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We announce results about the structure and arithmeticity of all possible lattice embed-
dings of a class of countable groups that encompasses all linear groups with simple Zariski 
closure, all groups with non-vanishing first �2-Betti number, non-elementary acylindrically 
hyperbolic groups, and non-elementary convergence groups.
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r é s u m é

Nous nous intéressons à l’ensemble des plongements possibles d’un groupe dénombrable 
comme réseau dans un groupe localement compact. Pour une grande classe de groupes 
dénombrables, nous annonçons des résultats de structure et d’arithméticité de tels 
plongements. Cette classe contient tous les groupes linéaires dont l’adhérence de Zariski 
est simple, les groupes dont le premier nombre de Betti �2 est non nul, les groupes 
hyperboliques acylindriques et les groupes de convergence.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let � be a countable group. We are concerned with the study of its lattice envelopes, i.e. the locally compact groups 
containing � as a lattice. We aim at structural results that impose no restrictions on the ambient locally compact group and 
only abstract group-theoretic conditions on �. We say that � satisfies (†) if every finite index subgroup of a quotient of �
by a finite normal subgroup

(†1) is not isomorphic to a product of two infinite groups, and
(†2) does not possess infinite amenable commensurated subgroups, and
(†3) satisfies: for a normal subgroup N and a commensurated subgroup M with N ∩ M = {1}, there exists a finite index 

subgroup M ′ < M such that N and M ′ commute.
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The relevance of (†1) should be clear, the relevance of (†2) is that it yields an information about all possible lattice 
envelopes of � [1]:

Proposition 1.1. Let � be a lattice in a locally compact group G. If � has no infinite amenable commensurated subgroups, then the 
amenable radical R(G) of G is compact.

The role of (†3) is less transparent, but be aware of the obvious observation: if M and N are both normal with N ∩ M =
{1}, then M and N commute. There are lattices � in SLn(R) × Aut(T ), where T is the universal cover of the 1-skeleton B(1)

of the Bruhat–Tits building of SLn(Qp) (see [4, 6.C] and [3, Prop. 1.8]). They are built in such a way that N := π1(B(1)), 
which is a free group of infinite rank, is a normal subgroup of �. Let U < Aut(T ) be the stabilizer of a vertex. Then 
M := � ∩ (SLn(R) × U ) is commensurated, but M, N < � violate (†3). Moreover, this group � satisfies (†1) and (†2).

Proposition 1.2. Linear groups with semi-simple Zariski closure satisfy conditions (†2) and (†3). Groups with some positive �2-Betti 
number satisfy condition (†2). All the (†) conditions are satisfied by all linear groups with simple Zariski closure, by all groups with 
positive first �2-Betti number, and by all non-elementary acylindrically hyperbolic groups and convergence groups.

For a concise formulation of our main result, we introduce the following notion of S-arithmetic lattice embeddings 
up to tree extension: let K be a number field. Let H be a connected, absolutely simple adjoint K -group, and let S be a 
set of places of K that contains every infinite place for which H is isotropic and at least one finite place for which H is 
isotropic. Let OS ⊂ K denote the S-integers. The (diagonal) inclusion of H(OS ) into 

∏
ν∈S H(Kν) is the prototype example 

of an S-arithmetic lattice. Let H be a group obtained from 
∏

ν∈S H(Kν)+ by possibly replacing each factor H(Kν)+ with 
Kν -rank 1 by an intermediate closed subgroup H(Kν)+ < D < Aut(T ) where T is the Bruhat–Tits tree of H(Kν). The lattice 
embedding of H(OS ) ∩ H into H is called an S-arithmetic lattice embedding up to tree extension.

A typical example is SL2(Z[1/p]) embedded diagonally as a lattice into SL2(R) ×SL2(Qp). The latter is a closed cocompact 
subgroup of SL2(R) × Aut(T p+1), where T p+1 is the Bruhat–Tits tree of SL2(Qp), i.e. a (p + 1)-regular tree. So SL2(Z[1/p]) <
SL2(R) × Aut(T p+1) is an S-arithmetic lattice embedding up to tree extension. We now state the main result [1]:

Theorem 1.3. Let � be a finitely generated group satisfying (†), e.g. one of the groups considered in Proposition 1.2. Then every em-
bedding of � as a lattice into a locally compact group G is, up to passage to finite index subgroups and dividing out a normal compact 
subgroup of G, isomorphic to one of the following cases:

(i) an irreducible lattice in a center-free, semi-simple Lie group without compact factors;
(ii) an S-arithmetic lattice embedding up to tree extension, where S is a finite set of places;

(iii) a lattice in a totally disconnected group with trivial amenable radical.

The same conclusion holds true if one replaces the assumption that � is finitely generated with the assumption that G is compactly 
generated.

Finite generation of � implies compact generation of any locally compact group containing � as a lattice. The examples 
above for n ≥ 3 show that condition (†3) in Theorem 1.3 is indispensable. Since non-uniform lattices with a uniform upper 
bound on the order of finite subgroups do not exist in totally disconnected groups, our main theorem yields the following 
classification of non-uniform lattice embeddings.

Corollary 1.4. Let � be a group that satisfies (†) and admits a uniform upper bound on the order of all finite subgroups. Then every 
non-uniform lattice embedding of � into a compactly generated locally compact group G is, up to passage to finite index subgroups 
and dividing out a normal compact subgroup of G, either a lattice in a center-free, semi-simple Lie group without compact factors or 
an S-arithmetic lattice embedding up to tree extension.

For groups � that are not lattices in Lie groups (classical or S-arithmetic) but satisfy (†) and are torsion-free, possible 
lattice envelopes are uniform and totally disconnected (Theorem 1.3 (iii)). This can be used, for example, to show that 
Gromov–Thurston groups � = π1(M), where M is a compact manifold that admits an almost hyperbolic Riemannian metric, 
but not a hyperbolic one, have only the trivial lattice embeddings � < � � K , where K is a compact group.

The following arithmeticity theorem [1] is at the core of the proof of Theorem 1.3. Actually, it is a more general version 
that is used, in which we drop condition (†1) (see the comment in Step 3 of Section 2).

In the proof of Theorem 1.3, we only need Theorem 1.5 in the case where D , thus L × D , is compactly generated, which 
means that the set S of primes is finite. Caprace–Monod [4, Theorem 5.20] show Theorem 1.5 for compactly generated D
and under the hypothesis that L is the k-points of a simple k-group (where k is a local field), but the latter hypothesis is 
too restrictive for our purposes. Moreover, our proof of Theorem 1.5 does not become much easier if we assume compact 
generation from the beginning. Regardless of its role in Theorem 1.3, we consider the following result as a first step in the 
classification of lattices in locally compact groups that are not necessarily compactly generated.
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Theorem 1.5. Let L be a connected center-free semi-simple Lie group without compact factors, and let D be a totally disconnected 
locally compact group without compact normal subgroups. Let � < L × D be a lattice such that the projections of � to both L and D
are dense and the projection of � to L is injective and � satisfies (†1).

Then there exists a number field K , a (possibly infinite) set S of places of K , and a connected adjoint, absolutely simple K -group H
such that the following holds.

Let H̃ → H be the simply connected cover of H in the algebraic sense. Let O(S) be the S-integers of K . The group L × D embeds as a 
closed subgroup into the restricted (adelic) product 

∏′
ν∈S H(Kν). Under this embedding and under passing to a finite index subgroup, 

� is contained in H(O(S)) and the intersection of � with the image of 
∏′

ν∈S H̃(Kν) is commensurable to the image of H̃(O(S)).

The above theorem states essentially that all lattice inclusions � < L × D satisfying some natural conditions could be 
constructed from arithmetic data. The following example describes, up to passing to finite index subgroups, all pairs of 
groups �, D and embeddings � < L × D satisfying the condition of the theorem, for the special case L = PGL2(R). These are 
obtained by the choice of the set S and the subgroups A and B described below. Similar classifications for other semi-simple 
groups L could be achieved using Galois cohomology.

Example 1.6. Fix a possibly infinite set of primes S �= ∅ and consider the localization ZS < Q. Fix a closed subgroup A in the compact 
group 

∏
S Z

×
p /(Z×

p )2 and a subgroup B in the discrete group 
⊕

S Z/2Z (note that Z×
p /(Z×

p )2 
 Z/2Z for p > 2 and Z×
2 /(Z×

2 )2 

Z/2Z × Z/2Z). The determinant homomorphism from 

∏′
S GL2(Qp) to the corresponding idele group, which we naturally identify 

with 
∏

S Z
×
p × ⊕

S Z, restricts to 
∏′

S GL2(Qp) ⊃ GL2(ZS ) → ⊕
S Z <

∏
S Z

×
p × ⊕

S Z. The determinant is well defined on PGL2

modulo squares, thus we obtain a map 
∏′

S PGL2(Qp) → ∏
S Z

×
p /(Z×

p )2 × ⊕
S Z/2Z that restricts to PGL2(ZS ) → ⊕

S Z/2Z. Let D
be the pre-image of A × B under the first map and � be the pre-image of B under the second one. Denote by L = PGL2(R) and embed 
PGL2(ZS) in L via ZS ↪→ R. Thus � embeds diagonally in L × D and its image is a lattice, whose projections to both L and D are dense 
and the projection of � to L is injective, while � satisfies (†1).

2. Sketch of proof of Theorem 1.3

Step 1: Using (†2) to reduce to products
Burger and Monod [2, Theorem 3.3.3] observed that one obtains as a consequence of the positive solution to Hilbert’s 

5th problem: every locally compact group has a finite index subgroup that modulo its amenable radical splits as a product 
of a connected center-free semi-simple real Lie group L without compact factors and a totally disconnected group D with 
trivial amenable radical. By Proposition 1.1, we conclude that the amenable radical of G , thus that of any of its finite index 
subgroups, is compact. Therefore we may assume (up to passage to finite index subgroups and by dividing out a normal 
compact subgroup) that G is of the form G = L × D with L and D as above.

If we assume that not all �2-Betti numbers of � vanish, we can reach the same conclusion without appealing to Propo-
sition 1.1, but by using �2-Betti numbers of locally compact groups [9] instead. Since � has a positive �2-Betti number in 
some degree, the same is true for G [7, Theorem B], thus G has a compact amenable radical [7, Theorem C].

Step 2: Separating according to discrete and dense projections to the connected factor
The connected Lie group factor L splits as a product of simple Lie groups L = ∏

i∈I Li . The projection of � to L might not 
have dense image. It is easy to see that there is a maximal subset J ⊂ I such that the projection pr J of � to L J := ∏

j∈ J L j

has discrete image. Then � J = pr J (�) and �′ = ker(pr J ) ∩ � are lattices in L J and L J c × D , respectively. So we obtain an 
extension of groups

�′ ↪→ � → � J (1)

which are lattices in the corresponding (split) extension of locally compact groups L J c × D ↪→ L × D → L J . The projection 
of �′ to L J c turns out to be dense.

Notice that finite generation of � does not guarantee that � J c is finitely generated. However, L J c × D is still compactly 
generated if G is so.

Step 3: Distinguishing cases of the theorem
Let U < D be a compact open subgroup. Let M := � ∩ (L × U ) and M ′ := � ∩ (L J c × U ). We prove that G is totally 

disconnected if M is finite and that G = L if M is infinite, but M ′ is finite. The latter step involves condition (†1). Hence, if 
M or M ′ is finite, the proof is finished. In the remainder we discuss the case when M ′ is infinite. For simplicity, let us first 
assume that the projection of �′ to D is dense; we return to this issue in the last step.

Consider N ′ := �′ ∩ ({1} × D) ��′ , which can also be regarded as a subgroup of D . As such it is also normal by denseness 
of the projection �′ → D . The assumptions of Theorem 1.5 apart from condition (†1) are satisfied for the lattice embedding 
�′/N ′ < L J c × D/N ′ . From a more general version of Theorem 1.5, one concludes a posteriori that �′/N ′ satisfies (†1), so the 
conclusion of Theorem 1.5 holds true for �′/N ′ < L J c × D/N ′ . Because of compact generation of L J c × D/N ′ , we can exclude 
the adelic case and conclude that �′/N ′ is an S-arithmetic lattice for a finite set S of primes.
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Step 4: Using (†3) to identify group extensions
In this step, we show that N ′ is finite, thus trivial (since D has no compact normal subgroups). The proof involves the 

use of (†3) for N ′ and M ′ and Margulis’ normal subgroup theorem. Hence �′ is an S-arithmetic lattice. As such it has a 
finite outer automorphism group, which implies that, after passing to finite index subgroups, the extension (1) splits. By (†1) 
� < G is an S-arithmetic lattice embedding.

Step 5: Quasi-isometric rigidity results
We have previously assumed that the projection �′ → D is dense. If it is not, we have to identify the difference between 

the closure D ′ of the image of the projection and D . The subgroup D ′ < D is cocompact, thus D ′ ↪→ D is a quasi-isometry. 
By the argument before, we know that D ′ is a product of algebraic groups over non-Archimedean fields and thus acts by 
isometries on a product B of Bruhat–Tits buildings. By conjugating with D ′ ↪→ D , we obtain a homomorphism of D ′ to the 
quasi-isometry group of B . We finally appeal to the quasi-isometric rigidity results of Kleiner–Leeb [6] and Mosher–Sageev–
White [8] to conclude that � < G is an S-arithmetic lattice up to tree extension.

3. Special cases

It is instructive to investigate the consequences of Theorem 1.3 for specific groups. Rather than just applying Theorem 1.3, 
we sketch a blend of ad hoc arguments and techniques of the proof of Theorem 1.3 to most easily classify all lattice 
embeddings in the following three cases.

(a) � is a free group
Let � be a non-commutative finitely generated free group. Let � < G be a lattice embedding. We show that, up to 

finite index and dividing out a normal compact subgroup, F < G is PSL2(Z) < PSL2(R) or G embeds as a closed cocompact 
subgroup in the automorphism group of a tree.

As explained in the first step of Subsection 2, one can avoid the use of Proposition 1.1 by using the positivity of the first 
�2-Betti number of � to conclude that G has a compact amenable radical. Up to passage to a finite index subgroup and 
dividing out a compact amenable radical, we may assume that G is a product G ∼= L × D . By the Künneth formula, L × D can 
have a positive first �2-Betti number only if one of the factors is compact. Since G has trivial amenable radical, this implies 
that G is either L or D . In the first case G must be PSL2(R). In the second case, G is totally disconnected, and � < G , as a 
torsion-free lattice, must be cocompact. By [8, Theorem 9] G embeds as a closed cocompact subgroup of the automorphism 
group of a tree.

(b) � is a surface group
Let � be the fundamental group of a closed oriented surface �g of genus g ≥ 2. Let � < G be a lattice embedding. 

Similarly as for free groups, by using the positivity of the first �2-Betti number, we conclude that G , up to passage to a 
finite index subgroup and dividing out a compact amenable radical, is either PSL2(R) or a totally disconnected group with 
trivial amenable radical. In the latter case � is cocompact.

We argue that the totally disconnected case cannot happen unless G is discrete and so � < G is the trivial lattice 
embedding: the inclusion � → G is a quasi-isometry in that case. So we obtain a homomorphism G → QI(G) ∼= QI(�). 
Each quasi-isometry induces a homeomorphism of the boundary ∂� ∼= S1, so we obtain a homomorphism f : G → QI(�) →
Homeo+(S1). One can verify that f is continuous [5, Theorem 3.5] and ker( f ) is compact, thus trivial by the triviality of the 
amenable radical. Let U < G be a compact-open subgroup. Then f (U ) < Homeo+(S1) is a compact subgroup, hence f (U )

is either finite or isomorphic to SO(2) [5, Lemma 3.6]. But it cannot be isomorphic to a connected group. Therefore f (U ) is 
finite, which implies that G is discrete.

(c) � = PSLn(Z[1/p]), n ≥ 3
Recall that � embeds as a non-uniform lattice in PSLn(R) × PSLn(Qp) via Z[1/p] → R × Qp ; we denote by pr1 : � →

PSLn(R) and pr2 : � → PSLn(Qp) the injective projections. Let us verify (†2): for any commensurated amenable subgroup 
A < �, the connected component H0 of the Zariski closure H = pr1(A) is amenable and normal in PSLn(R), because replac-
ing A with a finite index subgroup does not change H0. Hence H0 is trivial, and so H and A are finite.

Let � be embedded as a lattice in some locally compact group G . Using (†2) as in the first step of Section 2, we replace 
G with L × D , where L is a (possibly trivial) connected real Lie group, D is totally disconnected, and both have trivial 
amenable radicals.

The case L = {1} corresponds to the trivial lattice embedding � < �. Indeed, in this case � is a lattice in a totally 
disconnected D , and having bounded torsion, it is cocompact. This allows us to use the results on quasi-isometric rigidity 
[10] and obtain a homomorphism D → QI(D) = QI(�) 
 PSLn(Q) (hereafter 
 stands for commensurability) that can be 
further shown to have an image commensurable to �.

If L is non-trivial, then it is a center-free, semi-simple Lie group without compact factors. By Borel’s density theorem, 
the projection map prL : � → L has Zariski dense image, and Margulis’ superrigidity implies that L = PSLn(R) and prL = pr1
(this can also be shown by elementary means by conjugating unipotent matrices). Let E < D denote the closure of prD(�); 
we get a lattice embedding � < L × E where E is totally disconnected, and E has finite covolume in D . If U < E is a compact 
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open subgroup, �U = � ∩ (PSLn(R) × U ) is a lattice in PSLn(R) × U that projects to a lattice 	 < PSLn(R). We claim that 
	 
 PSLn(Z). Indeed, it follows from Margulis’ superrigidity (recall that n ≥ 3) applied to pr2 ◦ pr−1

1 : 	 → �U → PSLn(Qp)

that pr2(�U ) is contained in a maximal compact subgroup commensurated to PSLn(Zp), yielding �U 
 PSLn(Z).
Let H be the closure in E × PSLn(Qp) of 
 = {(prE(γ ), pr2(γ )) | γ ∈ �}. Then H ∩ (U × PSLn(Qp)) is the closure of 


 ∩ (U × PSLn(Qp)), thus compact because �U 
 PSLn(Z). Also Ker(prE : H → E) is compact. The group prE (H ∩ (U ×
PSLn(Qp))) is compact, hence closed and equals prE(
 ∩ (U × PSLn(Qp)) = U . Since prE (H) is dense in E and contains the 
open subgroup U , we obtain that prE(H) = E . Similarly, pr2(H) = PSLn(Qp). This implies that H is a graph of a continuous 
surjective homomorphism E → PSLn(Qp), whose kernel K is contained in U , thus compact.

Finally, to recover the original group D , we use the compactness of D/E and the quasi-isometric rigidity [6] of the 
Bruhat–Tits building Xn of PSLn(Qp) ∼= E/K to get D → QI(D) ∼= QI(E) ∼= QI(Xn) 
 PSLn(Qp).
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