D g; �1.2/ D g0I �1.s C 1/ D �.s/:

Fix a small � > 0, and apply Proposition 3.1 to �1 to �nd

T1; : : : ; T2k 2 �; p 2 N;

so that
ˇ

ˇ

ˇ

ˇ

1

p
�

2k
X

j DkC1

�.T ab
j / � length�.�/

ˇ

ˇ

ˇ

ˇ

< �; (4.5)

while for all n � n0

k
X

j D1

d1

� 1

np
� T n

kCj : : : T n
2 T n

1 ; �
�j

k

��

< �: (4.6)



1342 M. Cantrell and A. Furman

Note that the last condition is a trivial consequence of the estimate on

k
X

j D1

d1

� 1

np
� T n

j : : : T n
2 T n

1 ; �1

�j

k

��

C

k
X

j D1

d1

� 1

np
� T n

kCj : : : T n
2 T n

1 ; �1

�j

k
C 1

��

;

while (4.5) can be obtained from approximating the �-lengths of �1 and �0 by

1

p
�

2k
X

j D1

�.T ab
j / and

1

p
�

k
X

j D1

�.T ab
j /

and the obvious relation

length�.�/ D length�.�1/ � length�.�0/:

Next, choosing � to be a �-geodesic connecting g to g0, and taking ni D bti=pc,

we get

lim
i�!1

d1

� 1

ni p
� 
i ; g

�

D lim
i�!1

d1

� 1

ni p
� 
 0

i ; g0
�

D 0

and

lim sup
i�!1

1

nip
� d.
i ; T

ni

k
: : : T

ni

1 / � �; lim sup
i�!1

1

nip
� d.
 0

i ; T
ni

2k
: : : T

ni

1 / � �:

Following the same argument as in §4.1 (using Lemma 3.5 and Theorem 3.3),

we have

lim sup
i�!1

1

ti
� c.
 0

i

�1
i ; 
i :x/

� lim sup
i�!1

1

nip
� c.T

ni

2k
: : : T

ni

kC1
; T

ni

k
: : : T

ni

1 :x/ C 2K�

� lim
i�!1

1

ni p
�

k
X

j D1

c.T
ni

kCj
; T

ni

kCj �1
: : : T

ni

1 :x/ C 2K�

D
1

p
�

k
X

j D1

�.T ab
kCj / C 2K�

< length�.�/ C .2K C 1/�

D d�.g; g0/ C .2K C 1/ � �:
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Since � > 0 was arbitrary, this shows the upper bound:

lim sup
i�!1

1

ti
� c.
 0

i

�1
i ; 
i :x/ � d�.g; g0/:

The lower bound,

lim inf
i�!1

1

ti
� c.
 0

i 

�1
i ; 
i :x/ � d�.g; g0/

is trivial if g D g0. Hence we assume g ¤ g0 which implies that j
 0
i


�1
i jS ! 1.

We now use the innerness assumption (corresponding to condition (ii) in Theo-

rem A). Fix an arbitrary small � > 0 and rewrite 
 0
i 


�1
i as a product of


 0
i 


�1
i D ıi;si

: : : ıi;1;

while
si
X

rD1

c.ıi;r ; ıi;r�1 : : : ıi;1
i :x/ < .1 C �/ � c.
 0
i


�1
i ; 
i :x/:

where ıi;j belong to a �xed �nite set F � � (depending on � and x 2 X0). One

then proceeds as in §4.2 to construct a uniformly Lipschitz sequence of piecewise

geodesic curves connecting g to � g0, and to use Arzelà–Ascoli to pass to a

convergent subsequence that produces a Lipschitz curve

� W Œ0; 1� �! G1; �.0/ D g; �.1/ D g0:

We are going to concatenate �0 with � to get �1W Œ0; 2� ! G1 as before. The long

products 
 0
i


�1
i D ıi;si

: : : ıi;1 can be sub-partitioned so that


 0
i 


�1
i D �i;k : : : �i;2�i;1

while for j D 1; : : : ; k one has

�.
j

k
/ D �1

�k C j

k

�

D lim
i�!1

1

ti
� .�i;j : : : �i;1
i /:

We now invoke the T1; : : : ; T2k and p 2 N satisfying (4.5) and (4.6). One has

lim sup
i�!1

k
X

j D1

1

nip
� d.T

ni

kCj
: : : T

ni

1 
i ; �i;j : : : �i;1
i / � �

The sub-additivity gives

k
X

j D1

c.�i;j ; �i;j �1 : : : �i;2�i;1
i :x/ �

si
X

rD1

c.ıi;r ; ıi;r�1 : : : ıi;1
i :x/:
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Combining these facts, one shows that for a subsequence of the given ti ; 
i ; 
 0
i one

has

lim inf
i�!1

1

ti
� c.
 0

i 

�1
i ; 
i :x/

� lim inf
i�!1

1

1 C �
�

1

nip

k
X

j D1

c.�i;j ; �i;j �1 : : : �i;2�i;1; 
i :x/

� .1 � �/ �
�

lim inf
i�!1

1

nip
�

k
X

j D1

c.T
ni

kCj
; T

ni

kCj �1
: : : T

ni

1 :x/ � 2K�
�

D .1 � �/ �
� 1

p
� .�.T ab

2k / C � � � C �.T ab
kC1// � 2K�

�

� .1 � �/ � .length�.�/ � .2K C 1/�/

� .1 � �/ � .d�.g; g0/ � .2K C 1/�/:

Since � > 0 is arbitrary, and any subsequence of ti ; 
i ; 
 0
i contains a sub-sub-

sequence satisfying the above, it follows

lim inf
i�!1

1

ti
� c.
 0

i

�1
i ; 
i :x/ � d�.g; g0/:

In view of the lim sup inequality, the lower bound is also proven. As in the proof

of Theorem A one can easily deduce that for m-a.e. x 2 X for every � > 0 there

is R < 1 so that for j
 jS ; j
 0jS > R one has

jc.
 0
�1; 
:x/ � d�.scl1 .
/ ; scl1
�


 0
�

/j < � � max.j
 jS ; j
 0jS /:

This completes the proof of Theorem B.
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