MOSTOW-MARGULIS RIGIDITY WITH
LOCALLY COMPACT TARGETS

ALEX FURMAN

ABSTRACT. Let I' be a lattice in a simple higher rank Lie group G. We describe all
locally compact (not necessarily Lie) groups H in which T' can be embedded as a
lattice. For lattices I" in rank one groups G (with the only exception of non-uniform
lattices in G ~ SLy(R), which are virtually free groups) we give a similar description
of all possible locally compact groups H, in which I" can be embedded as a uniform
lattice.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Throughout this paper we use the following terminology: (semi)simple Lie group
stands for (semi)simple, connected real Lie group with finite center and no non-trivial
compact factors. If (semi)simple Lie groups G, G' are locally isomorphic we write
G ~ G'. Locally compact groups are assumed to be second countable, but otherwise
may be very general. A countable subgroup I' in a locally compact group G is said to
form a lattice if it is discrete and G/T" carries a finite G-invariant measure (note that
any locally compact group which has a lattice is necessarily unimodular). A lattice
is said to be uniform if G/I' is compact. An embedding 7 : '—G of a countable
group in a locally compact group G is said to be a lattice embedding (resp. uniform
lattice embedding) if w(T") forms a lattice (resp. uniform lattice) in G. A lattice I' in
a semisimple Lie group G = IIG; is called irreducible if its projection on each of the
simple factors G; is dense.

The starting point of our discussion is Mostow’s rigidity:

Strong Rigidity Theorem (Mostow, Prasad, Margulis). Let G and H be semisim-
ple Lie groups, where G % SLo(R). Let I' C G be an irreducible lattice and 7 :
['—H be a lattice embedding. Then G ~ H and there exists an isomorphism
7 : AdG—Ad H such that the following diagram commutes:

r — =)
J,Ad lAd
AdG —— AdH

Originally, Mostow proved this remarkable theorem for uniform lattices [Mo2].
Mostow’s approach was extended by Prasad [Pr] to encompass non-uniform lattices
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in rank one groups (and Q-rank one lattices). Finally, the remaining cases of non-
uniform (irreducible) lattices in higher rank (semi)simple Lie groups were obtained
as one of the corollaries of Margulis’ superrigidity [Ma).

Motivated by the strong rigidity theorem above, we consider the following general

Problem. Given an (irreducible) lattice I' in a (semi)simple Lie group G, classi-
fy all locally compact groups H which admit lattice embedding, or uniform lattice
embedding, of I'.

Consider the following examples:

Example 1.1. Let " be a torsion free subgroup of finite index in SL,(Z). The
following locally compact groups admit (non-uniform) lattice embeddings of I': G =
SL,(R); AdG = PSL,(R); Aut G; groups of the form G’ x K where K is a compact
group and G’ is as above; skew-products Aut G X oy ¢ K where Aut G acts through
the finite group Out G on K; “almost direct” products: H = (G' x K)/C, where C
is a finite abelian group embedded diagonally in the centers of G’ as above and the
center of a compact K. An example of the latter type is H = (SL,(R) xSO,,)/£1 x 1,
for even n.

Example 1.2. Let I' be as above. Obviously it has a uniform lattice embedding
(the identity map) in itself; in any discrete I" D T with [I" : T'] < oo (for example
in I = SL,(Z) or in PSL,(Z)); as well as in direct products [' x K where K is
any compact group; or in skew products with compact groups, such as SL,(Z) x T",
where T™ = R"/Z" is the torus. I' also has uniform lattice embeddings in “almost
skew-products”, described by an exact sequence

1—mF—I"x K—H—1

where I'' O I (with [[' : I'] < c0) acts by automorphisms on a compact group K, and
F is a finite abelian group diagonally embedded in the center of [V and as a normal
subgroup in K which is pointwise fixed by the I’-action.

Roughly speaking, the locally compact groups H in Example 1.1 are built from the
ambient Lie group G, while the groups H in Example 1.2 are built from the lattice
itself. Non uniform lattices in SLo(R) (i.e. virtually free groups) admit uniform lattice
embeddings of a completely different nature:

Example 1.3. Finitely generated non-abelian free groups I' = Fj, form (non-uniform)
lattices in SLy(R). These groups have uniform lattice embeddings in SLy(Q,) and in
Aut (T) - the group of automorphisms of the regular 2k-tree 7. Taking direct and
skew-products with compact groups one obtains additional examples.

The last example suggests the following general

Construction 1.4. Let I' be a finitely generated group and let Xr 5 denote the
(unlabeled) Cayley graph of I" with respect to some finite set 3 of generators. Then
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I' has a uniform lattice embedding in the totally disconnected locally compact group
Aut (Xt ) of all automorphisms of this graph. (Indeed, I' acts simply transitively
on the vertices of Xr x5, while the stabilizer of a vertex is a compact subgroup in
Aut (XI',E))-

We assert that for lattices in higher rank simple Lie groups the only lattice embed-
dings are such as the ones described in Examples 1.1 and 1.2:

Theorem A. Let T" be a lattice in a simple higher rank Lie group G, let H be some
locally compact group, which admits a lattice embedding m : '—H of I'.  Then
A =7 (T) is contained in a closed subgroup Hy of finite index in H, where Hy has one
of the following forms:

(1) Hy is a central extension of locally compact groups
1—C—Hy—">AdG x K—1

where C is a compact abelian group and K is a compact group. More precisely,
Hy =2 (G'x K")/C, where the compact abelian group C' is diagonally embedded in
the centers of a connected locally compact G' with G'/C =2 Ad G, and a compact
group K' with K'/C = K. If the universal covering G of G has finite center,
one can take C to be a finite abelian group, in which case G' is a simple Lie
group locally isomorphic to G.

(2) Hy admits an ezact sequence

1—F—I'x K—Hy—>1

where I' acts by automorphisms on a compact group K, and F is a finite abelian
group diagonally embedded in the center of I' and as a normal subgroup of K,

o~

which is elementwise fized by the I'-action. If I has trivial center, then Hy =
I'x K.

Moreover, denoting by ® : H—Ad G the (continuous) homomorphism

(1) @:Hy-5AdG x KEZS5AAG , or

(2) @:Hy—AdD x (K/F)XZ5AdT C AdG
corresponding to the above cases (here pry is the projection on the first factor) the
following diagram commutes

r —s A

JAd Jc (1.1)
AdG +2— H,
For uniform lattice embeddings, we have a similar result for lattices in other

semisimple Lie groups:

Theorem B. Let I be an irreducible lattice in a semisimple Lie group G # SLy(R)
and H be some locally compact group which admits a uniform lattice embedding m :
I'—H of I'. Then the conclusions of Theorem A hold.
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For uniform lattices in G ~ SLy(R) similar results hold, except for the commuta-
tivity of the diagram (1.1) in case (1). More precisely:

Theorem C. Let T be a uniform lattice in G ~ SLy(R) and let H be a locally compact
group, which admits a uniform lattice embedding m: '—H of I'. Then A = w(T") is
contained in a closed subgroup Hy of finite index in H, where Hy has one of the forms
(1) or (2) as in Theorem A. Furthermore, if ® : H)—Ad G denotes the (continuous)
homomorphism as in Theorem A, then ®(A) =2 AdT.

In view of the Construction 1.4, one can deduce from Theorems B and C the
following

Corollary 1.5. Let ' be an irreducible lattice in a semisimple Lie group G. In case
of G ~ SLy(R) assume that T' is uniform in G. Let ¥ be some finite generating set
forI', and let X5, denote the corresponding undirected unlabeled Cayley graph. Then
Xr,x admits at most finite number of outer automorphisms, i.e.

[Aut (XI‘,E) : F] < o0

Moreover, the above index is bounded by some constant i(I'), which does not depend
on the chosen generating set X for a given I'. If ' C G C Aut (G) is not contained
in a larger lattice T'y C Aut (Q) then i(T') = 1.

We refer to the phenomenon described in Theorems A and B as Mostow-Margulis
rigidity with locally compact targets. The remaining problem (corresponding to
Prasad’s result), of describing locally compact groups H which admit a non-uniform
lattice embedding of a rank one lattice I', remains open.

Remarks 1.6. (a) Another related problem, posed by Zimmer, is “superrigidity
with locally compact targets”, namely classification of locally compact groups
H, for which there exists a homomorphism 7 : T—H with the image A = 7(T")
being sufficiently “dense” in H, where the notion of “density” should replace
Zariski density in semisimple Lie groups. Theorem A applies to the situation
where 7(I") forms a lattice in H. Indeed, Margulis’ Normal Subgroup Theorem
states that either w(I') is finite (so that H is compact), or 7 factors through
an embedding ©' : I'—H where I is a lattice with AdTY = AdT, to which
Theorem A applies.

(b) In principle, using structure Theorems A (respectively B), one can also classify
not only the targets H of (uniform) lattice embeddings of I', but rather (uniform)
lattice embeddings 7 : '— H themselves, up to Aut H. We have not addressed
this question here.

(c) The proofs of Theorems A and B give effective bounds on the index [H : Hy| in
terms of |Out (G)| < oo in case (1), and the index of AdT" in a maximal lattice
[, in Aut (Ad G), containing Ad T in case (2). The latter gives the bound i(T")
on the index [Aut (Xry) : I] in Corollary 1.5.

(d) In Section 3.6 we show that the description of Hy in case (1) of Theorem C, as
an almost direct product Hy = (G' x K)/C over a compact abelian center C,



MOSTOW-MARGULIS RIGIDITY WITH LOCALLY COMPACT TARGETS 5

cannot be replaced by an almost direct product over a finite abelian center C'
(as it is claimed in Theorems A and B for the case where the universal covering
G has a finite center). However, it is unclear to the author, whether compact
center C' can be replaced by a finite center in case (1) of Theorems A, B.

(e) Theorem C leaves open the problem of the description of locally compact groups
H which contain a uniform lattice I', where I' C G ~ SLy(R) is a non-uniform
lattice. Such groups I' contain a finitely generated non-abelian free group Fj
as a finite index subgroup. So the question reduces to a description of locally
compact groups H which contain Fj is a cocompact lattice. As one of the
corollaries of their study of quasi-actions on trees Lee Mosher, Michah Sageev
and Kevin Whyte [MSW] recently proved that such a group H admits a short
exact sequence {1} - K — H — L — {1}, where K is a compact group and
L C Aut (T) is a closed cocompact subgroup of isometries of a tree 7" which is
quasi-isometric to a regular tree (and to Fj).

About the proofs. Having very similar appearance, Theorems A and B, C have
quite different proofs. The proof of Theorem A uses measure-theoretic aspects of
(semi)simple Lie group actions, such as Zimmer’s superrigidity for cocycles (sub-
section 2.1) which is a generalization of Margulis’ superrigidity, and an argument
(subsection 2.2), which has a lot in common with the smoothness of algebraic actions
on spaces of measures. On the other hand, the proof of Theorem B (and that of C)
is based on, by now well developed, theory of quasi-isometries, which has Mostow’s
proof of strong rigidity as one of its origins. The proof of Theorem C also uses some
special features of the group of homeomorphisms of the circle.

Acknowledgments. Many thanks to Benson Farb, Alex Eskin and Rich Schwartz
for many inspiring discussions on geometry and rigidity of lattices, to Etienne Ghys
for introducing me to Homeo (S?), and to Marc Bourdon for the elegant argument 3.8.
I would also like to thank Anatole Katok for his support and encouragement during
the year that I spent at the Pennsylvania State University, being a Post Doctoral
Fellow at the Center for Dynamical Systems. Part of this work was done when I
enjoyed the hospitality of the University of Bielefeld, Germany.

2. PROOF OF THEOREM A

Outline of the proof. The essential idea of the proof is to establish a homomor-
phism & : H—Aut (Ad G), for which the following diagram commutes:

r —" 5 A
lAd lc (2.1)
Aut (AdG) «—— H

This is done in two steps:
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e Using superrigidity for measurable cocycles, a measurable bi-I'-equivariant map
® : H—Aut (Ad G), satisfying (2.1), is constructed (subsection 2.1).
e It is proved that any such bi-I'-equivariant measurable map coincides a.e. with
a continuous homomorphism (subsection 2.2).
The image ®(H) C Aut (Ad G) is shown either to contain Ad G or to form a lattice
I, O AdT in Aut (AdG), in which case [[', : '] < oo (subsection 2.3), while the
kernel K = Ker(®) is a compact normal subgroup in H. Passing to the finite index
subgroup Hy := ® '(AdG) or Hy := ® '(AdI), descriptions (1) or (2) are obtained
in subsection 2.4.

2.1. Construction of a measurable equivariant map ® : H — Aut (AdG).

Theorem 2.1. There exists a unique measurable map ® : H — Aut (Ad G) such that

®(m(n) h7(72)) = (Adm) (®(h)) (Ad ) (2.2)
for every v1,72 € " and a.e. h € H.

The group structure of H is immaterial for this statement. It holds whenever H
is an (infinite) measure space with two commuting, measure preserving, free, finite
covolume actions of a higher rank lattice I' (here the actions are from the left and
from the right). This was proved in [F1] Theorem 4.1. For the sake of completeness
we give a

Sketch of the proof. Consider the finite measure Lebesgue space H/A with the
measure preserving (transitive) left H-action on it. Choose a (Lebesgue) measur-
able cross section s : H/A—H for the natural projection H— H/A, and define a
measurable cocycle

ap : H x (H/A)—A, by ag(hi, hA) := s(hihA) ™ hy s(hA)
Let a: ' x (H/A)—AdT' C Ad G be the measurable cocycle, defined by
a(y, hA) == Ad o7 (ap(m(y), hA))

Working separately on each of the I'-ergodic components, one checks that « is Zariski
dense in Ad G ([F1] Lemma 4.2, see also [Zi] p. 99). At this point we use the assump-
tion that G is a simple Lie group of higher rank to apply the superrigidity for cocycles
theorem ([Zi] 5.2.5), which gives an existence of a measurable ¢ : H/A—Ad G and
a homomorphism p : I' = Ad G such that

a(y, hA) = ¢(m(y)hA) " p(y)p(hA)

In the above formula, p(7) and ¢(hA) can be replaced by g~ 'p(7) g and g=' ¢(hA)
for any g € AdG. Allowing ¢ to take values in Aut (AdG) D Ad G (which enables
to use g € Aut g), and using Margulis’ superrigidity ([Ma]), one can always assume
that p(v) = Ad~. Fixing p this way, the map ¢ turns out to be uniquely determined
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(Remark 2.4.(a)). Now one reassembles the definition of ¢ on the ergodic compo-
nents to a single, still measurable, map ¢ : H/A—Aut (AdG). Extending ¢ to
¢ : H—Aut (Ad G) in a I'-equivariant (from the right) way, namely by

®(h) := ¢(hA) Ad (s(hA) 'h)
one verifies that @ satisfies the relation (2.2). O

Remark 2.2. The above argument is the only place in the proof, where the assump-
tion that G is a higher rank simple Lie group, is used. To apply this construction to
an irreducible lattice I' in a higher rank semisimple G = I1G;, one needs to know that
each of the simple factors G; acts ergodically on the skew-product G/I" X X, where X
is a A-ergodic component of H/A. This would follow, for example, if one knew that
A is mixing on each of the A-ergodic components of H/A.

2.2. Equivariant measurable map & is a continuous homomorphism. The
following Theorem is formulated for our particular setup, but it might have an inde-
pendent interest:

Theorem 2.3. Let G be a semisimple Lie group, H a locally compact group, and
A C H a lattice in H. Assume that there exists a homomorphism p : A—Ad G with
Zariski dense image, and a measurable map ® : H—Aut (Ad G) which satisfies

(A1 hA2) = p(A1) @(h) p(A2)
for all \;, s € A and myg-a.e. h € H. Then the map ® coincides myg-a.e. with
a continuous homomorphism ®y : H— Aut (Ad G) with ®o|pn = p, the image L =

®o(H) is a closed subgroup of Aut (Ad G) for which the pushforward measure ®,(mpg)
gives the Haar measure my, on L.

Proof. Consider the measurable function F' : H x H—Aut (Ad G) defined by
F(hi, hy) := ®(hy) ®(h{ hy) ®(hy) ™!
Observe that for any A € A and a.e. hy, hy one has

F(hi\, he) = F(hy,ho)
F(hl, hg)\) = F(hl, hg) (23)
F(/\ hl, A hg) = p(/\) F(hl, hg) p(/\)_l

Hence F' descends to a measurable function f on a probability space X := H/AxH/A.
This f satisfies
FON @) = p(A) f(2)p(A)

where A : z — X -z denotes the measure preserving diagonal left A-action on H/A x
H/A.

Let p := f.(mm/a X mp/a) denote the push forward measure on Aut (AdG). Then
i is a probability measure which is invariant under conjugation by elements of the
Zariski dense subgroup p(A). We claim that such p has to be concentrated on the
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identity: p = d.. Indeed, it is well known that if g is a regular semisimple element of
AdG C Aut (AdG), and ¢’ € Aut (Ad G) does not commute with g, then ¢g"¢'g™" —
oo for n — oo or n — —oo. Poincaré recurrence (for p under conjugation by g)
implies that p is supported on the centralizer of g. Since regular elements of p(A) are
Zariski dense in Ad G, we conclude that p is supported on the center of Aut (Ad G),
which is trivial.

Hence almost everywhere F'(hq, he) = €, so that

O(hT'hy) = B(hy)"'®(hy),  ace.on H x H

This means that & is an a.e. homomorphism and ®(H) is an a.e. group with respect to
the pushforward measure m, = ®,(my). This is known to imply (cf. [Zi] Appendix
B) that m, is the Haar measure my of a closed subgroup L C Aut(AdG) and
®(h) = @y(h) a.e. where &y : H—L C Aut (Ad G) is a continuous homomorphism.
In particular, for a fixed A € A and a.e. h € H:

p(A) @(h) = ®(Ah) = Ro(Ah) = Ro(A) Po(h) = Po(A) ()
so that ®y(A) = p(A) for A € A. O

Remarks 2.4. (a) Under the conditions of Theorem 2.3 with a fixed p : A—T
there exists at most one, up to mg-null sets, bi-equivariant measurable map
®, and in particular a unique extension ®, of p. The proof is similar to the
above one: if ®;, Py are two bi-equivariant measurable maps, then F'(h) :=
@, (h) ®2(h)~! has properties similar to (2.3), so that F,(my/a) is a probability
measure on Aut (Ad G) which is invariant under the conjugation by g € p(A),
and hence is §,.

(b) Consider the following example: let G = H = PSLy(R), A; be an infinite cyclic
subgroup of the diagonal group, A C G be a uniform lattice (i.e. a surface
group) and p = Id. The A; = Z-action on G/A, is a (discrete time) map
of the geodesic flow on the unit tangent bundle SM to the Riemann surface
M = K\G/A; equipped with the standard measure. Such an action is measur-
ably isomorphic to a Bernoulli shift, which is known to have a vast family of
measurable automorphisms. These automorphisms give rise to many measurable
maps ¢ : G—G which satisfy a.e. on G:

D(A1gAa) = A D(g) Ao, (M € Ay, Ag € Ay)

This example shows that the conclusion of Theorem 2.3 does not follow just
from the ergodicity of the p(A;) x p(Az)-action on G.

Applying Theorem 2.3 with p = 7! to the measurable map ® : H—Aut (Ad G),
constructed in Theorem 2.1, we conclude that ® (possibly, after an adjustment on a
null set) is a continuous homomorphism satisfying

Por=Ad :I' — AdT' C AdG C Aut (AdG) (2.4)
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Hereafter ® denotes this continuous homomorphism.

2.3. The Image and the Kernel of & : H — Aut (AdG). Since AdT is Zariski
dense in Ad G the connected component of the closed subgroup ®(H) C Aut (Ad G),
which contains AdT is either Ad G, or trivial. In the former case Ad G has finite
index in ®(H) (recall that [Aut (AdG) : AdG] < o), and in the latter case ®(H)
is a discrete group containing Ad I, necessarily as a finite index subgroup. We shall
now restrict our attention to the closed subgroup Hy C H of finite index, defined by
Hy := ®'(AdG) or Hy := ®7!(AdT), corresponding to the above cases. Note also
that (2.4) shows that A C Hj.

Next we claim that the kernel K = Ker(®) < H, is compact. First consider
the case of ®(Hy) = AdG. Let FF C AdG be a measurable subset which forms
an Ad '-fundamental domain. Observe that the equivariance of ® implies that E :=
& !(F) forms a A-fundamental domain in Hy, and we can normalize the Haar measure
mpy, (and hence m,) so that my,(E) = m,(F) = 1. Disintegration of mpy,|g (and
then all of mpy,) with respect to m.|p (respectively m,) gives a family of probability
measures {4, } gead ¢ supported on the fibers K, := ®~'({g}) which are K-cosets. The
uniqueness of the Haar measures (normalized as above) as (left) invariant measures,
together with the uniqueness of the disintegration procedure, give for every h € H
and m,-a.e. ¢ € AdG:

hpg = pan)g
In particular for each k¥ € K and m,-a.e. g, one has k 1y = 14, and, by a standard
Fubini argument, one concludes that pu. is a left K-invariant probability measure on
K, ie. K is compact.

The case of ®(Hy) = AdT is even simpler: the measure on the fiver K = ®~1({eaqr})
is finite and K-invariant, so K is compact.

2.4. The structure of H,. By now we have shown that, given 7 : '—A C H,
there exists a (unique) continuous homomorphism ® : H—Aut (Ad G) satisfying
(2.1). Moreover, Hy is described either by the exact sequence

1— K —Hy—Ad G—1 (2.5)
or by the exact sequence

1—K—sHy—sAdT—1 (2.6)
In both cases K denotes a compact group.
Case (1): ®(Hy) = AdG.

Theorem 2.5. Suppose that a locally compact H admits an exact sequence of con-
tinuous homomorphisms

1—>K—>Hi>L—>1
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where K is a compact normal subgroup of H and L is a connected group. Then H
contains a closed normal connected subgroup L', which centralizes K, and forms a
central extension of L by a compact abelian group A := L' N K:

1—A—s L' 251 —1

The group H is then described by the exact sequence

1A x K—sH—51

where j(a) := (a,—a) is a diagonal embedding of the compact abelian A in the centers
of L' and K.

Proof. Let us denote by Cy(K) the centralizer of K in H, i.e.
Cu(K):={he H|hk =1Vke K}

Cyu(K) is a closed normal subgroup of H. We claim that H = K - Cy(K).

Let us assume first that K has a faithful finite dimensional representation, i.e.
it is a subgroup of some U(n). In this case Out K is known to be discrete. The
conjugations h : k — h~'k h gives a continuous homomorphism

t: H—Aut K which descends to j: L—Out K

Since L is connected, this j must be trivial, so i(H) = i(K) = Inn K C Aut K. Note
that i(h) = 1 iff A lies in the centralizer Cy(K) of K in H. Hence H = K - Cy(K)
as asserted.

Now consider the general case of a compact K. Let m € K be an irreducible
(unitary) K-representation. The H-action on K moves 7 to 7" € K defined by

(k) :=n(h"'kh) (k€ K, he H, 7 € K)

The corresponding continuous H-action on the characters x,(k) = Trn(k) is trivial
on K, and therefore descends to an action of L. Since {x},.z are orthogonal, the
latter action of the connected group L is trivial. Thus x;» = X, implying 7" ~ 7.
Hence Ker(7) is normal not only in K but also in H.

Let us enumerate by 7;, 7 = 0,1, ... all the irreducible K-representations and form
the increasing sequence of finite-dimensional unitary K-representations

On = Di_oTi
Since Ker(o,) =, Ker(m;) is a closed normal subgroup of H, the exact sequence of
(continuous homomorphisms)
l—K—H—L—1

descends to the exact sequence

1—K,—H,—L—1
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where K,, = K/Ker(o,) and H, = H/Ker(o,). The discussion of the finite dimen-
sional case above yields that H, = K, - Cy, (K,). This means that given a fixed
element h € H we can find k,, € K and z, € H so that

h=kyz, and  Vk € K : [z,,k] € Ker(oy,)

Passing to a subsequence n;, we can assume that k,, — k. € K and hence z,, = z, =
hk;' € H. Since Ker(c,,) form a decreasing sequence of compact subsets, we have

h =k, z and Vke K : [z,k] € Ker(oy,,), Vi

Recall that {m,}, separate points of K, and so do {0y, }:, hence [, Ker(o,,) = {1}
and therefore z, € Cy(K). This shows that H = K - Cy(K).

Now let C' denote the center of K, i.e. C = K NCyx(K). Observe that Cy(K) is a
central extension of L by C":

L=H/K=K-Cy(K)/K = Cy(K)/KNCy(K) = Cy(K)/C

Taking L' to be the connected component of Cy(K) and A := L'N K one obtains the
assertion of the Theorem. O

Applying Theorem 2.5 to the sequence (2.5) one obtains the first assertion of The-
orem A, case (1). In the case of G with a finite universal covering G, the description
of Hy as (G' x K')/C where a compact C is diagonally embedded in the centers of
G' and K', can be reduced to a finite C, using the following:

Lemma 2.6. Let G' be a locally compact group which is a (topological) central ex-
tension

1—C—L-25G—1 (2.7)

of a semisimple Lie group G by a compact abelian group C. Assume that the center of
G is trivial, and the center Z of its universal covering G is finite. Then there ezists a
closed connected subgroup G' C L with a finite center Z' = G' N C, so that the finite
Covering

1— 7' —G'25G—1
is a local isomorphism of the semisimple Lie groups G' ~ G.

Proof. First consider the situation, where C'is totally disconnected. Then (2.7) is a
fiber bundle with a totally disconnected fiber C', over the base GG which is a connected
manifold. Hence any point of G can be connected by a path in G, starting at eg;
such path has a unique lifting to a path in L, starting at e;; while homotopic paths
in G lift to homotopic paths in L. Define G’ to be the path-connected component of
the identity ey, in L. Then G' N C is a homomorphic image of 7, (G, e¢) = Z which
is finite. Hence G’ is a finite covering of G. It is closed in L, since the covering map
ple : G'—@ is finite to one.

Next consider the general case of a compact C'. The connected component Cj of
the identity in C, is a closed (compact) subgroup of the center of L. Dividing (2.7)
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by Cjy, one arrives in the situation discussed above, in which case L/Cj contains a
closed connected finite covering Gf, of G. Let L' C L be the preimage of G, C L/C.
It is a closed connected subgroup in L, which is a topological central extension

1—Co— L' 5G)—1
of the semisimple Lie group G by a connected compact group Cp. This central
extension is an inverse limit of central extensions of Lie groups
1—Con— L 255Gl —1

where Cy,, are finite dimensional tori. Locally, these extensions are trivial, since the
second cohomology H?(Lie(G}), R?) vanishes. Hence L! contains a closed subgroup
G, for which pl, : G|, — G} is a finite covering. Since the degree of this covering is
bounded by |Z| < oo, the subgroups Gj, stabilize (in the sense that Gj,, ,—G7, is
one-to-one for large n), so that the limit group L' contains a closed subgroup G’ for
which p' : G'— G is a finite covering. O

This completes the proof of Theorem A for Case (1).
Case (2): ®(Hy) = AdTI'. The compact group K is normal in Hy D A =T, so T
acts on K by automorphisms:
vk k7, where k7 :=m(y) tkw(y)
The corresponding skew product I' X K maps homomorphically into Hy by
p:I'x K—H, defined by p(v,k) :=n(y) -k

Since the homomorphism
I x K-25Hy—>+AdT

coincides with the natural homomorphism

I'x K—sT24%AdT

it follows that p is onto, and that Z = Ker(p) consists of elements z = (v,, k,) with
7, € Ker(Ad : T—AdT) - the finite abelian center of T', while 7(y,) = k;' € ANK.
Observe that

o K;:={k, € K|z¢€ Z} is a finite abelian group, isomorphic to Z;
e K7 is normal in K, because {1} x K and Z are normal in I x K, so that

{I}xK;={1} xK)NnZ aT'x K
e for each v € T, one has y~'v,7 = v,, so that k] = k,, for each z € Z.

Hence H, is described by the exact sequence

1— 72350 x K23y Hy—s1



MOSTOW-MARGULIS RIGIDITY WITH LOCALLY COMPACT TARGETS 13

with j(z) = (7., k), where z — 7, is an embedding of Z in the finite abelian center
of I'; and Kz = {k,},cz forms a normal subgroup in K whose elements are fixed by
the action of I'.

Clearly, if I' has trivial center, then Hj is just isomorphic to the skew-product
Hy=2I'x K.

The proof of Theorem A is completed. 0

3. PROOF OoF THEOREMS B AND C

Outline of the proof. As in the proof of Theorem A, the essential step is to con-
struct a continuous homomorphism ® : H—Aut (AdG). If G % SLy(R) the con-
structed @ will satisfy (2.1); while in the case G ~ SLy(R) we shall only obtain
that

dorm:T'—Aut (AdG)

takes I' to a lattice I C PSLy(R) C Aut (Ad G), isomorphic to AdT.

The homomorphism @ is constructed using the quasi-isometry groups. For any
finitely generated group I, there is an associated quasi-isometry group QI (I"), which
we shall consider as an abstract group with no topology. The quasi-isometry group
has the property that any uniform lattice embedding 7 of I' in a locally compact
group H, gives rise to a homomorphism (of abstract groups) ®, : H—QI(T") (see
subsection 3.2).

Consider the case where ' is a uniform lattice in a simple Lie group G of rank
one. Then I is quasi-isometric to the symmetric space X = G/K, which has strictly
negative Riemannian curvature (X is real, complex, quaternionic hyperbolic space or
the Cayley plane), in which case there exists an embedding

B : QI(I')—Homeo (0X)

in the group of homeomorphisms of the boundary 0X of X. This gives an abstract
homomorphism of groups ¥, : H—Homeo (0X)

U, : H25Q1 (M) -sHomeo (9X)

which turns out to be continuous (Theorem 3.5). The given uniform lattice embedding
o : I'—G gives rise to the homomorphism of abstract groups

®, : Aut (AdG)—QI(AdT) = QI(T)
and to another continuous homomorphism
W, : Aut (Ad G)&QI (Ad F)i)Homeo (0X)

which is known to form a continuous isomorphic embedding with a continuous inverse
1. The following is crucial
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Claim 3.1. The images of V.(H) and ¥,(Aut (Ad G)) in Homeo (0X), are locally
compact groups, which contain V. (A) and V,(AdT) as uniform lattices. From the
construction one has

Ur(m(7)) = ¥o(Ady),  (yel)
Moreover, if G % SLy(R) then V. (H) C ¥,(Aut (AdG)) and
®:=V.'oV, : H—Homeo (0X)—Aut (AdG)

is a continuous homomorphism, satisfying (1.1).
In the case of G ~ SLy(R), there exists an f € Homeo (0X) such that

fTHUR(H) f C ¥ (Aut (AdG))
and the continuous homomorphisms
®:=V,0 f 1, f: H—Aut (AdQG)

maps A = w(T) onto a lattice P(A) C Aut (AdG), which is isomorphic (but not
necessarily conjugate) to AdT.

From this claim the proof of Theorems B and C can be completed as in subsections
2.3 and 2.4.

3.1. Quasi-isometries. Recall the notion of quasi-isometries (see [Gr|, [GP] for de-
tailed discussions): a map g : X;— X, between proper metric spaces (Xi,d;) and
(Xs,dy) is said to be a quasi-isometric embedding if there exist constants M, A such
that for all z,y € X;:
1

27 G(@y) = A < dale(2), ay)) < M -di(z,y) + A (3.1)
Such ¢ can be called an (M, A)-quasi-isometric embedding to emphasize that (3.1) is
satisfied for specific M and A.

A quasi-isometric embedding ¢ : X;— X5 with an image ¢(X;) which is within
bounded distance from all of X5, is called a quasi-isometry, and the spaces (X1, d;),
(X2, dy) are said to be quasi-isometric. Two quasi-isometries (or quasi-isometric em-
beddings) ¢, ¢’ : X;— X, are said to be equivalent (notation: g ~ ¢') if the distance

D(g,q') = sup{dz(q(z),q (2)) | = € X1}

is finite. Now consider the collection of all self quasi-isometries of a fixed proper met-
ric space (X,d). It forms a semi-group with respect to composition (which respects
the equivalence relation ~). Modulo this relation, the semi-group of actual quasi-
isometries becomes a group, called the quasi-isometry group of (X, d) and is denoted
by QI(X,d). Quasi-isometric spaces have isomorphic quasi-isometry groups. There-
fore, for a finitely generated group I' it makes sense to talk about its quasi-isometry
group QI (T") without specifying any particular left invariant word metric. Note also,
that the isometric left I'-action on itself (with respect to some/any left-invariant word
metric) defines a natural homomorphism

p: IT—QI(I)
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3.2. Uniform lattice embeddings and quasi-isometries. We claim that the no-
tions of quasi-isometries appear naturally in our situation, where a given finitely
generated group I' has an embedding 7 : I' — H as a uniform lattice in an (un-
known) locally compact group H. There are two different natural constructions both
giving rise to a homomorphism (of abstract groups)

H—QI(T)

the restriction of which to I' coincides with the standard homomorphism p : I' —
QI (T'). The first of the two is the following:

Construction 3.2. Choose some open subset £ C H with compact closure, such
that H = U,erm(y)E, and fix some (typically discontinuous) function p : H—T,
satisfying h € w(p(h)) F for h € H. With this choice of E and p define a family of
maps {gn : [—T}xem by the rule ¢,() := p(hn(vy)). If E is a neighborhood of the
unit e, we can choose p with p(7(7y)) = v, so that

() =7 (3-2)
Lemma 3.3. Let E,p and {qn}ren be as above. Then

(a) Each q : T'—T is a quasi-isometry of T' and its equivalence class [g,] € QI (T)
depends only on h € H (and not on the choice of E and p).

(b) The map @, : H—QI ("), given by ®.(h) = [qu], is a homomorphism of (ab-
stract) groups, such that the composition

' H-2%QI ()

coincides with the standard homomorphism p : T—QI(T).

(¢) {qn}nem are (M, A)-quasi-isometries for some fized M and A, depending just on
E, p, and independent of h € H.

(d) There exists a constant B with the following property: given any finite set F C I’
there is a neighborhood of the identity V- C H such that d(qn(7y),v) < B for all
yeF and heV.

Remarks 3.4. (a) The above construction is a particular case of Gromov’s topo-
logical equivalence, where one considers two finitely generated groups I' and I
with commuting, proper, cocompact actions on a locally compact space X (in
our special case I' = IV, X = H and the commuting actions are from the left and
from the right). In this general setup, each point x € X defines a quasi-isometry
¢z : T—>T" so that properties (a) and (c) of the Lemma still hold. If H forms a
locally compact group, one obtains in addition the homomorphism (b) satisfying
(d).

(b) In general the collection of actual (M, A)-quasi-isometries {g }rem is not closed
under composition: g, o qp, 1s equivalent, but typically is not equal, to gu,p,-

An alternative construction of a homomorphism H—QI (T") uses just the left T'-
action on H and a choice of a left invariant metric on H, as follows: fix a proper left
invariant metric d on H (here “proper” means that the closed balls with respect to d
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are compact subsets of H). Actually it suffices to use a proper pseudo-metric such as

d(h1, hy) = min{n | h5'h; € B} where B C H is a symmetric compact neighborhood

of the identity which generates H (such sets exists because H is compactly generated,

since it contains a finitely generated cocompact lattice). One can show that the

restriction of such d to 7(I") is quasi-isometric to a word metric d,, on I', and (H, d)

becomes quasi-isometric to (I', d,,). This gives rise to a homomorphism
H—QI(H) =2 QI(T)

which has the properties (b), (c¢), (d) of the first construction.

However we shall work with the construction 3.2 which is conceptually closer to
the ideas in Section 2.1.

Proof of Lemma 3.3 Fix some finite set S of generators for I'; and let d denote
the corresponding left invariant word metric on I'. Observe that, for any two compact
sets @, Q' C H there is at most finite number of v € T, so that Q@ w(y) N Q' # 0. This
implies that for any sets £, £’ C H with compact closures, there exists an integer
A= A(E,E"), so that

TNENT()E #0 = d(v,7)<A (3.3)

In particular, if ¢, and ¢;, are constructed from E,p and E’,p’ respectively, then for
some A = A(E,E') any fixed h € H and all vy € I':

hr(y) € m(gn(v)) E N w(gy(M))E" = d(an(7),an(7)) < A (3.4)

Denote by B, the n-ball in I' centered at the origin. The set E By = U,ep, E7(7)
has a compact closure in H, and therefore £ B; C By, FE for some sufficiently large
integer M = M(E). Then for all n > 1, we have:

En(B,) Cn(By)Em(By_1) C -+ C7w(Bun)E
Take some fixed h € H and any 71,72 € I'. Denoting n = d(v1,72), we have

hw(y) € qu(m)E and hm(ve) € qn(v2) E
ha(y) = ha(n(n ') € n(gn(n) Em(y ')
C 7(gn(1)) Em(Bn) C m(gn(1)Bun) E
Thus 7(gx(72)) E intersects 7(qx(v1) Bamn) E, and using (3.3), we deduce that

d(gn(m), gr(12)) < M - d(y1,72) + A

Similar arguments show the other properties of quasi-isometries. Hence ¢ is a quasi-
isometry of T'. Its class [gy] € QI(T"), which we shall denote by ®,(h), does not
depend on the choice of E, p as (3.4) shows. This proves (a).

Next take hy, hy € H and observe that for each v € T', h;7(y) € m(gp, (7)) E for
1 = 1,2, and therefore

(ha ha) m(y) € ham(gn, (7)) E C 7(gn, (gn, (7)) E - E
Since E' := E - E has a compact closure in H, (3.3) implies that

dhi © Ghy ™ Qhiho le. @ﬂ(hl) . (Dﬂ'(hZ) = (D(hfth)
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Similarly ¢ o g;,-1 ~ Idp, so that &, is a homomorphism of abstract groups. Note
also, that since ®, does not depend on the choice of E,p, we could choose them so
that (3.2) holds. This shows that ®, o = p. Hence (b) is proved.

Statement (c) follows from the proof of (a) above, where M and A were constructed
independently of h € H.

Next fix some neighborhood U of the identity ey which has a compact closure.
Then E'UU has a compact closure @, and there is a constant B = A(Q) such that

1WRNYR#0 = d(v,7)<B

Given any finite set I' C I' there is an open neighborhood V of ey such that
7(y)"*Vr(y) C U for all v € F, and therefore Vr(y) C w(y)U for v € F. For
each h € V one also has hn(y) € m(qn(7y)) E, which yields 7(gn(7))Q N7 (7)Q is not
empty for v € F, h € V, so that d(qn(7y),7y) < B for all vy € F, h € V. Since B is
independent of F', property (d) is proved. O

In our particular situation I' is a lattice in a (semi)simple Lie group G. Quasi-
isometries of lattices have been thoroughly analyzed by several people over a series of
many papers, and by now a comprehensive understanding of these objects has been
achieved. The reader is referred to the survey papers by Farb [Fa] and by Gromov and
Pansu [GP] for details and further references for this beautiful theory. In what follows
we shall only briefly mention some of the facts needed for the proof of Theorems B
and C. We need to consider several cases.

3.3. I' is a uniform lattice in a simple G of rank one. A uniform lattice I' in a
rank one simple Lie group G forms a hyperbolic group in the sense of Gromov. Given
a general Gromov hyperbolic group I there is an associated compact metric space OI'
- the boundary of I" - equipped with a continuous (essentially faithful) T'-action by
homeomorphisms. The group QI (I') has a homomorphism (in fact an embedding)

B : QI(I')—Homeo (0I)

such that the composition T—2+QI (F)LHomeo (9T') corresponds to the standard I'-
action on its boundary OI'. We claim that if 7 : '— H is a uniform lattice embedding
into a locally compact group H, and &, : H—QI (T") is a homomorphism (of abstract
groups) satisfying (b) and (c) of Lemma 3.3, then

Theorem 3.5. The homomorphism
U, : H25QI (I -2 Homeo (1) (3.5)

is continuous with respect to the uniform convergence in Homeo (OI'). The com-
position homomorphism ¥, o : '—sHomeo (OT") is the standard T'-action on its
boundary. The image V,.(H) is a locally compact subgroup of Homeo (OT'), contain-
ing Yo (m(T)) as a uniform lattice. The kernel Ker(¥,) is a compact normal subgroup
of H, which has at most finite intersection with =(T).
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Proof. Let us first recall some general facts about Gromov hyperbolic groups.
Let d be some fixed left invariant proper metric d on I' (say a word metric). The
(ideal) boundary OI" consists of equivalence classes of quasi-geodesic rays, which are
by definitions quasi-isometric embeddings  : R, — (I',d), modulo the equivalence
relation: r ~ 7' if the distance D(r,r') is finite. Recall that D(r,r') is defined as

D(r,r") := sup{d(r(t),r'(t)) | t > 0}

This gives rise to the action of QI (I") on JT since for any quasi-geodesic ray r : R, —
[' and any quasi-isometry g of I', the composition gor : R, — I' is a quasi-geodesic
ray, and this definition respects the “bounded distance” equivalence relations on the
rays and on the quasi-isometries. The resulting action of QI (I') on OT' turns out
to be continuous, and the corresponding homomorphism QI (I')—Homeo (0T") was
denoted by S.

In a Gromov hyperbolic group points £ of the boundary OT' (i.e. classes of quasi-
geodesic rays) can be represented by quasi-geodesic rays r : Ry — I' with 7(0) = er
and such that the quasi-geodesic constants are uniformly bounded, say by My and Ag
(in general, such a representation of £ by r¢ with the above properties is not unique,
but any two such rays are within finite distance which is uniformly bounded). The
topology on OI" admits a uniform structure given by neighborhoods U, of the diagonal
in OI'x 0T, defined as follows: fix a sufficiently large constant C' and define a decreasing
sequence of neighborhoods U, of the diagonal in 9" x 9" by declaring (&1, &) to be
in U, if &, & can represented by (My, Ag)-quasi-geodesic rays ri,75 : Ry — ' with
71(0) = r2(0) = er and

d(ri(t),r2(t)) <C  for ¢ €[0,n]

We shall also need the following general fact, often referred to as the Morse Lem-
ma: given any (M, A)-quasi-geodesic ray r : R, — T, there exists a (M, Ag)-
quasi-geodesic ray 1o : Ry — T' with r(0) = er which is within bounded distance
D(r,19) < oo from r, and moreover the distance D(r, 7o) can be bounded in terms of
d(r(0),er), M, A (and My, Ap).

With these preliminary remarks, let us prove the continuity of the homomorphism

U, : H25QI(T)-LsHomeo (9T)
Let M, A and B be constants as in Lemma 3.3.(c) and (d). For any n let

It is a finite subset of I'. By property (d) of Lemma 3.3 there is a neighborhood V,,
of e in H such that

dlgn(y),7y) < B  for y€F, heV (3.6)

Take an arbitrary £ € OI represented by a (M, Ag)-quasi-geodesic ray r¢ : Ry — T’
with 7¢(0) = er. Note that r¢(t) € F, for t € [0,n]. For any h € H the map
"= gqnore : Ry — I' is a quasi-geodesic ray (representing ¥, (h) - £ € JTI') which
has quasi-isometric constants (M, A;) being bounded in terms of M, My, A, A,.
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For h € V, one also has d(r'(0),er) = d(qn(er),er) < B. For any such h € V,
let 74.¢ denote an (My, Ap)-quasi-geodesic ray corresponding to r’ as in the “Morse
Lemma” above. Then D(rp.,7') is bounded in terms of M;, A; and B. Letting
C = D(rh,r') + B, we obtain for all ¢ € [0,n] and h € V, the following estimate

d(Th.g(t), T‘g(t)) S D(Th.g,Tl) + d(qh O Tg(t), Tg(t)) S D(Th.g,Tl) + B=C

because 7¢(t) € F, for t € [0,n]. Note that the bound C is independent of n, and the
above inequality proves that for all h € V,,

(Ur(h)- &€ €U,  (REV,, £€0T)

where U, is defined using the uniform constant C, independent of n. This proves the
continuity of ¥, : H—Homeo (JT').

Since @ om : '—QI (I") coincides with the natural homomorphism p : '—QI (T),
the homomorphism

I H-2%QI (I ->Homeo (A1)
corresponds to the standard I'-action on its boundary OI'. The standard homomor-
phism I'—Homeo (OI') is known to have finite kernel and a discrete image, which
we denote by I'. Thus ¥, (A) forms a discrete subgroup of ¥, (H) and the kernel
K = Ker(¥,) < H has at most finite intersection with A = 7 (T').

Now take a compact subset @) C H with Q A = H. By continuity, ¥, (Q) is com-
pact and its translations by the discrete group ¥, (A) cover all of ¥, (H). This easily
implies that (i) ¥,(H) is locally compact (in the topology of the uniform conver-
gence), (ii) ¥,(A) is a uniform lattice in ¥, (H), and (iii) the kernel K = Ker(¥,) is
compact. O

Returning to the situation where I' is a uniform lattice in a simple Lie group G
of rank one, denote by dX the visual boundary of the symmetric space X = G/K.
Then O is naturally identified with 0X (as topological spaces with a I'-action), and
OI' = 0X is homeomorphic to the sphere S"~! where n is the real dimension of
X. The image I' C Homeo (0X) of I' is isomorphic to I'/Z(I') & AdI". We shall
also denote by L = W, (H) the locally compact subgroup of Homeo (0X) constructed
above. Our goal is to prove Claim 3.1.

There are several cases to be considered.

Case G ~ SLy(R) (Theorem C). In this case the symmetric space X = G/K
is the real hyperbolic plane H? and 0X is the circle S'. We claim that, up to
conjugation in Homeo (S'), the locally compact group L = ¥, (H) C Homeo (S') is
either PSLy(R) 2 Ad G, or PGLy(R) = Aut (AdG), or is a a discrete group I'y which
forms a uniform lattice in PSLy(R) or in PGLy(R), containing T' & AdT as a finite
index subgroup.

At this point one should point out that it is possible to describe quite explicitly
all locally compact subgroups of Homeo (S'). Here we shall outline the arguments
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required in our particular situation. It is convenient to consider the orientation pre-
serving subgroup L, = LNHomeo ,(S), which has index at most two in L = ¥ (H).

The first main observation (pointed out to me by Etienne Ghys, whom I would
like to thank) is that locally compact subgroups, such as L., of Homeo ,(S') have
No Small Subgroups, i.e. one can find a neighborhood U of the identity in L, which
contains no non-trivial subgroups. It suffices to show that there are no small compact
subgroups, and this follows from the following easy

Lemma 3.6. Any compact subgroup K C Homeo | (S?) is conjugate in Homeo , (S')
to a closed subgroup of rotations SO(2), and therefore K is either finite or coincides

with SO(2).

Using Montgomery-Zippin’s results (see [MZ]) a locally compact group L, with No
Small Subgroups has a real connected Lie group as its connected component LY of
the identity.

Next recall that the action of I' on S! is minimal and strongly prozimal (this general
fact applies to the actions of hyperbolic groups I" on their boundaries 0T, as well as for
actions of lattices I' on the Furstenberg’s boundary B(G) of the ambient semisimple
Lie group G). Recall that minimality means that all orbits T - x are dense in T,
while strong proximality means that [-orbit of any probability measure ; has Dirac
measures in its closure with respect to weak topology. Since L, contains I its action
on S is also minimal and strongly proximal.

Lemma 3.7. Let B be a metric compact space and L C Homeo (B) be a locally
compact subgroup which acts minimally and strongly proximally on B. Then L has
no non-trivial closed normal amenable subgroups.

Proof. Let N <1 L be a closed normal subgroup, and let Viy C P(B) be the set of
all N-invariant probability measures on B. Then Vjy is a non-empty (because A is
amenable), closed and convex subset of P(B) which is L-invariant. Strong proximali-
ty of the L-action implies that V contains some Dirac measures, and the minimality
implies that all the Dirac measures {0¢ }¢cp are in Vi, which means that N acts triv-
ially on B. 0

Applying this to B = S and our group L., one concludes that the solvable part
of the Levi decomposition of the Lie group Li is trivial, so Lﬂ is reductive, and
moreover it is a semisimple Lie groups with trivial center and no compact factors.
By Lemma 3.6 the maximal compact of L% has to be isomorphic to SO(2) or to be
trivial. Thus LY is either isomorphic to PSLy(R) or is trivial.

One can show that in the first case, an isomorphism of L} with PSLy(R) can be
realized by a conjugation in Homeo ,(S') (the conjugation map coming from Lem-
ma 3.6). Since LY = PSL,(R) is normal in L., the latter acts by automorphisms on
PSLy(R), which has only one outer automorphism. This outer automorphism cannot
be realized as an orientation preserving homeomorphism of S*. This implies that L.
centralizers LY, and one can check that the centralizer of PSLy(R) in Homeo 4(S*')
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is trivial (in fact this is true already for the maximal compact subgroup SO(2) of
PSLy(R)). Therefore L, = LY is conjugate in Homeo ; (S*') to PSLy(R). Considering
all of L in all of Homeo (S*), one finds that if L° is non-trivial, then L is conjugate
to either ¥, (H) or to PGLy(R).

If LY is trivial, then L, and L = U, (H) are discrete subgroups of Homeo (S*),
because by Lemma 3.6 L, has No Small Subgroups. Since L and L, contain [ as a
cocompact lattice, the index [L : T is finite. Finally, we claim that L C Homeo (S!)
lies in fact in PSLy(R) and therefore forms a lattice there. This follows, for example,
from Gabai’s result [Ga] stating that convergence groups are Fuchsian. Indeed, since
[ is a convergence group, so is L. 0

This proves Claim 3.1 and Theorem C follows.

Case G ~ SO(n,1), n > 2. For this and the following cases of I being uniform in
a rank one group G # SLs(R), we shall use some known facts about the conformal
structures on 0X (following ideas which are going back to Mostow).

For G ~ SO(n,1), n > 2, the boundary 0X = S™ ! of the real hyperbolic space
X = H", n > 2, carries a natural conformal structure (e.g. see [GP] 3.6). Any
quasi-isometry class ¢ € QI (X) defines a quasi-conformal map 3(¢) of S"~! with the
quasi-conformal constant bounded in terms of the quasi-isometric constant M of ¢. In
fact B : QI (X)—QC(0X) is an isomorphism (of abstract groups). The subgroup of
isometries Isom (X') is mapped isomorphically by /5 onto the group C(9.X) of conformal
maps. Hence, we have

V. (H) C QC(0X) C Homeo (0X), U, (Aut (AdG)) = C(0X)

The fact that all {®,(h)}nren can be represented by quasi-isometries {gp}hen with
a uniform bound on the quasi-isometric constant M ((c) of Lemma 3.3) means that
VU, (H) is uniformly quasi-conformal subgroup of QC(S™™!). This group has an addi-
tional important property: its action on the space of distinct triples

X = {(&,6,&) € 0X x0X x 0X | & # &, i # 5}

is cocompact. This follows from the fact that already the action of ¥,(Adl) =
V.(A) C U,(H) on the triple space is cocompact. Tukia [Tu] proved, that any
uniformly quasi-conformal subgroup of QC(S™™'), n > 2, whose action on the triple
space is cocompact, is conjugate into C(S™™!). Hence, there exists an f € QC(0X),
so that

U (H)fCcC(0X)=T,(Aut (AdG))
However, no conjugation is really needed in our situation. Since both W, (A) =
U,(AdT) and f~'¥,(A)f are in C(0X), Mostow’s rigidity implies that for some
g € C(0X), one has

(9o /) T(N) (go f)=T(N), (A€l
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In other words, g o f is a A-equivariant continuous (actually quasi-conformal) map
of 0X to itself. However, the A-action (i.e. the AdT'-action) on 90X is known to
be minimal and proximal. It is easy to see that such actions have no non-trivial
equivariant continuous maps. Hence f = ¢g7' € C(0X), and one has ¥, (H) C
C(0X) = VU,(Aut (AdG)). This proves Claim 3.1 for uniform lattices I' in G =~
SO(n, 1), n > 2.

Case G ~ SU(n, 1), n > 1. Here the symmetric space X is the complex hyperbolic
spaces CH" (of real dimension 2n), and the appropriate conformal structure on 90X
corresponds to the Carnot-Caratheodory metric. As in the previous case, the group
U, (H) is uniformly quasi-conformal and its action on the triple space is cocompact.
Following Tukia, Chow [Ch] proved that any such subgroup is conjugate into C(0X).
As in the previous case, the fact that W, (A) is already in C(0X), together with
Mostow Rigidity, imply that no conjugation is needed. Thus

V. (H) CC(0X) = ¥,(Aut (AdQ))
and Claim 3.1 is proved.

Case G ~ Sp(n, 1) or F;?. The symmetric spaces in these cases are the quaternionic
hyperbolic space X = QH" (corresponding to G ~ Sp(n, 1)) and the Cayley plane
X = CaH? (corresponding to G ~ F;?°). These spaces are very rigid: Pansu [Pa]
proved that for these spaces QC(0X) = C(0X), while the latter again coincides with
U, (Aut (AdG)), and Claim 3.1 follows.

Remark 3.8. Marc Bourdon suggested the following elegant argument for the above
cases of rank-one G % PSLy(R). Let vy denote the K-invariant measure on the
boundary 0X. It is well known that there is a function (closely related to the Buse-
mann cocycle) f : 3*X — R, such that the infinite Radon measure dmg(x,y) =
dvg(z)dve(y)/ f(z,y) on the spaces of distinct pairs 92X of points on the boundary is
invariant and ergodic for the diagonal action of I'. Moreover, the conformal group can
be identified in Homeo (0X) as the stabilizer of my (see Sullivan [Su] for SO(n, 1)):

V,(G) =C(0X) = {h € Homeo (0X) | (h X h)smg =mg} (3.7)

A fundamental step in Mostow’s proof of strong rigidity implies that quasi-conformal
mappings of 0X preserve the measure class of v5. Hence my is quasi-invariant for the
diagonal ¥, (H)-action on 9?X and therefore the Radon measure

mp = /H/P(\I’W(h) X \I’ﬁ(h))*mo de/F(h)

is W, (H)-invariant and is in the same measure class as mg. Since mg is T-ergodic,
my = my and (3.7) yields ¥, (H) C U, (G).

Hence Claim 3.1 is proven and the proof of Theorem B can be completed ex-
actly as in the Subsections 2.3 and 2.4 (the compactness of the kernel Ker(® :
H—Aut (AdG) in these cases can be deduced from the last assertion of Theo-
rem 3.5).
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3.4. T is a uniform irreducible lattice in a semisimple G of higher rank. For
an irreducible higher rank symmetric space of non compact type X (G is simple of
higher rank), it was proved by Kleiner and Leeb [KL], and independently by Eskin
and Farb [EF|, that QI (X) = Isom (X). Hence, one has a homomorphism

O, : H—QI(T) 2 QI(X) = Isom (X) = Aut (AdG)

In the case of a semisimple G, the symmetric space X = X; x---x X, is a product of
symmetric spaces. For this case Kleiner and Leeb [KL] proved that QI (X) is equiva-
lent (up to permutation of the factors) to QI (X;) x ---x QI (X,). Applying the above
arguments to each of the factors one realizes that ¥, (H) is contained, up to finite in-
dex, in Homeo (0X;) X- - -xHomeo (0X,), and in fact ¥, (H) C ¥,(Aut (Ad G)) (with-
out finite index reduction in this statement), so that ® : U1 o ¥, : H—Aut (Ad G)
is a continuous homomorphism satisfying (2.1). We should remark that the continuity
of ¥, follows from the fact that the above factorization of QI (II7.X;) into the product
ITQI(X;) is effective in terms of the quasi-isometric constants (so an analogue of
Theorem 3.5 holds). Special care should be taken of the case where one/some of the
factors X; are hyperbolic planes H? (corresponding to PSLy(R) factors of G). In this
case L = U, (H) is a locally compact subgroup of IIfHomeo (0X;) which contains
copy/ies of Homeo (S?), and one can verify that the arguments, similar to the case of
a single Homeo (S'), still apply (in particular such L has no small subgroups).

Remark 3.9. The case of lattices [' in higher rank semi-simple Lie groups should
probably be treated in the measure-theoretical framework of Theorem A, by resolving
the difficulty pointed out in Remark 2.2.

3.5. I' is non-uniform in G' # SLy(R). Non-uniform irreducible lattices I in semisim-
ple Lie groups G # SLy(R) have only “algebraic” quasi-isometries, i.e. the quasi-
isometry group QI(I') coincides with the commensurator group Comm (I') of I in
Isom (X) = Aut (Ad G), defined by:

Comm (') := {g € Aut (AdG) | [I' : ¢7'TgNT] < oo}

This remarkable fact was first discovered by Schwartz [S1] for non-uniform lattices
in rank one simple Lie groups; and then proved for some higher rank cases by Farb-
Schwartz [F'S] and Schwartz [S2]. Using different ideas Eskin [Es| proved the above
result when G has no rank-one factors. The combination of these methods enables to
deduce the result in its full generality, as it is described by Farb ([Fa], pp. 710-711).

The commensurator Comm (I') is a countable (dense) subgroup of Aut (AdG).
Clearly, @' ({e}) is a measurable subset of H with a finite but positive Haar measure:

0<c:=my(®, '({e})) <my(H/A) < 00

Hence, the push forward measure (®,) * my on Aut (AdG) is an atomic measure,
equally distributed on some subgroup I', D AdT". Moreover, AdI" has finite index in
r,, for

c- [y : AdT] =mu(H/T) < 00
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Hence T, is a lattice in Aut (AdG), and taking Hy := ®-*(AdT") we conclude the
proof as in Subsection 2.4, Case (2).
The proof of Theorem B is now completed. 0

3.6. An Exotic Example. In this section we shall describe an example which shows
that in Theorem C case (1) one cannot replace the “almost direct product” structure
of H over a compact abelian group C, by a similar one over a finite abelian C.

Let I" be a surface group of a compact Riemann surface of genus g. As an abstract
group [' has the presentation

P = <6L1, e ,Clg,bl, - .,bg ‘ [al,bl][ag,bg] e [ng,bg] = 1)

Such T can be embedded as a uniform lattice in G = SLy(R). Let G be the universal
covering of G
1—Z—G2G—1
with Z = Z. The preimage I' = p~'(T') is a non-trivial central extension of ' by Z,
which can be presented as
U= {(ai,...,a0b1,...,by 2| [a:,2] = [bs, 2] = e, [a1,b1][ag,ba] - - - [ag, by] = 2)

where 2z generates the center Z. The crucial observation is that [ is linear. Indeed,
if p is a the ['-representation in the Heisenberg group

110 100 10g
0 01 0 01 0 01

then Ad x p is a faithful linear I-representation. (I would like to thank Gregory
Soifer for pointing this out to me).

Hence T is residually finite. Let K’ be a profinite completion of I'. The center Z
of K' is a profinite completion of Z £ Z.

Now let G’ be defined as the quotient of the direct product Z x G by the diagonal
embedding of Z. This embedding is discrete (due to the G-coordinate), so that G’
becomes a locally compact group, which contains G as a dense subgroup. Hence G’ is
connected, although it is neither locally connected, nor path-connected. The center of
G' is a compact (profinite) abelian group, isomorphic to Z. Observe, that ' embeds
in &, viaI' ¢ G C @', however its image is no longer discrete.

Next, consider the locally compact group H := (G' x K')/Z, where Z is embedded
diagonally in the centers of G’ and K’. Denoting by 7’ the diagonal embedding of T
into G’ x K', one observes that the homomorphism

[5G x K'—H
has Z as its kernel, and therefore, factors through I' as

P LA NN
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where 7 is injective. We claim that 7(I") forms a lattice in H. Indeed, H contains
two closed commuting subgroups, isomorphic to G’ and K’ (these are the projections
of G' x {ex'} and {eqw } x K', respectively), which we shall again denote by G' and
K' and G',K' < H intersect along their common center, which is isomorphic to Z.
Note that if & : H—H/K' = G denotes the projection, then

r-“H-2G
coincides with the embedding I' C G. Since K' = Ker(® : H—@G) is compact, we
conclude that 7 is an embedding of I" as a uniform lattice in H. ;
Any connected subgroup of H, which projects onto GG, has to contain G C G', and

any closed connected one contains G', which has a compact, but not finite, abelian
center Z.

Remark 3.10. The above construction does not work for other simple Lie groups
GG, which have universal covering with an infinite center. It is known that for such
G, there does not exist a residually finite I' € T' € G which projects onto T’ C G.
However, it is not clear to the author whether a residually finite I projecting on I

can be found in G' = G x Z(G)/Z(G).

Remark 3.11. A construction similar to (but somewhat simpler than) the above one
gives an embedding of a surface group I' in a locally compact group H = G’ x K'/Z,
where G’ is a simple Lie group with a finite center Z, with G’ being locally isomorphic
but not isomorphic to G.
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