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Abstract
We introduce a class of countable groups by some abstract group-theoretic con-
ditions. This class includes linear groups with finite amenable radical and finitely
generated residually finite groups with some nonvanishing `2-Betti numbers that
are not virtually a product of two infinite groups. Further, it includes acylindrically
hyperbolic groups. For any group � in this class, we determine the general structure
of the possible lattice embeddings of � , that is, of all compactly generated, locally
compact groups that contain � as a lattice. This leads to a precise description of
possible nonuniform lattice embeddings of groups in this class. Further applications
include the determination of possible lattice embeddings of fundamental groups of
closed manifolds with pinched negative curvature.
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1. Introduction

1.1. Motivation and background
Let G be a locally compact second countable (lcsc)1 group. Such a group carries a
nonzero left-invariant Radon measure unique up to scalar multiple, known as the Haar
measure. A subgroup � <G is called a lattice if it is discrete and G=� carries a finite
G-invariant measure or, equivalently, if the �-action onG admits a Borel fundamental
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domain of finite Haar measure. If G=� is compact, we say that � is a uniform lattice;
otherwise, we say that � is a nonuniform lattice. The inclusion � ,! G is called a
lattice embedding. We will also call G a lattice envelope of � .

The classical examples of lattices come from geometry and arithmetic. Starting
from a locally symmetric manifoldM of finite volume, we obtain a lattice embedding
�1.M/ ,! Isom. QM/ of its fundamental group into the isometry group of its univer-
sal covering via the action by deck transformations. The real Lie group Isom. QM/ is
semisimple if QM has no Euclidean direct factors, and the lattice � < Isom. QM/ is
uniform if and only if M is compact.

Real semisimple Lie groups viewed as algebraic groups admit arithmetic lattices
such as SLd .Z/ < SLd .R/ (see [50, Theorem 3.2.4, p. 63]). Analogous constructions
exist for products of real and p-adic algebraic semisimple groups, such as

SLd
�
Z

h 1
p1
; : : : ;

1

pk

i�
< SLd .R/� SLd .Qp1/� � � � � SLd .Qpk /:

Our notation and conventions for arithmetic lattices are defined in Section 4.1 below.
A central theme in the study of lattices are the connections between the lattices

and the ambient group. Mostow’s strong rigidity (see [55] for the uniform case and
[60] or [48] for the nonuniform case) asserts that an irreducible lattice in a semisimple
real Lie group G that is not locally isomorphic to SL2.R/ determines the ambient Lie
group among all Lie groups and determines its embedding in the ambient Lie group
uniquely up to an automorphism of G.

It is natural to ask to what extent lattices determine their lattice envelopes among
all lcsc groups and which countable groups have only trivial lattice envelopes. To
make the question precise, we introduce the notion of virtual isomorphism between
lattice embeddings in Definition 3.1. A lattice embedding is called trivial if it is vir-
tually isomorphic to the identity homomorphism of a countable discrete group, which
can be regarded as a lattice embedding. Virtual isomorphism is an equivalence rela-
tion. We refer to Section 3.1 for more information.

Problem 1.1
Given a countable group � , describe all of its possible lattice envelopes up to virtual
isomorphism.

In the study of lattices, the nonuniform lattices are often harder to work with
when compared to uniform ones. For example, the condition of integrability of lattices
(e.g., required for different purposes in [5], [39], [49], [53], [67]) is automatically
satisfied by uniform lattices and can be proved for some examples of nonuniform
lattices, often using elaborate arguments. This motivates the following.
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Problem 1.2
How prevalent are nonuniform lattice embeddings? What groups admit both nontriv-
ial uniform and nonuniform embeddings?

1.2. On the structure of lattice envelopes
To state Theorem A below, which is a step toward Problem 1.1, we need to put some
conditions on the group � .

Definition 1.3
We say that a countable group � has property
� (BT) if there is an upper bound on the order of finite subgroups of � ,
� (Irr) if � is not virtually isomorphic to a product of two infinite groups,
� (CAF) if every amenable commensurated subgroup of � is finite,
� (wNbC) if for every normal subgroup N G � and every commensurated sub-

group M < � such that N \M D ¹1º there is a finite-index subgroup of M
that commutes with N ,

� (NbC) if every quotient of � by a finite normal subgroup has (wNbC).

The abbreviations stand for bound on torsion (BT), irreducibility (Irr), commen-
surated amenable is finite (CAF), weak normal by commensurated (wNbC), and nor-
mal by commensurated (NbC), respectively (for the definition of commensurated sub-
group, see Section 2.1).

In Section 2 we prove the following result, which shows that large classes of
groups satisfy the above conditions, and we also describe these classes in more detail.

THEOREM 1.4
The following countable groups have property .CAF/:
(1) groups with a nonvanishing `2-Betti number in some degree,
(2) linear groups with finite amenable radical,
(3) groups in the class Dreg introduced in [71] (this class contains all acylindri-

cally hyperbolic groups and thus nonelementary convergence groups).
Further, the following countable groups have property .NbC/:
(10) groups with nonvanishing first `2-Betti number,
(20) linear groups,
(30) finitely generated residually finite groups with finite amenable radical,
(40) groups in the class Dreg.
The groups in (10) and (40) also have the property .Irr/.
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The statement about .NbC/ for the groups of class (30) is due to [20, Corollary
18] and the fact that the class (30) is closed under passing to quotients by finite normal
subgroups.

The next theorem was announced in [7, Theorem 1.3] with a slightly stronger for-
mulation of the .NbC/ and .CAF/ condition. It gives a partial answer to Problem 1.1
that concerns possible lattice envelopes of a given group � . We impose no restriction
on the lattice envelope, except for it being compactly generated. This condition can
also be removed if � is assumed to be finitely generated (see Lemma 3.7).

THEOREM A (Structure of possible lattice envelopes)
Let � be a countable group with properties .Irr/, .CAF/, and .NbC/, and let � < G
be a nontrivial lattice embedding into a compactly generated lcsc group G. Then
the lattice embedding � ,! G is virtually isomorphic to one of the following lattice
embeddings:
(1) an irreducible lattice in a connected, center-free, semisimple real Lie group

without compact factors;
(2) an S -arithmetic lattice or an S -arithmetic lattice up to tree extension as in

Definition 4.4;
(3) a lattice in a nondiscrete totally disconnected locally compact group with triv-

ial amenable radical.
If in addition � has .BT/, then the lattice in (3) is uniform.

(For the notion of tree extension, see Definition 4.3. The three cases are distinct;
see Remark 4.2. We show in Example 2.14 the necessity of the condition .NbC/ for
Theorem A.)

The classical case of lattices in semisimple real Lie groups includes both
arithmetic and nonarithmetic examples. (Nonarithmetic lattices can appear only
in SO.n; 1/ and SU.n; 1/.) The case of S -arithmetic lattices in the above statement
refers to irreducible lattices in a product of finitely many real semisimple Lie groups
and p-adic ones, where factors of both types are present. Case (3) contains a large
class of examples that includes lattices in p-adic groups and fundamental groups
� of some finite cube complexes whose universal cover has a nondiscrete group of
automorphisms. This last case remains quite mysterious although a structure theory
of nondiscrete, simple, totally disconnected groups emerged in the last decade. (In
this regard, Caprace’s survey [19] is recommended.)

Remark 1.5
The structure of lattices and their envelopes has been closely connected to (super)
rigidity questions ever since the celebrated works of Mostow and of Margulis in the
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1970’s. Since the 1990’s there has a been a surge of research activity toward extending
rigidity theory from Lie and algebraic groups to locally compact groups (e.g., [17],
[18], [21], [35], [39], [53], [67]). Remarkable results about the structure of lattices
in locally compact groups went hand in hand with it (e.g., [18], [22], [23], [67]).
Theorem A builds heavily on these previous works, and its statement should be com-
pared with the results in [22, Section 5] by Caprace and Monod. The novelty in the
statement of Theorem A is that we neither assume that G is a product nor impose
any linearity assumption on � ; we only impose conditions on � , and they are of an
abstract group-theoretical nature.

By assuming property .BT/, the last case of Theorem A does not allow nonuni-
form lattices. Hence, we obtain the following partial solution to Problem 1.2.

COROLLARY 1.6 (Classification of nonuniform lattices)
Let � be a countable group with properties .BT/, .Irr/, .CAF/, and .NbC/. Then
every nonuniform lattice embedding � ,!G of � is virtually isomorphic to either
(1) an irreducible lattice in a connected, center-free, semisimple real Lie group

without compact factors, or
(2) an S -arithmetic lattice, possibly up to tree extension, with both real and non-

Archimedean factors present.
In particular, every lattice embedding of such � is square-integrable, with the excep-
tion of lattice embeddings into Lie groups that are locally isomorphic to SL2.R/ or
SL2.C/.

This is a direct corollary except for the last statement, which is a consequence of
results about the square-integrability of classical lattices from Shalom’s work (see [67,
Section 2] for the S -arithmetic and higher-rank case and [68, Theorem 3.7] for the
rank-1 case).

1.3. Applications
As applications of our main result, we now present more precise classification results
of lattice envelopes for specific groups. Their proofs can be found in Section 6.

THEOREM B (Mostow rigidity with locally compact targets)
Let � < H be an irreducible lattice embedding into a center-free, real semisimple
Lie group H without compact factors that is not locally isomorphic to SL2.R/. Then
every nontrivial lattice embedding of � into an lcsc group G is virtually isomorphic
to � < H . If � < H is an S -arithmetic lattice embedding as in Definition 4.4, then
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every nontrivial lattice embedding of � into an lcsc groupG is virtually isomorphic to
� <H or to a tree extension � <H� ifH includes rank-1 non-Archimedean factors.

This theorem may be viewed as a generalization of Mostow’s strong rigidity.
Mostow’s celebrated result corresponds to the special case where G and H are semi-
simple real Lie groups. (In most accounts, one even assumes G DH , and the focus
is on aligning two given lattice embeddings of � in G by an automorphism of G.)

In fact, Mostow considered the case of uniform lattice embeddings (see [55]);
the nonuniform were later obtained by Prasad in [60] and Margulis in [48]. In [35],
the second author proved Theorem B for the case of a simple real Lie group H with
rkR.H/ � 2 and a general lattice envelope � < G and for the case of a rank-1 real
Lie group H and a uniform lattice envelope � <G.

The case of H D PSL2.R/ is excluded from Theorem B for two reasons. First,
strong rigidity does not hold in this setting—the moduli space of embeddings of a
surface group in the same group G D H D PSL2.R/ is multidimensional. Second,
nonuniform lattices in PSL2.R/, which are virtually free groups of finite rank 2 �
n <1, can be embedded as lattices into completely different lcsc groups such as
PGL2.Qp/ or the automorphism group Aut.T / of a locally finite tree T . Our next
results show that all lattice envelopes of free groups are related to the ones mentioned
above.

THEOREM C (Lattice embeddings of free groups)
Let � be a finite extension of a finitely generated non-Abelian free group Fn, and let
� <G be a nontrivial lattice embedding.
(1) If � <G is nonuniform, then it is virtually isomorphic to a nonuniform lattice

embedding into PSL2.R/.
(2) If � <G is uniform, then it is virtually isomorphic to a lattice embedding into

a closed cocompact subgroup of the automorphism group of a tree.

The second case includes such examples as PGL2.Qp/ or other rank-1 non-
Archimedean groups. For uniform lattices in PSL2.R/, such as surface groups, the
possibilities for lattice embeddings are even more restricted.

THEOREM D (Lattice embeddings of surface groups)
Let � be a uniform lattice in PSL2.R/. Any other nontrivial lattice embedding of � is
virtually isomorphic to a uniform lattice embedding into PSL2.R/.

Let M be a manifold that admits a Riemannian metric with strictly negative sec-
tional curvature, but is not homeomorphic to a locally symmetric one. We conjecture
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that fundamental groups of such manifolds � D �1.M/ have no nontrivial lattice
envelopes. Under an additional pinching assumption, we are able to prove this.

THEOREM E (Lack of lattice embeddings in pinched negative curvature)
The fundamental group of a closed Riemannian manifold M of dimension n � 5
whose sectional curvatures range in

h
�
�
1C

1

n� 1

�2
;�1

i

does not admit a nontrivial lattice embedding unless M is homeomorphic to a closed
hyperbolic manifold.

Some remarks about this result are in order. Gromov and Thurston in [40] con-
struct infinitely many examples of negatively curved manifolds with the above pinch-
ing in dimensions n � 4 that are not homeomorphic to hyperbolic manifolds. By
taking connected sums of a hyperbolic manifold with an exotic sphere, Farrell and
Jones construct closed smooth manifolds that are homeomorphic to a hyperbolic man-
ifold but whose smooth structure does not support a hyperbolic Riemannian metric
(see [32]). We recommend the survey [34] by Farrell, Jones, and Ontaneda on these
issues.

Finally, we obtain the following surprising characterization of free groups.

THEOREM F (Nonuniform lattice embeddings of groups with ˇ.2/1 > 0)
Let � be a group with nonvanishing first `2-Betti number that has an upper bound
on the order of its finite subgroups. If � possesses a nonuniform compactly generated
lattice envelope, then � has a non-Abelian free subgroup of finite index.

Remark 1.7
Classification of lattice envelopes can also be obtained from measure equivalence
rigidity (ME-rigidity) properties as in [35, Theorem A]. ME-rigidity results are
expected to be rare and are currently known only for very special classes of groups.
In [43] Kida proved ME-rigidity for mapping class groups, and as a corollary he
deduced that mapping class groups do not admit nontrivial lattice envelopes. In
[44] Kida proved ME-rigidity for certain amalgams of ME-rigid groups, and in [26]
Chifan and Kida discuss (among other things) ME-rigidity for certain surface braid
groups. These are additional examples of groups with only trivial lattice envelopes.

Let us note that Theorem A can be applied to many of these groups to deduce that
their lattice envelopes must be uniform and must be tdlc. However, showing that these
envelopes actually must be discrete would require further work, most likely involving
quasi-isometric rigidity.
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Let us also mention the work [29] of Dymarz, who studied uniform lattice
envelopes for a class of solvable groups. These groups do not satisfy the .CAF/
property and, therefore, are out of the scope of the current paper.

1.4. Structure of the paper
We devote most of Section 2 to the proof of Theorem 1.4. We discuss an example by
Burger and Mozes in Section 2.4 that shows the necessity of the condition .NbC/; if
one drops .NbC/ while keeping .CAF/, there are exotic lattice embeddings that are
not covered by the three cases of Theorem A.

The definition of virtual isomorphism of lattice embeddings and the tools of the
trade for the proof of Theorem A are provided in Section 3. The most difficult proof
in Section 3 is the result about outer automorphisms of S -arithmetic lattices (Theo-
rem 3.14). Although this result is known or expected to hold by the experts, there has
been no proof so far in the required generality. We hope its proof provides a useful
reference.

The bulk of our work here is devoted to the proof of Theorem A in Section 5. The
paper [7], in which we announced the results of this paper, provided proofs in special
cases that might be helpful for the reader. In the first step of the proof, we rely on prop-
erty .CAF/ and the positive solution of Hilbert’s fifth problem to show that the given
lattice embedding � <G is virtually isomorphic to one into a product of a semisimple
Lie group L and a totally disconnected groupD. So we may assume thatG DL�D.
Let U <D be a compact-open subgroup. In the second step of the proof we split L
further as LDL0�L1 in such a way that the projection of � to L1 is dense. Depend-
ing on the finiteness of � \ .L � U / and � \ .¹1º � L1 � U /, we distinguish three
cases in the third step which correspond to the cases (1), (2), or (3) of the statement of
Theorem A. The second case is the most sophisticated. Here we have to identify the
lattice � \ .¹1º �L1 �D0/ < L1 �D0, where D0 <D is a certain closed cocompact
subgroup, as an S -arithmetic lattice, and also identifyD0 with the corresponding non-
Archimedean factor. This identification is an arithmeticity theorem which is proved in
our companion paper [8] and heavily relies on Margulis’s commensurator rigidity. We
prove in [8] a result of greater generality which does not assume compact generation
of the ambient group. The version needed here is only slightly more general than the
arithmeticity theorem by Caprace and Monod in [22, Theorem 5.20]. Our basic setup
for S -arithmetic groups and a detailed explanation of the arithmeticity theorem are
provided in Section 4. Further, we use Margulis’ normal subgroup theorem and the
aforementioned result on outer automorphism groups to conclude that L D L1 and
L0 D ¹1º in the second case. The condition on .NbC/ appears just once in the whole
proof, namely, in the third step of the proof, in Lemma 5.9. The final step of the proof
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identifies the difference between L �D0 and L �D as a tree extension in the sense
of Setup 4.1.

In the proof of the applications, that is, Theorems B–F, a major step is always
to identify the most mysterious case, namely, (3), in Theorem A. To this end, we
appeal to ideas of geometric group theory and quasi-isometric rigidity. This is based
on the fact that a lattice with property .BT/ is quasi-isometric to any of its totally
disconnected lattice envelopes.

2. The properties .BT/, .Irr/, .CAF/, and .NbC/
We describe the classes in Theorem 1.4 in more detail. In Section 2.3 we prove The-
orem 1.4. In Section 2.4 we describe an exotic lattice embedding of a group that does
not have property .NbC/.

2.1. Commensurated and commensurable groups

Definition 2.1
A subgroup A of a group G is commensurated by a subset S �G if s�1As \A has
finite index in s�1As and A for every s 2 S . If A<G is commensurated by all of G,
we just say that A<G is commensurated.

Definition 2.2
Two lcsc groupsG andG0 are commensurable if there are open subgroupsH <G and
H 0 <G0 of finite index such that H ŠH 0 as topological groups. Further, G and G0

are weakly commensurable or virtually isomorphic if there are open subgroups H <

G and H 0 < G0 of finite-index and compact normal subgroups K GH and K 0 GH 0

such that H=K ŠH 0=K 0 as topological groups.
A topological isomorphism f W H=K!H 0=K 0 is called a virtual isomorphism

from G to G0. We say it restricts to subgroups A < G and A0 < G0 if f restricts to
an isomorphism .A\H/=.A\K/! .A0 \H 0/=.A0 \K 0/, which is then a virtual
isomorphism between A and A0.

If in the above definition the groups G and G0 are countable discrete, then a
finite-index subgroup of G or G0 is open and a compact normal subgroup of G or G0

is finite. The proof of the following easy lemma is left to the reader.

LEMMA 2.3
Being commensurated is preserved in the following situations:
(1) Preimages of commensurated subgroups under homomorphisms are commen-

surated.
(2) Intersections of finitely many commensurated subgroups are commensurated.
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(3) A finite-index subgroup of a commensurated subgroup is itself commensu-
rated.

Both .CAF/ and .NbC/ are not necessarily preserved if one passes to a weakly
commensurable group. They are, however, preserved by passing to quotients by finite
kernels.

LEMMA 2.4
Let K G � be a finite normal subgroup. If � has property .CAF/, then �=K has
.CAF/.

Proof
Let p W �! �=K be the projection. Let A < �=K be an amenable, commensurated
subgroup. Then p�1.A/ < � is commensurated by Lemma 2.3. Since p�1.A/ is a
finite extension of A, it is amenable too. By the property .CAF/, the group p�1.A/ is
finite; thus, A is finite.

LEMMA 2.5
Let K G � be a finite normal subgroup. If � has property .NbC/, then �=K has
.NbC/.

Proof
The stated property is obvious and built into the definition of .NbC/.

2.2. Groups in the class Dreg and acylindrically hyperbolic groups
The class Dreg was introduced by Thom in [71]. It is closely related to the class Creg

of Monod and Shalom. Both Dreg and Creg are an attempt to define negative curvature
for groups in a cohomological way. The definition of Dreg is analytical.

Let � W �! U.H / be a unitary representation. A map c W �!H is a quasi-1-
cocycle for � if

� � � 3 .g; h/ 7! �.g/c.h/� c.gh/C c.g/ 2H

is uniformly bounded on � � � . The vector space of quasi-1-cocycles modulo the
bounded ones forms a group QH 1.�;H /. The class Dreg is the class of groups for
which QH 1.�; `2.�// has nonzero L.�/-dimension in the sense of Lück [47, Sec-
tion 6.1]. More concrete is the following description.

PROPOSITION 2.6 ([71, Corollary 2.5, Lemma 2.8])
A group � is in Dreg if and only if there is an unbounded quasi-1-cocycle �! `2.�/.
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The following theorem was proved by Bestvina and Fujiwara in [10] and Hamen-
städt in [41] for classes of groups that were later identified as acylindrically hyperbolic
groups by Osin in [57].

THEOREM 2.7 ([57, Theorem 8.3])
The class Dreg strictly contains the class of acylindrically hyperbolic groups.

We also mention the following result of Sun.

THEOREM 2.8 ([70, Corollary 1.3])
Nonelementary convergence groups are acylindrically hyperbolic.

Remark 2.9
In the following, we show properties .NbC/ and .CAF/ for groups in Dreg. By using
the difficult Theorem 2.7, this implies .NbC/ and .CAF/ for acylindrically hyperbolic
groups. We emphasize, however, that one can deduce .CAF/ and .NbC/ directly and
quite easily for acylindrically hyperbolic groups. For example, .CAF/ follows directly
from [57, Corollary 1.5] and the nonamenability of acylindrically hyperbolic groups.

We show that groups in Dreg satisfy the .wNbC/ property for the trivial reason
that the situation in which to apply .wNbC/ cannot happen. That means we show the
following stronger property for groups in Dreg. Since Dreg is closed under passing
to quotients by finite normal subgroups, this will imply that groups in Dreg satisfy
.NbC/.

Definition 2.10
A group � has property .wNbC/1 if it satisfies the following. If N G � is a normal
subgroup and M < � is a commensurated subgroup and N \M D ¹1º, then N is
finite or M is finite.

It is obvious that .wNbC/1 implies .wNbC/.

LEMMA 2.11
Let ƒ be a group with a normal subgroup N G ƒ and a commensurated subgroup
M <ƒ such that ƒD N �M and N \M D ¹1º. To every finite subset F � ƒ we
can assign subgroups NF <N and MF <M in such a way that the following holds:
(1) NF is normalized by M ,
(2) MF is a normal subgroup of finite index in M ,
(3) F �ƒF WDNFM and NFMF <ƒF has finite index,
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(4) MF commutes with NF , and thus, NFMF ŠNF �MF ,
(5) F � F 0 implies that NF �NF 0 and MF �MF 0 .
In particular, if N is finitely generated, then M has a finite-index subgroup that com-
mutes with N .

Proof
For every F �ƒ let MF be the normal core within M of the subgroup

M 0F WD
\

�2F[¹1º

�M��1 �M:

Since M is commensurated, M 0F <M (hence, MF <M ) are of finite index. In other
words,MF is the largest normal subgroup ofM with the property �MF �

�1 �M for
all � 2 F .

Let q W ƒ! N be the map q.nm/D n; it is well defined because of N \M D
¹1º. Clearly, M 0F DM

0
q.F /

; thus, MF DMq.F /. Since N Gƒ is normal, the commu-

tator Œn;m�D n.mn�1m�1/ lies in N . For m 2MF DMq.F / and n 2 q.F / we also
have Œn;m�D .nmn�1/m�1 2M ; hence, Œn;m� 2M \N D ¹1º. So MF commutes
with the subset q.F /. Let

S WD
[
m2M

mq.F /m�1 �N:

Because of normality MF GM the group MF commutes with the subset S as well.
The subgroups NF WD hSi<N and MF satisfy all the required properties.

THEOREM 2.12
Every group in Dreg is .Irr/, .CAF/, and .wNbC/1.

Proof
The properties .Irr/ and .CAF/ are shown in [71, Theorem 3.4]. Let � 2Dreg, and let
N G� andM <� be normal and commensurated subgroups, respectively, with trivial
intersection. Assume by contradiction that both subgroups are infinite. According to
[71, Theorem 3.4],N is nonamenable. LetN D ¹n1; n2; : : :º be an enumeration ofN .
We refer to the notation of Lemma 2.11 applied to our situation. The group N is the
increasing union of subgroups NFi <N for Fi D ¹n1; : : : ; niº. Hence, there is some
k 2N such that N 0 WDNFk is nonamenable and, thus, infinite.

The groupN 0 commutes with the finite-index subgroupM 0 WDMFk ofM . Since
M <� is commensurated, also M 0 < � is commensurated. By [71, Lemma 3.3] the
restriction maps QH 1.�; `2.�//! QH 1.M 0; `2.�// and QH 1.N 0M 0; `2.�//!

QH 1.M 0; `2.�// to commensurated subgroups are injective. Hence, the restriction
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map

QH 1
�
�; `2.�/

�
!QH 1

�
N 0M 0; `2.�/

�

is injective. We reach a contradiction as the latter module vanishes by [71, Theo-
rem 3.4] and the fact that N 0M 0 is a product of two infinite groups.

2.3. Conclusion of the proof of Theorem 1.4

Proof of property .CAF/
We refer to the cases in the statement of Theorem 1.4.
(1) Since all `2-Betti numbers of an infinite amenable group vanish by a result of

Cheeger and Gromov from [25, Theorem 0.2], every group with some nonva-
nishing `2-Betti number is .CAF/ according to [6, Corollary 1.4].

(2) This is exactly [15, Theorem 6.8].
(3) See Theorem 2.12. For the classes included in Dreg see Theorems 2.7 and 2.8.

Proof of property .NbC/
We refer to the classes of groups in the statement of Theorem 1.4. All these classes
are closed under passing to quotients by finite normal subgroups.

For (10) the closure property follows from the fact that the vanishing of `2-Betti
numbers is an invariant of virtual isomorphism which can be easily deduced from their
basic properties (see [47]). Alternatively, one may cite the much more general result
that the vanishing of `2-Betti numbers of lcsc groups is a coarse invariant (see [64]).

For (20) one argues as follows: Let � < GLn.k/ be a linear group with finite
normal subgroup F < � . A linear representation of the algebraic group N�=K where
N� is the Zariski closure of GLn.k/ yields a linear embedding of �=K .

For (30) the closure property is elementary and left to the reader.
For (40) we argue as follows: In view of Proposition 2.6 let c W �! `2.�/ be an

unbounded quasi-1-cocycle. Let F < � be a finite normal subgroup. Let � W `2.�/!
`2.�=F / be the map of unitary �-representation that sends the vector � 2 `2.�/ to
�F 2 `2.�=F /. Let s W �=F ! � be a set-theoretic section of the projection � !
�=F . Then � ı c ı s W �=F ! `2.�=F / is easily seen to be an unbounded quasi-1-
cocycle.

Thus, it suffices to show property .wNbC/ for the classes in Theorem 1.4, which
we do next.

(10) Let � be a group with positive first `2-Betti number. Assume by contradiction
that � does not have .wNbC/1. Let M;N < � be subgroups with M \N D ¹1º such
that N G � is normal and M is commensurated by � . Assume that neither M nor
N are finite. We have to show that ˇ.2/1 .�/D 0. Since ƒ WDNM is commensurated
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by � , the vanishing of ˇ.2/1 .ƒ/ would imply this according to [6, Corollary 1.4].
By Lemma 2.11 the group ƒ is an ascending union of groups ƒn such that ƒn is
virtually a product of infinite groups. A product of infinite groups has vanishing first
`2-Betti number because of the Künneth formula for `2-Betti numbers and the fact
that the zeroth `2-Betti number of an infinite group vanishes. The same is true for a
virtual product, so ˇ.2/1 .ƒn/D 0 for large n (see the remark about `2-Betti numbers

of virtually isomorphic groups above). Finally, ˇ.2/1 .ƒn/ D 0 for all n implies that

ˇ
.2/
1 .ƒ/D 0 by [47, Theorem 7.2(2)].

(20) Let � < GLn.k/ be a linear group, and let N;M < � be subgroups with
trivial intersection such that N G � is normal and M < � is commensurated by � .
Let F 7!NF ;MF be an assignment of finite subsets to subgroups as in Lemma 2.11.
By the Noetherian property of the algebraic group GLn.k/ there exists some finite set
F1 �N such that the Zariski closure NM1 of MF1 is minimal among all finite subsets
of N . Thus, for every n 2N , MF0[¹nº is Zariski-dense in NM1. Since

Œn;MF0[¹nº�D 1

we get that Œn; NM1�D 1. In particular, the finite-index subgroupMF1 ofM commutes
with N . This implies .wNbC/ for linear groups.

(30) As mentioned before, this is [20, Corollary 18].
(40) See Theorem 2.12.

Proof of property .Irr/
By the Künneth formula for `2-Betti numbers and the fact from the preceding proof
that their vanishing is unaffected by passing to virtually isomorphic groups, it follows
that groups with positive first `2-Betti numbers have property .Irr/. That groups in
Dreg have .Irr/ is contained in Theorem 2.12.

2.4. Examples of groups without property .NbC/
Among the conditions required for our main result, the .NbC/ property is the most
opaque. We present two examples of groups that do not have property .NbC/. The
first example is a wreath product. The second one comes with a lattice envelope that
shows the necessity of the .NbC/ condition in Theorem A.

Example 2.13
For an infinite residually finite group M and a countable group H we consider the
product groupHM D

Q
M H endowed with the natural (shift) action ofM . LetN be

the subgroup inHM consisting of periodic elements—that is, elements having anM -
stabilizer of finite index in M . Clearly, N is a countable subgroup on which M acts.
Let � DM �N . Observe that � D NM , N � � , M is commensurated by � , and
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N \M D ¹eº. The subgroup N does not commute with any finite-index subgroup of
M , yet any finitely generated subgroup of N does so (cf. Lemma 2.11).

Example 2.14
Let ƒ be an irreducible lattice in SLn.Qp/� SLn.R/. Let X be the symmetric space
of SLn.R/, and let B be the 1-skeleton of the Bruhat–Tits building associated with
SLn.Qp/. Then the action ofƒ onB�X can be extended to an action of an extension,
denoted by � , ofƒ by the fundamental group �1.B/, which is an infinitely generated
free group, on the universal covering QB �X . Note that T WD QB is a tree. Moreover,
� is an irreducible lattice in Aut.T /� SLn.R/. This type of example originates from
the work of Burger and Mozes [18, Section 1.8]. More general constructions in this
direction are discussed in Caprace and Monod [21, Section 6.C].

The group � has the properties .BT/, .Irr/, and .CAF/, but it lacks property
.NbC/. Let us show property .CAF/ first. Let A< � be a commensurated subgroup.
The image p.A/ under the projection p W � ! ƒ is an amenable commensurated
subgroup of � . It follows from Theorem 1.4 that ƒ has .CAF/. Thus, p.A/ is finite.
Since �1.B/ satisfies .CAF/ by [21, Section 6.C], the intersection A\�1.B/ is finite
as well, which implies that A is finite.

Let U � Aut.T / be the stabilizer of a vertex; it is a compact open subgroup.
Then it is easy to verify that the normal subgroup N D �1.B/ G � and the subgroup
M D � \ .U � SLn.R//, which is commensurated by Lemma 3.6, violate property
.NbC/: no finite-index subgroup of M commutes with N .

3. General facts about locally compact groups and their lattices
In Section 3.1 we introduce the analogue of weak commensurability or virtual iso-
morphism of groups for lattice embeddings. In Sections 3.2 and 3.3 we have a look
at broader classes of subgroups in lcsc groups than lattices, discrete subgroups, and
closed subgroups of finite covolume. In Section 3.4 we recall the definition of the
amenable radical and study its behavior under passage to closed subgroups of finite
covolume. Finally, in Sections 3.5 and 3.6 we study automorphisms of lcsc groups and
their lattices in different categories: outer automorphism groups and quasi-isometry
groups.

3.1. Virtual isomorphism of lattice embeddings
We introduce a relative notion of virtual isomorphism (see Definition 2.2).

Definition 3.1
Two lattice embeddings � ,! G and � 0 ,! G0 are virtually isomorphic if there is
a virtual isomorphism from G to G0 that restricts to a virtual isomorphism from �
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to � 0. A lattice embedding is trivial if it is virtually isomorphic to the identity homo-
morphism of a countable discrete group.

Remark 3.2
The above definition generalizes Definition 2.2 in the sense that two countable dis-
crete groups � and � 0 are virtually isomorphic if and only if the lattice embeddings
id W �! � and id W � 0! � 0 are virtually isomorphic.

To make the definition above more explicit, if � ,!G and � 0 ,!G0 are virtually
isomorphic, then there are open finite-index subgroups H < G and H 0 < G0 and
compact normal subgroups K GH and K 0 GH 0 and a commutative square

with vertical isomorphisms. The horizontal maps in the above diagram are lattice
embeddings. This follows from Lemmas 3.4 and 3.5.

PROPOSITION 3.3
Virtual isomorphism of lattice embeddings is an equivalence relation.

Proof
The only nonobvious claim is transitivity. Its proof is similar to the proof that vir-
tual isomorphism of groups is transitive. Let jl W �l ,!Gl for l 2 ¹1; 2; 3º be lattice
embeddings such that j1, j2 and j2, j3 are virtually isomorphic. So for l 2 ¹1; 2; 3º
there are finite-index subgroups Hl < Gl and H 02 < G2 and compact normal sub-
groups Kl GHl and K 02 GH

0
2 and isomorphisms

H1=K1
Š
�!H2=K2 and H 02=K

0
2

Š
�!H3=K3

that restrict to isomorphisms

.�1 \H1/=.�1 \K1/Š .�2 \H2/=.�2 \K2/ and

.�2 \H
0
2/=.�2 \K

0
2/Š .�3 \H3/=.�3 \K3/;

respectively. The subgroup H 002 WDH2 \H
0
2 <G2 has finite index in G2. Let

pr W H 002 !Q2 WDH
00
2 =.K2 \H

0
2/
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be the projection. Let K 002 be the kernel of the composition of quotient maps

H 002 !Q2!Q2=pr.K 02 \H2/:

Note thatK 002 containsK2\H 02 DK2\H
00
2 andK 02\H2 DK

0
2\H

00
2 . SinceK2 and

pr.K 02 \H2/ are compact, K 002 GH
00
2 is a compact normal subgroup of H 002 . Consider

the compositions of quotient maps and isomorphisms as above:

f1 W H1!H1=K1
Š
�!H2=K2 and g3 W H

0
2!H 02=K

0
2

Š
�!H3=K3:

Similarly, using the inverses of the above isomorphisms we obtain homomorphisms

g1 W H2!H2=K2
Š
�!H1=K1 and f3 W H3!H3=K3

Š
�!H 02=K

0
2:

We set Ci WD gi .H 002 / and Ei WD gi .K 002 / GCi for i 2 ¹1; 3º; further, let QCi <Hi and
QEi <Hi be the preimages of Ci and Ei under the quotient maps. Then QCi has finite

index in Hi and, thus, also in Gi , and QEi is a compact normal subgroup of QCi for
i 2 ¹1; 3º. The homomorphism

QCi= QEi !H 002 =K
00
2 ; Œx� 7!

�
fi .x/

�

is an isomorphism for i 2 ¹1; 3º with inverse map Œy� 7! Œgi .y/�. Since fi and gi
preserve the lattices, this isomorphism restricts to an isomorphism

.�i \ QCi /=.�i \ QEi /Š .�2 \H
00
2 /=.�2 \K

00
2 /

for i 2 ¹1; 3º. This finishes the proof of transitivity.

3.2. Discrete subgroups of locally compact groups
We collect some important, albeit easy facts used in the proof of the main result.

LEMMA 3.4 ([23, Section 2.C])
Let � <G be a lattice in an lcsc group. Let U <G be an open subgroup. Then �\U
is a lattice in U .

LEMMA 3.5 ([62, Theorem 1.13, p. 23])
Let G be an lcsc group, and let N GG be a normal closed subgroup. The projection
of a lattice � <G to G=N is discrete if and only if � \N is a lattice in N . If so, then
the projection of � to G=N is also a lattice.

The following statement is our main source of commensurated subgroups.
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LEMMA 3.6
Let G be an lcsc group, and let U <G be a compact open subgroup. Then U is com-
mensurated byG. For any subgroupƒ<G the intersectionƒ\U is commensurated
in ƒ.

Proof
For any g 2 G, U \ gUg�1 is an open subgroup of the compact group U (resp.,
in gUg�1); hence, it has finite index in U (resp., in gUg�1). The second statement
follows by taking g 2ƒ and taking intersections with ƒ.

LEMMA 3.7 ([22, Lemma 2.12])
Any lattice envelope of a finitely generated group is compactly generated.

3.3. Closed subgroups of finite covolume
The notion of a lattice, that is, a discrete subgroup of finite covolume, can be general-
ized to closed, but not necessarily discrete, subgroups as follows. A closed subgroup
H <G of an lcsc group G is said to have finite covolume in G if G=H carries a finite
G-invariant Borel measure.

If H has finite covolume in G, then G is unimodular if and only if H is unimod-
ular (see [62, Lemma 1.4, p. 18]).

LEMMA 3.8 ([62, Lemma 1.6, p. 20])
Let G be an lcsc group, and let H <L <G be closed subgroups. Then H <G has
finite covolume if and only if both L<G and H <L have finite covolumes.

It is well known that a torsion-free lattice in a tdlc group is uniform. A mild
generalization is given by the following.

LEMMA 3.9 ([3, Corollary 4.11])
Let G be a unimodular tdlc group. Let H <G be a closed subgroup of finite covol-
ume. Let mH be the Haar measure of H . If there is an upper bound on the Haar
measures of compact open subgroups in H , that is,

sup
®
mH .U / j U is a compact open subgroup in H

¯
<1;

then G=H is compact.

LEMMA 3.10
Let G be a connected, semisimple, center-free, real Lie group without compact fac-
tors. Every closed subgroup H < G of finite covolume has the form H D � � G2,
where G2 is a direct factor of G, G DG1 �G2, and �<G1 is a lattice.
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Proof
The Lie algebra h of the connected component H 0 is Ad.H/-invariant. Since H is
Zariski-dense in G by Borel’s density theorem [11, Theorem 1], it follows that h is
an ideal in the semisimple Lie algebra g of G. Let

gD g1˚ � � � ˚ gn

be the decomposition into simple Lie algebras. Let

I1 D
®
i 2 ¹1; : : : ; nº

ˇ̌
gi \ hD ¹0º

¯
;

and let I2 D ¹1; : : : ; nºnI1. Then G DG1 �G2 with Gk being the Lie subgroup with
Lie algebra

M
i2Ik

gi :

Since gi is simple we either have gi \ h D ¹0º or gi \ h D gi . This implies that
H D .G1 � ¹1º\H/�G2, where � WDG1 � ¹1º\H is discrete. Since H has finite
covolume, � is a lattice.

3.4. The amenable radical

Definition 3.11
The amenable radical of an lcsc group G is the maximal closed normal amenable
subgroup. We denote it by Radam.G/ GG.

LEMMA 3.12
Let G be an lcsc group, and let H <G be a closed subgroup of finite covolume. Then
Radam.H/D Radam.G/\H .

This lemma can be deduced from the following result.

LEMMA 3.13 ([37, Proposition 4.4, Theorem 4.5])
Let G be an lcsc group, and let G�M be a continuous action that is minimal and
strongly proximal. Let H < G be a closed subgroup of finite covolume. Then the
restriction of the G-action to H is also minimal and strongly proximal.

In [37] Furstenberg was interested in the restriction to lattices, but the proof
applies to general closed subgroups of finite covolume.
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Proof of Lemma 3.12 from Lemma 3.13
The very definition of Radam.G/ yields the inclusion

Radam.G/\H < Radam.H/:

For the converse inclusion, we use an equivalent characterization of the amenable
radical as the common kernel of all minimal, strongly proximal actions on com-
pact metrizable spaces (see [36, Proposition 7]). Thus, for the converse inclusion
it suffices to show that, given an arbitrary minimal and strongly proximal G-action
G!Homeo.M/, its restriction toH is also minimal and strongly proximal, because
it would show that Radam.H/ acts trivially in every minimal strongly proximal G-
action, which is the content of Lemma 3.13.

3.5. (Outer) automorphism groups
We describe various results about groups of automorphisms and groups of outer auto-
morphisms of certain groups. We are confident that the main result of this section,
Theorem 3.14, is known to experts, but it does not seem to be in the literature in the
appropriate generality.

THEOREM 3.14
Let K1; : : : ;Kn be number fields, and let Hi be connected, noncommutative, adjoint,
absolutely simple Ki -groups. Let Si � Vi be finite compatible sets of places of Ki as
in Section 4.1. Then any group that is (abstractly) commensurable with

nY
iD1

Hi

�
Oi ŒSi �

�

has a finite outer automorphism group.

(The proof of Theorem 3.14 will be given by the end of this section. This theorem
will be used in Section 5 together with Lemma 3.15 to split certain extensions of
groups.)

For a subgroup B < A of a group A, let Aut.A/, AutB.A/, and Out.A/ denote
the automorphism group of A, the subgroup of Aut.A/ preserving B setwise, and the
outer automorphism group of A. For a � -compact lcsc group G we denote the group
of continuous automorphisms by Autc.G/ and the group of continuous outer auto-
morphisms by Outc.G/D Autc.G/= InnG. Note that a continuous automorphism of
G is a homeomorphism by the open mapping theorem from [13, IX, Section 5.3].

We begin by stating two auxiliary results which are elementary. We leave the first
one to the reader and provide a reference for the second one.
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LEMMA 3.15
Let B GA be a normal subgroup in a group A. Then the kernel of the natural homo-
morphism A!Out.B/ is BZA.B/, where ZA.B/ is the centralizer of B in A. If, in
addition, B has trivial center, then BZA.B/ is a direct product B �ZA.B/. In par-
ticular, the short exact sequence B ,! A� A=B splits as a direct product provided
B has trivial center and A!Out.B/ has trivial image.

LEMMA 3.16 ([73, Theorem, p.90])
Let B G A be a normal subgroup in a group A. Let C be the center of B . Then the
sequence of groups

1!Z1.A=BIC/
j
�!AutB.A/

�
�!Aut.B/�Aut.A=B/ (3.1)

is exact. Here the left group is the Abelian group of 1-cocycles of A=B in C , j maps
a cocycle c to a 7! c.Œa�/a, and �.f /D .f jB ; Œf �/.

The following three results are immediate consequences of Lemma 3.16.

LEMMA 3.17
Every topological automorphism of a product G D G0 � G td of a center-free con-
nected group G0 and a tdlc group G td is a product of a topological automorphism of
G0 and a topological automorphism of G td.

Proof
We apply Lemma 3.16 toADG and B DG0. In this situation, the map � in (3.1) has
an obvious right inverse s. Both � and s preserve continuity of automorphisms. Let
˛ W G! G be a continuous automorphism. Then ˛.G0/D G0. Since G0 has trivial
center, � is injective. So ˛D s.�.˛//.

LEMMA 3.18
Let A be a group, and let B GA be a characteristic subgroup of finite index. If B has
a finite center, then the restriction map Aut.A/!Aut.B/ has a finite kernel.

Proof
Denote byK the kernel of Aut.A/DAutB.A/!Aut.B/, and denote by C the center
of B . Since Aut.A=B/ is finite, it is enough to show that the kernel K 0 of K !
Aut.A=B/ is finite. By Lemma 3.16, K 0 is isomorphic to Z1.A=BIC/, which is
finite since A=B and C are finite.
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COROLLARY 3.19
If a group A has a characteristic subgroup of finite index that has a finite center and a
finite outer automorphism group, then also A has a finite outer automorphism group.

Proof
Let B G A be characteristic with finite center and finite outer automorphism group.
Since the group Aut.A/=B surjects onto Aut.A/=AD Out.A/, it is enough to show
that the former is finite. This follows by the exactness of

1! ker
�
Aut.A/!Aut.B/

�
!Aut.A/=B!Out.B/;

as Out.B/ is finite by assumption, and the kernel is finite by Lemma 3.18.

For the purposes of this section, we introduce the following definition.

Definition 3.20
An infinite group A is said to be strongly irreducible if, for every homomorphism
� W B1 � B2! A with finite cokernel, either B1 < ker� or B2 < ker� . A group is
said to be strongly outer finite if the outer automorphism group of any of its finite-
index subgroups is finite.

LEMMA 3.21
A Zariski-dense subgroup of the K-points of a connected, noncommutative, adjoint,
K-simple K-algebraic group is strongly irreducible.

Proof
Let H be a connected, noncommutative, adjoint, K-simple K-group, and let � <
H.K/ be a Zariski-dense subgroup. Let � W B1 �B2! � be a homomorphism with
finite cokernel. Since � < H.K/ is Zariski-dense, the Zariski closure of im.�/ has
to be H as a finite-index subgroup of the connected group H. The Zariski closures of
�.Bi / defineK-subgroups Hi , i 2 ¹1; 2º, that commute in H and together generate H.
By the simplicity of H we conclude that, for some i 2 ¹1; 2º, Hi is trivial. It follows
that Bi < ker� .

THEOREM 3.22
Let B be a group that is (abstractly) commensurable to a product of a finite family
of finitely generated, strongly irreducible, strongly outer finite groups. Then B has a
finite outer automorphism group.

The proof of Theorem 3.22 will be preceded by some preparation. First, we make
the following ad hoc definition, which is not standard.
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Definition 3.23
A standard subgroup of a product

Q
i2I Ai of groups is a subgroup of the formQ

i2I Bi with each Bi <Ai being a finite-index subgroup.

LEMMA 3.24
Let .Ai /i2I be a finite family of strongly irreducible groups, and let .Bj /j2J be a
finite family of nontrivial groups with jJ j � jI j. If

Y
j2J

Bj
�
�!
Y
i2I

Ai

is a monomorphism with finite cokernel, then there are a bijection f W J ! I and, for
each j 2 J , a monomorphism 	j W Bj !Af .j / with finite cokernel such that 	 is the
product of the maps 	j . In particular, the image im.	/ is a standard subgroup.

Proof
Let A and B be the product of .Ai /i2I and .Bj /j2J , respectively. The proof is by
induction on jI j. If jI j D 1, there is nothing to prove. Let jI j > 1. Then jJ j > 1,
and we can decompose it nontrivially as J D J1 t J2. For k 2 ¹1; 2º we set B.k/ DQ
j2Jk

Bj . We let

Ik D ¹i 2 I jB3�k < ker�iº and A.k/ D
Y
i2Ik

Ai ;

where �i W A!Ai is the i th projection. By the strong irreducibility of the Ai ’s, I D
I1 t I2 is a partition. Hence, the composition of 	 W B!A with the projection A!
A.k/ factors through B.k/ Š B=B.3�k/, thus giving a homomorphism 	k W B

.k/!

A.k/. We observe that these 	k’s are injective homomorphisms with finite cokernels.
Without loss of generality, jI1j � jJ1j. By the induction hypothesis, jI1j D jJ1j and
therefore jI2j � jJ2j. By applying the induction hypothesis to both 	k’s, the statement
follows.

Applying Lemma 3.24 to automorphisms 	, we obtain the following.

COROLLARY 3.25
Let .Ci /i2I be a finite family of strongly irreducible groups. Then the obvious embed-
ding

Y
i2I

Aut.Ci /!Aut
�Y
i2I

Ci

�

has a finite cokernel.
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LEMMA 3.26
Let .Ai /i2I be a finite family of strongly irreducible groups, and let A be its product.
Let B < A be a subgroup of finite index. Then

Q
i2I .B \ Ai / is a characteristic

subgroup of B of finite index.

Proof
Let us call a subgroup of B that is simultaneously a standard subgroup of A a sub-
standard subgroup. By Lemma 3.24, every 	 2 Aut.B/ preserves substandard sub-
groups. Hence,

Q
i2I .B \Ai / is characteristic in B as it is the unique maximal ele-

ment in the collection of substandard subgroups.

Proof of Theorem 3.22
By assumption, B has a finite-index subgroup C 0 < B that is isomorphic to a finite-
index subgroup of the product A of a finite family .Ai /i2I of finitely generated,
strongly irreducible, strongly outer finite groups. From now on we will identify C 0

and its various subgroups with their images in A under this isomorphism. As each
Ai is finitely generated, A, C 0, and thus B are finitely generated too. Thus, C 0 has a
finite-index subgroup C 00 that is characteristic in B (e.g., the intersection of all sub-
groups of B with index ŒB W C 0�). By Lemma 3.26, C 00 has a characteristic subgroup
C of finite index which is standard in A; that is, C D

Q
i2I Ci , where Ci < Ai are

of finite index. Strong irreducibility passes to finite-index subgroups. So each Ci is
strongly irreducible. Being characteristic is transitive, so C is characteristic in B .

By Corollary 3.25, the obvious embedding
Q
i2I Aut.Ci /!Aut.C / has a finite

cokernel. By the strong outer finite assumption, Out.Ci / is finite for each i 2 I .
Hence, Out.C / is finite. By the strong irreducibility assumption C has a finite center.
Thus, Corollary 3.19 implies that Out.B/ is finite.

The following proposition is well known.

PROPOSITION 3.27
Let K be a number field, and let H be a noncommutative, connected, adjoint, abso-
lutely simple K-group. Let S � V be a finite compatible set of places of K as in Sec-
tion 4.1. Then

Q
�2S H.K�/ has a finite group of continuous outer automorphisms.

Proof
By Lemma 3.21, each group H.K�/ is strongly irreducible. By Corollary 3.25, the
natural embedding

Y
�2S

Aut
�
H.K�/

� j
�!Aut

�Y
�2S

H.K�/
�
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has a finite cokernel. Further, if f 2 im.j / is a continuous automorphism, then f is
a product of continuous automorphisms. This implies that the restriction of j

Y
�2S

Autc
�
H.K�/

�
!Autc

�Y
�2S

H.K�/
�

has a finite cokernel, too. It is thus enough to show that Outc.H.K�// is finite for
every 
 2 S . Since every continuous field automorphism of K� is trivial on the clo-
sure of Q over which K� is finite, the field K� has a finite group of continuous field
automorphisms. Moreover, the group H has a finite group of algebraic outer auto-
morphisms, given by Dynkin diagram automorphisms. Thus, Outc.H.K�// is indeed
finite by [50, Chapter I, Section 1.8.2(IV)].

PROPOSITION 3.28
Let K be a number field, and let H be a noncommutative, connected, adjoint, abso-
lutely simple K-group. Let S � V be a finite compatible set of places of K as in
Section 4.1. Then H.OŒS�/ is finitely generated, strongly irreducible, and strongly
outer finite.

Proof
By [50, Chapter IX, Theorem 3.2] H.OŒS�/ is finitely generated, and by Lemma 3.21
H.OŒS�/ is strongly irreducible. We are left to prove that H.OŒS�/ is strongly outer
finite. To this end, consider a subgroup � <H.OŒS�/ of finite index.

The group � is an irreducible lattice in H D
Q
�2S H.K�/. Let AD Autc.H/.

The conjugation homomorphism H ! A is injective as H is center-free and has a
finite cokernel by Proposition 3.27. Then � ,! A embeds as a lattice. We claim the
following:
(1) The normalizer N DNA.�/ of � in A is discrete in A.
(2) The conjugation action N !Aut.�/ is an isomorphism.

Let us first conclude the finiteness of Out.�/ from .1/ and .2/. Since N contains
the lattice � and N is discrete in A, N <A is also a lattice. Hence, ŒN W �� <1. By
.2/, Out.�/ is isomorphic to N=� and, hence, finite.

Regarding .1/, discreteness will follow once we show that N is countable,
because N <A is closed. Since � is finitely generated, Aut.�/ is countable. Hence,
N=ZA.�/ is countable, where ZA.�/ denotes the centralizer of � in A. Each factor
of H is center-free, so ZH .�/ is trivial by the density of the projection of � in each
factor. Since H < A is of finite index, ZA.�/ is finite, and the countability of N
follows.

To verify .2/, it is enough to show that every automorphism of � induces a con-
tinuous automorphism of H . This is a consequence of the Mostow–Prasad strong
rigidity theorem for H (see [50, Theorem VII 7.1]).
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Proof of Theorem 3.14
By Proposition 3.28, the groups Hi .Oi ŒSi �/ are finitely generated, strongly irre-
ducible, and strongly outer finite. Thus, the proof follows at once from Theo-
rem 3.22.

Finally, we need a classical result from the work of Tits and of Borel and Tits.

THEOREM 3.29
Let K be a number field, and let 
 be a finite place of K . Let H be a noncommutative,
connected, adjoint, absolutely simple K-group of K�-rank at least 2. Then the auto-
morphism group of the Bruhat–Tits building associated to H and 
 contains H.K�/C

as a subgroup of finite index.

Proof
In higher rank, the automorphism group of the associated Bruhat–Tits building X
is isomorphic to Aut.H.K�//, which is isomorphic to an extension of the group
Aut.H/.K�/ of algebraic automorphisms over K� by a subgroup of field automor-
phisms of K� . This follows for example from [4, Proposition C.1] and the fact that a
local field of characteristic 0 has finitely many continuous field automorphisms.

3.6. Quasi-isometries of locally compact groups
Recall that a map between metric spaces f W .X;dX /! .Y; dY / is an .L;C /-quasi-
isometry if

1

L
� dX .x; x

0/�C < dY
�
f .x/; f .x0/

�
<L � dX .x; x

0/CC

for all x;x0 2 X and for every y 2 Y there is x 2 X so that dY .y; f .x// < C . Two
maps f;g W .X;dX /! .Y; dY / have bounded distance if

sup
x2X

dY
�
f .x/; g.x/

�
<1:

The quasi-isometry group QI.X;dX / of .X;dX / is the group (under composition) of
equivalence classes of quasi-isometries .X;dX /! .X;dX / under bounded distance.

LEMMA 3.30
Let G be an lcsc group containing a closed subgroup H < G such that G=H is
compact, the projection G!HnG has locally a continuous cross section, and H is
compactly generated. Let H ! Isom.X;d/ be a properly discontinuous cocompact
action on some proper geodesic metric space .X;d/. Then the natural homomorphism

	 W H ! Isom.X;d/!QI.X;d/
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extends to a homomorphism N	 W G ! QI.X;d/ with the following property. There
exist constantsL;C > 0 so that each N	.g/, g 2G, is represented by an .L;C /-quasi-
isometry fg W X!X such that for every bounded set B �X there is a neighborhood
of the identity V �G with

8g2V8x2B d
�
fg.x/; x

�
� C: (3.2)

In particular, the isometric action of H on X extends to a quasiaction of G on X .

Remark 3.31
The projection G!HnG of an lcsc group G to the coset space of a closed subgroup
H <G has locally a continuous cross section if G is finite-dimensional with respect
to covering dimension (see [42, Theorem 2]).

Proof of Lemma 3.30
Since H is compactly generated and HnG is compact, G is also compactly gener-
ated. Thus, G and H possess left-invariant word metrics that are unique up to quasi-
isometry. The inclusion j W H !G is a quasi-isometry. We construct a quasi-inverse
j 0 W G!H of j , which is unique up to bounded distance, in the following way.

Let pr W G!HnG be the projection. Let s W U0!G be a local continuous cross
section of pr defined on some compact neighborhood U0 � HnG of H1 such that
s.H1/D 1. We can extend s to a global cross section s W HnG! G with relatively
compact image s.HnG/, which is not necessarily continuous. Then

j 0 W G!H; g 7! g � s
�
pr.g/

��1

is a quasi-inverse of j .
The assignment f 7! j ı f ı j 0 yields an isomorphism j� W QI.H/! QI.G/.

Let x0 2 X . By the Švarc–Milnor theorem, the map h! hx0 is a quasi-isometry
f W H ! X . We pick a quasi-inverse f 0 W X ! H of f . Similarly, we obtain an
isomorphism f� W QI.H/! QI.X/. Let H ! QI.H/ be the homomorphism that
sends a group element to its left translation. Similarly, G!QI.G/.

It is easy to see that the map 	 coincides with the composition

H !QI.H/
f�
�!QI.X/:

We define N	 to be the composition

G!QI.G/
j�1
�

��!QI.H/
f�
�!QI.X/:

Clearly, N	 extends 	. Let lGg W G!G denote left translation by g 2G inG. Similarly,
let lH

h
W H !H be left translation by h 2H . Then N	.g/ is represented by the quasi-
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isometry

fg WD f ı j
0 ı lGg ı j ı f

0:

Clearly, there are constants C;L > 0 only depending on j , j 0, f , and f 0 such that
fg is an .L;C /-quasi-isometry.

Let B �X be a bounded subset. Let

D WD sup
x2X

d
�
x;f

�
f 0.x/

��
D sup
x2X

d
�
x;f 0.x/x0

�
<1:

The set

®
f 0.x/

ˇ̌
x 2B

¯
�H

is bounded and, thus, relatively compact. Let K �H be its closure. The continuous
map

H �G!HnG; .h;g/ 7! pr.gh/

sends H � ¹1º to H1. By the continuity and compactness of K there is an identity
neighborhood V0 �G such that K � V0 is mapped to U0 �HnG. Then the function

 W K � V0!R; .h; g/ 7! d
�
ghs

�
pr.gh/

��1
x0; hx0

�

is continuous and maps K � ¹1º to 0. By the continuity and compactness of K there
is an identity neighborhood V � V0 such that  .K � V /� Œ0; 1�.

Now let x 2B , and let g 2 V . Let hD f 0.x/ 2K . Then

d
�
fg.x/; x

�
D d

�
f
�
j 0
�
gj
�
f 0.x/

���
; x
�
D d

�
j 0
�
gf 0.x/

�
x0; x

�

� d
�
j 0.gh/x0; hx0

�
CD

D d
�
ghs

�
pr.gh/

��1
x0; hx0

�
CD

�DC 1:

Upon replacing the constant C by max¹C;DC 1º, the statement follows.

4. Arithmetic lattices, tree extensions, and the arithmetic core
In Section 4.1 we introduce the notion of tree extensions of S -arithmetic lattices,
which appears in our main result, Theorem A. In Section 5 we discuss an arithmeticity
result for lattices in a product of a semisimple Lie group and a tdlc group, which
identifies the second case in Theorem A.



LATTICE ENVELOPES 241

4.1. Arithmetic lattices and tree extensions

Setup 4.1
Let K be a number field, let O be its ring of integers, and let H be a connected,
noncommutative, absolutely simple adjointK-group. Let V be the set of inequivalent
valuations (places) of K , let V1 denote the Archimedean ones, and let Vfin D V �

V1 be the non-Archimedean ones (finite places). For 
 2 V we denote by K� the
completion of K with respect to 
; it is a local field. Let S � V be a finite subset
of places that is compatible with H in the sense of [8]. Explicitly, this means the
following:
(1) For every 
 2 S , H is K�-isotropic.
(2) S contains all 
 2 V1 for which H is K�-isotropic.
(3) S contains at least one finite and one infinite place.
Let S1 D S \V1 and Sfin D S \Vfin. Let OŒS��K be the ring of S -integers.

For 
 2 V let H.K�/C <H.K�/ be the normal subgroup as defined in [12, Sec-
tion 6]. Since K� is perfect, the group H.K�/C is the subgroup generated by all
unipotent elements and it has finite index in H.K�/. If 
 2 V1, then H.K�/C is just
the connected component of the identity in the real Lie group H.K�/. Define

HK;S WD
Y
�2S

H.K�/; HCK;S WD
Y
�2S

H.K�/C:

The quotient HK;S=HCK;S is finite.
By reduction theory after Borel and Harish-Chandra the diagonal embedding

realizes H.OŒS�/ is a lattice in HK;S . Note that

HK;S DHK;S1 �HK;Sfin

is the splitting into a semisimple real Lie group and a totally disconnected locally
compact group.

Remark 4.2
If S is finite set of places compatible with H, then H.OŒS�/ is a lattice in a product of
at least two lcsc groups, one of them being a Lie group and one of them being a tdlc
group.

We now exhibit a generalization of the previous type of lattices.

Definition 4.3
Let S be finite. Let Sfin

1 denote the finite places 
 2 Sfin such that the K�-rank of H is
1; denote by T� the associated Bruhat–Tits tree, and denote by Aut.T�/ the tdlc group
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of automorphisms of this simplicial tree. Any closed intermediate group

HCK;S D
Y
�2S

H.K�/C <H� <
Y

�2S�Sfin
1

H.K�/�
Y

�2Sfin
1

Aut.T�/

is called a tree extension of HK;S .

Since HCK;S D
Q
�2S H.K�/C < H� is cocompact, the inclusion of a subgroup

commensurable to H.OŒS�/ into a tree extension of HK;S is a lattice embedding by
Lemma 3.8.

Definition 4.4
Retaining Setup 4.1, we call the inclusion of a subgroup commensurable to H.OŒS�/
into HK;S or into a tree extension of HK;S an S -arithmetic lattice (embedding) or an
S -arithmetic lattice (embedding) up to tree extension, respectively.

Remark 4.5
Denote by X� the Bruhat–Tits buildings or the symmetric space of H.K�/. For 
 2
S � Sfin

1 the group Isom.X�/ contains H.K�/C as a subgroup of finite index by The-
orem 3.29. Further,

Q
�2S Isom.X�/ is a finite-index subgroup of Isom.

Q
�2S X�/.

This follows from a generalization of the de Rham decomposition (see [21, Theo-
rem 1.9]). Thus, any closed intermediate subgroup

HCK;S <H
� < Isom

�Y
�2S

X�

�

is, up to passing to a finite-index subgroup, a tree extension of HK;S .

4.2. Arithmetic core theorem
Next we state an arithmeticity result for lattices in products that provides a key step
in the proof of Theorem A.

THEOREM 4.6 (Arithmetic core theorem)
Let H be a connected, center-free, semisimple, real Lie group without compact fac-
tors, let D be a tdlc group, and let � <H �D be a lattice. Assume that
(1) the projection �!D has a dense image,
(2) the projection �!H has a dense image,
(3) the projection �!H is injective,
(4) D is compactly generated.
Then there exist number fields K1; : : : ;Kn, connected, noncommutative, adjoint,
absolutely simple Ki -groups Hi , and finite sets Si � Vi of places of Ki compatible
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with Hi as in Section 4.1 with the following properties. There are a topological
isomorphism

H Š

nY
iD1

.Hi /
0
Ki ;S

1

i

and a continuous epimorphism D �Q with compact kernel such that Q is a closed
intermediate subgroup

nY
iD1

.Hi /
C

Ki ;S
fin
i

<Q<

nY
iD1

.Hi /Ki ;Sfin
i

and the image of � in H �Q is commensurable with the image of

nY
iD1

Hi

�
Oi ŒSi �

�
�!

nY
iD1

.Hi /Ki ;S1i �

nY
iD1

.Hi /Ki ;Sfin
i
:

This result is quite close to Theorem 5.20 in the paper [22] of Caprace and
Monod. In fact, if H is assumed to be simple instead of semisimple, then Theo-
rem 4.6 is essentially their theorem. In our companion paper [8] we prove Theo-
rem 4.6, deducing it from a more general statement, in which D is not assumed to be
compactly generated. In this more general case the sets Si of places of Ki might be
infinite, and the gap between HCK;S and HK;S becomes large.

In the current paper we use the above arithmetic core Theorem 4.6 in Section 5,
Step 3, case (iii). At this point in the proof we do not know yet that � (called �3
there) is finitely generated, but do know the compact generation of D (called G td

3

there) inherited from the compact generation assumption on G.
For the reader’s convenience we sketch the idea of the proof of Theorem 4.6

as it appears in [8]. Apart from Step 1 below our approach differs from that taken by
Caprace and Monod in [22]. In the following sketch we ignore some important details
for the sake of transparency.

(1) Choose a compact open subgroup U < D, and observe that the projection
� of �U WD � \ .H � U / to H is a lattice in H , commensurated by the projection
of all of � to H . If � is irreducible, Margulis’s commensurator superrigidity and
arithmeticity theorems provide a number field K and a simple K-algebraic group H,
so that the semisimple real Lie group H is locally isomorphic to HK;S1 and � is
commensurable to the arithmetic lattice H.O/; here S1 is the set of infinite places

 2 V1 for which H.K�/ is noncompact. If � is reducible, it is commensurable to a
product

�1 � � � � ��n <H1 � � � � �Hn;
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where �i < Hi are irreducible lattices, leading to fields Ki and Ki -simple groups
Hi , i D 1; : : : ; n. For clarity we continue with the nD 1 case.

(2) We now view � as a subgroup of the commensurator CommenH .H.O// of
the arithmetic lattice H.O/'�. If one glosses over the difference between the simply
connected and adjoint forms of H (such as SLd and PGLd ), then the above commen-
surator is the subgroup of rational points H.K/, and therefore, � < H.K/. Define
Sfin to be the set of those non-Archimedean places 
 2 Vfin for which the image of �
in H.K�/ is unbounded. (For example, for SLd .Z/ < � < PSL.Q/ the set Sfin would
consist of primes p that appear with arbitrarily high powers in denominators of entries
of � 2 �). Then � is commensurable to a subgroup of H.OŒS�/.

(3) For 
 2 Sfin, the image of � in the tdlc group H.K�/ is not precompact. It can
be shown using Howe and Moore’s theorem (alternatively, using [61, Theorem (T)])
that this implies that the image of � is dense in (an open subgroup of finite index in)
H.K�/. One can even show that the image of � is dense in (an open subgroup of finite
index in) HK;Sfin .

(4) We now consider the closureL of the diagonal imbedding of � inD�HK;Sfin .
Using the fact that the projections to both factors are dense and that the closure of
� ' H.O/ in both projections is open compact, one shows that L is a graph of a
continuous epimorphism D!HK;Sfin with compact kernel.

(5) Finally, the fact that � <H �D is a lattice implies that its image, contained
in the S -arithmetic lattice H.OŒS�/, is a lattice in H �HK;Sfin ' HK;S . Thus, � '
H.OŒS�/. If D is compactly generated, then so is HK;Sfin , which implies that Sfin

(hence, also all of S ) is finite. It also follows that � is finitely generated.

5. Proof of Theorem A
The starting point of the proof of Theorem A is a consequence of Hilbert’s fifth prob-
lem, which was observed by Burger and Monod in [17, Theorem 3.3.3].

THEOREM 5.1
Every locally compact group H contains an open, normal, finite-index subgroup H 0

containing Radam.H/ such that the quotient H 0=Radam.H/ is topologically isomor-
phic to a direct product of a connected, center-free, semisimple, real Lie group without
compact factors and a tdlc group with trivial amenable radical.

In fact, H 0 D kerŒH ! Out..H=Radam.H//
0/� is the kernel of the homomor-

phism to the (finite) outer automorphism group of the semisimple, center-free, real
Lie group .H=Radam.H//

0—the connected component of the identity of the lcsc
group H=Radam.H/.
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Step 1: Reduction to a lattice in a product
It is only the very first step of the proof where we will take advantage of the prop-
erty .CAF/.

THEOREM 5.2
The amenable radical of a lattice envelope of a group with property .CAF/ is com-
pact.

Proof
Let G0 <G be an open, normal, finite-index subgroup so that

G1 WDG
0=Radam.G/ŠG

ss
1 �G

td
1

as in Theorem 5.1, namely,Gss
1 is a connected, center-free, semisimple, real Lie group

without compact factors, and G td
1 is a tdlc group with Radam.G

td
1 /D ¹1º. Pick a com-

pact open subgroup U <G td
1 . We consider the following commutative diagram:

The arrows are the obvious inclusions and projections. Moreover, j is defined by
requiring commutativity.

First, we show that A is commensurated by � , which is equivalent to j.¹1º �U /
being commensurated by G=Radam.G/ by Lemma 2.3. Let g 2G=Radam.G/. Since
G0 is normal in G and thus G0=Radam.G/ is normal in G=Radam.G/, conjugation
by g is a continuous automorphism of j.Gss

1 � G
td
1 /Š G

ss
1 � G

td
1 . By Lemma 3.17,

this automorphism is the product of continuous automorphisms css
g W G

ss
1 ! Gss

1 and
ctd
g W G

td
1 !G td

1 . Hence, conjugation by g maps j.¹1º �U / to j.¹1º � ctd
g .U //. Since

the subgroup ctd
g .U / < G

td
1 is open and compact, the intersection ctd

g .U /\U has finite
index in U . This implies that j.¹1º � U / is commensurated by G=Radam.G/, from
which we conclude that A is commensurated by � .

Let G0U <G
0 be the preimage of Gss

1 �U under pG0 , and let

K WD ker.G0U
pG0
��!Gss

1 �U !Gss
1 /:

The group K is an extension of the amenable group Radam.G/ by the compact group
U . Hence, K is amenable. The group � \G0U is a lattice in G0U by Lemma 3.4.
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We now invoke a deep result of Breuillard and Gelander from [14, Section 9].
It follows from [14, Theorem 9.5] and K being a closed amenable subgroup that the
projection of the lattice � \ G0U in G0U =K is discrete. The result of Breuillard and
Gelander is a generalization of Auslander’s theorem, whereK is a solvable Lie group.

By Lemma 3.5, the group

AD � \ p�1G0
�
j
�
¹1º �U

��
DK \ .� \G0U /

is a lattice in K and, thus, is amenable. Note that we used p�1G .j.¹1º � U // D

p�1G0 .j.¹1º � U // here, which follows from the diagram. On the other hand A is
commensurated by � and, hence, finite. This implies that K and its closed subgroup
Radam.G/ are compact.

Let us summarize the situation after the first step.

PROPOSITION 5.3
Let � have property .CAF/, and let � <G be a lattice embedding. Then the amenable
radical K WD Radam.G/ of G is compact. By passing to an open normal finite-index
subgroup G0 < G containing K and to the finite-index subgroup � 0 WD � \G0 < �
and taking quotients by compact or finite normal subgroups G1 D G0=K and �1 WD
� 0=.� 0 \K/, one obtains a lattice embedding

�1 <G1 DG
ss
1 �G

td
1 ;

virtually isomorphic to � <G, into a product of a connected, center-free, semisimple
real Lie group without compact factors Gss

1 and a tdlc group with trivial amenable
radical G td

1 . Furthermore, G is compactly generated if and only if G td
1 is compactly

generated.

Step 2: Projection to the semisimple factor is irreducible
Let �1 <G1 DGss

1 �G
td
1 be a lattice in a product as in Proposition 5.3. Since compact

generation of G is assumed in Theorem A, the group G1 is compactly generated. The
center-free, semisimple, real Lie group Gss

1 splits as a direct product of the simple
factors:

Gss
1 D S1 � � � � � Sn:

For a subset J D ¹j1; : : : ; jkº � ¹1; : : : ; nº we denote by SJ D Sj1 � � � � � Sjk the
subproduct, which can be viewed both as a subgroup and as a factor of the semisimple
group Gss

1 . Set S; D ¹1º. Given a subset J � ¹1; : : : ; nº consider the image of �1
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under the projection

prJ W G1�!Gss
1 �!SJ :

Note that it is possible that pr¹iº.�1/ is dense in Si for each i 2 ¹1; : : : ; nº, but prJ .�1/
is discrete for some nonempty proper subset J � ¹1; : : : ; nº.

LEMMA 5.4
There is a unique maximal subset J � ¹1; : : : ; nº for which the projection prJ .�1/ is
discrete in SJ .

Proof
It suffices to show that the collection of all subsets J � ¹1; : : : ; nºwith discrete projec-
tion to SJ is closed under union. Let J;K � ¹1; : : : ; nº be subsets such that prJ .�1/
is discrete in SJ and prK.�1/ is discrete in SK . Let V � SJ ,W � SK be open neigh-
borhoods of the identity with

prJ .�1/\ V D ¹1º; prK.�1/\W D ¹1º:

View SJ[K as a subgroup in SJ � SK . Then U D SJ[K \ .V � W / is an open
neighborhood of the identity with prJ[K.�1/ \ U D ¹1º. Therefore, prJ[K.�1/ is
discrete in SJ[K . This proves the lemma.

Let J � ¹1; : : : ; nº be the maximal subset as in Lemma 5.4. Denote

LD SJ D
Y
j2J

Sj ; H D SJ c D
Y
i…J

Si :

We have Gss
1 DL�H and consider the projection

prL W G1 DL�H �G
td
1 !L; �0 D prL.�1/:

Define �2 to be the kernel of this projection

�2 DKer.prL W �1�!�0/:

Then �0 <L and �2 <H �G td
1 are lattices (Lemma 3.5). Consider the projections

p W H �G td
1 �!H; q W H �G td

1 �!G td
1 :

LEMMA 5.5
The projection p.�2/ of �2 to H is dense.
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Proof
Let H 0 D p.�2/ be the closure of the projection of �2 to H . Then H 0 � G td

1 is a
closed subgroup of H �G td

1 containing the lattice �2. By Lemma 3.8, H 0 �G td
1 is a

closed subgroup of finite covolume inH �G td
1 . It follows thatH 0 has finite covolume

in H . By Lemma 3.10, H 0 has the form H 0 D��H2, where H2 is a direct factor of
H , H DH1 �H2, and �<H1 is a lattice. In our setting such a splitting has to be
trivial:

H 0 DH2 DH; H1 D�D ¹1º:

Indeed, otherwise the semisimple groupGss
1 splits asGss

1 D .L�H1/�H2, where the
projection of �1 to theL�H1-factor lies in �0��, which is discrete. This contradicts
the maximality of L as such a factor. This completes the proof of the lemma.

We now define an lcsc group G2 to be G2 DGss
2 �G

td
2 , where

Gss
2 DH; G td

2 D q.�2/ < G
td
1 :

By being a closed subgroup of a tdlc group G td
1 , the group G td

2 itself is tdlc. The group
Gss
2 DH is a connected, center-free, semisimple, real Lie group.

The groupG2 is a closed subgroup ofH �G td
1 containing a lattice �2 <H �G td

1 .
By Lemma 3.8, �2 forms a lattice in G2, and G2 D H � G td

2 is a finite covolume
subgroup of H � G td

1 . Thus, G td
2 is a subgroup of finite covolume in G td

1 . Since
Radam.G

td
1 / D ¹1º we deduce that Radam.G

td
2 / D ¹1º using Lemma 3.12. We sum-

marize in the following.

PROPOSITION 5.6
Let �1 < G1 D Gss

1 �G
td
1 be as in Proposition 5.3. Then there are a splitting Gss

1 D

L �H and a closed subgroup G td
2 < G

td
1 such that, by setting Gss

2 DH and G2 D
Gss
2 �G

td
2 , we have the following.

(1) The projection �0 D prL.�1/ of �1 is a lattice in L.

(2) The kernel �2 DKer.�1
prL
�!�0/ is a lattice in G2 DGss

2 �G
td
2 .

(3) The projection prss
2 .�2/ is dense in Gss

2 DH .
(4) The projection prtd

2 .�2/ is dense in G td
2 .

(5) G td
2 <G

td
1 is a closed subgroup of finite covolume.

(6) G td
2 has trivial amenable radical.

(7) G td
2 is compactly generated.

Most of the conditions needed for an application of Theorem 4.6 are satisfied
with the exception of injectivity of the projection
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prss
2 W �2�!Gss

2 DH:

This is our next topic of concern.

Step 3: Identifying the lattice embedding
We still denote the projections of G1 and G2 to their Lie and tdlc factors by

prss
i W Gi !Gss

i and prtd
i W Gi !G td

i for i 2 ¹1; 2º:

The images of a subgroup in Gi under prss
i and prtd

i will be indicated by superscripts
ss and td, respectively. For a subgroup H <G let

ZG.H/ WD ¹g 2G j 8h2H ghD hgº

denote the centralizer of H in G.
Let U < G td

1 be a compact open subgroup in the tdlc group G td
1 such that �1 \

.¹1º �U /D ¹1º. We define the following groups:

Ni WD �i \
�
¹1º �G td

i

�
for i 2 ¹1; 2º;

M1 WD �1 \ .G
ss
1 �U /;

M2 WD �2 \M1;

�3 WD �2=N2;

M3 WD p.M2/ where p W �2 � �3 is the projection;

Gss
3 WDG

ss
2 ; G td

3 WDG
td
2 =N

td
2 ; G3 WDG

ss
3 �G

td
3 :

(5.1)

Remark 5.7
Since N td

2 is normalized by the dense image of �2 in G td
2 and the normalizer of a

closed subgroup is closed, the subgroup N td
2 is normal in G td

2 . This justifies the last
definition. Moreover, sinceGss

1 commutes withN2 it follows thatN2 is normal in G2.
Note that, since compact generation passes to quotients, G td

3 is compactly generated.

Remark 5.8
At this point, we do not claim triviality of the amenable radical of G td

3 , even though it
will follow from later analysis.

LEMMA 5.9
The group N1 commutes with some finite-index subgroup of M1.

Proof
At this point we want to apply property .NbC/ of the original group � . Note that
property .NbC/ does not pass to finite-index subgroups in general, so we have to
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argue more specifically. We refer to the notation of Proposition 5.3. Note that �1 D
.�\G0/=.�\K/ is a subgroup of �=.�\K/. We show thatN1 is normal in �=.�\
K/ and M1 is commensurated by �=.� \ K/. From this, the claim follows since
�=.� \K/ has .NbC/ by Lemma 2.5.

The group ¹1º � G td
1 is a topologically characteristic subgroup of G1 D Gss

1 �

G td
1 DG

0=K by Lemma 3.17. Since G0=K <G=K is normal, ¹1º �G td
1 is normal in

G=K . Since �1 D .� \G0/=.� \K/ is a normal subgroup of �=.� \K/, the group
N1 is normal in �=.� \K/. The subgroup Gss

1 �U <G1 DG
0=K is commensurated

by G=K since G0=K GG=K is normal and every (topological) automorphism of G1
is a product of an automorphism of G td

1 and one of Gss
1 by Lemma 3.17. Since �1 G

�=.� \K/ is normal, M1 is commensurated by �=.� \K/.

By Lemma 5.9 and upon making U smaller, we may and will assume that M1

itself centralizesN1 andM1\N1 D ¹1º. It follows thatM2 centralizesN2. We record
that

Mi \Ni D ¹1º and ŒMi ;Ni �D ¹1º for i 2 ¹1; 2º: (5.2)

In particular, the subgroup MiNi < �i is isomorphic to Mi �Ni .

LEMMA 5.10
The inclusions M ss

i ,!Gss
i for i 2 ¹1; 2; 3º and �3 ,!G3 are lattice embeddings.

Proof
By Lemma 3.4, M1 is a lattice in Gss

1 � U , since U < G td
1 is an open subgroup.

Since U is also compact, the image M ss
1 of M1 in Gss

1 is a lattice of Gss
1 as well.

Similarly, M2 < G
ss
2 � U and M ss

2 < G
ss
2 are lattices. Since Gss

2 D G
ss
3 by defini-

tion one easily sees that the images of M2 and M3 in Gss
2 coincide, so M ss

3 DM
ss
2 .

In particular, M ss
3 < G

ss
3 is a lattice. Since N2 G �2 is also normal in G2 (see the

remark below (5.1)), the quotient �3 is a lattice in G3 DGss
2 �G

td
2 =N

td
2 ŠG2=N2 by

Lemma 3.5.

We are finally in a position to identify the lattice embedding �1 < G1, which is
virtually isomorphic to the original lattice embedding � < G. We distinguish three
cases depending on the finiteness of the groups M1 and M2.

Case (i): M1 is finite (�1 is a lattice in a tdlc group)
In this case, the connected real Lie group Gss

1 without compact factors has a finite
group M ss

1 as a lattice; thus, Gss
1 must be trivial. Thus, G1 DG td

1 is a tdlc group with
trivial amenable radical that contains �1 as a lattice. If � is assumed to have property
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.BT/, then the same applies to �1, and by Lemma 3.9, �1 <G1 is a uniform lattice.
Either G1 is discrete, which means that the original lattice embedding � ,! G was
trivial or we are in case (3) of the main theorem.

Case (ii): M1 is infinite, but M2 is finite (�1 is a lattice in a semisimple Lie group)
In this case, M ss

2 is finite and a lattice in Gss
2 . As above, we conclude that Gss

2 DH is
trivial. Therefore, �2 DN2, and

G td
2 D �

td
2 DN

td
2 DN

td
2 :

The last equality follows from the discreteness of N td
2 .

Since M ss
1 D prss

1 .M1/ is a lattice in Gss
1 D L �H D L and a subgroup of the

lattice �0 (see Proposition 5.6), M ss
1 < �0 must have finite index. We have a short

exact sequence

1�!�2�!�1
prL
�!�0�!1:

The prL-preimage ofM ss
1 which equals �2 �M1 DN2M1 ŠN2�M1 is a finite-index

subgroup of �1. Since M1 is infinite, the .Irr/ condition forces �2 DN2 to be finite.
So G td

2 is finite. As G td
2 has finite covolume in G td

1 , the latter is compact. In fact, G td
1

has to be trivial, because it has a trivial amenable radical. We conclude that �1 is a
classical lattice in a connected, center-free, semisimple, real Lie groupLDGss

1 DG1.
This lattice is irreducible due to assumption .Irr/. This corresponds to case (1) in the
main theorem.

Case (iii): M2 is infinite (�1 is an S -arithmetic lattice)
Recall that the projectionM ss

2 ofM2 toGss
2 DG

ss
3 DH is a lattice there. The assump-

tion that M2 is infinite means that Gss
3 is nontrivial. The inclusion

�3 <G3 DG
ss
3 �G

td
3

is a lattice embedding by Lemma 5.10. At this point, we may and will apply the arith-
metic core Theorem 4.6 to �3 <G3 to deduce that, up to dividing G td

3 by a compact
normal subgroup C , one has a product of S -arithmetic lattices with nontrivial semi-
simple and totally disconnected factors. (It will become clear below that C is trivial
and that there is only one irreducible S -arithmetic lattice). More precisely, there are
number fields K1; : : : ;Kn, absolutely simple Ki -algebraic groups Hi , and finite sets
Si � Vi of places of Ki compatible with Hi such that, denoting the connected real
Lie groups by Hi D .Hi /

C
Ki ;S

1

i

D .Hi /
ı
Ki ;S

1

i

, we have

Gss
3 �G

td
3 =C D

nY
iD1

Hi �

nY
iD1

Qi
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for certain closed intermediate groups

.Hi /
C

Ki ;S
fin
i

<Qi < .Hi /Ki ;Sfin
i
:

Moreover, �3 is commensurable to the product of the Si -arithmetic lattices. There are
finite-index subgroups �3;i <Hi .Oi ŒSi �/ such that

�3;1 � � � � � �3;n < �3; Œ�3 W �3;1 � � � � � �3;n� <1 (5.3)

has finite index. Upon passing to a smaller finite-index subgroup, we may assume
that (5.3) is the inclusion of a normal subgroup. By Lemma 5.10,

M ss
3 <G

ss
3 DH1 � � � � �Hn

is a lattice. It contains a product of irreducible lattices �i < Hi as a finite-index
subgroup:

�1 � � � � ��n <M
ss
3 ; ŒM ss

3 ;�1 � � � � ��n� <1:

Relying on the .NbC/ condition we showed (see (5.2)) that M2 < �2 commutes with
N2, so

M2 <Z�2.N2/: (5.4)

The Abelian subgroup Z�2.N2/\N2 DZ.N2/ is, being a characteristic subgroup of
N td
2 GG

td
2 , normal in G td

2 . Since G td
2 has a trivial amenable radical,

Z�2.N2/\N2 D ¹1º: (5.5)

Hence, the restriction pjZ�2 .N2/ of the quotient map p W �2! �3 D �2=N2 is injec-
tive. The image p.Z�2.N2// of the normal subgroup Z�2.N2/ is normal in �3 and
contains M3. The subgroup

T3 WD p
�
Z�2.N2/

�
\

nY
iD1

�3;i

has finite index in p.Z�2.N2// and is normal in �3;1 � � � � � �3;n. The commutative
diagram below summarizes the various relations between the groups.

Since �i and M3 \ T3 \ �3;i are commensurable, the normal subgroup T3 \
�3;i G �3;i is infinite. Since each �3;i is an irreducible Si -arithmetic lattice, Mar-
gulis’s normal subgroup theorem implies that each T3 \�3;i < �3;i is of finite index;
thus, p.Z�2.N2// < �3 is of finite index. By the injectivity of pjZ�2 .N2/, the group
Z�2.N2/ is thus (abstractly) commensurable with a product of S -arithmetic lattices.
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By Theorem 3.14, Z�2.N2/ has a finite outer automorphism group. Further, the cen-
ter of Z�2.N2/ G �2 is trivial, since it lies in the amenable radical of �2, which is
trivial by Proposition 5.6 and Lemma 3.12. We have the following diagram:

Since N2 is the intersection of �2 G �1 and N1 G �1 the subgroup N2 is normal
in �1, which implies that Z�2.N2/ is normal in �1. By Lemma 3.15 the finite-index
subgroup � 01 D ker.�1!Out.Z�2.N2/// < �1 splits as a direct product:

� 01 ŠZ�2.N2/�
�
� 01=Z�2.N2/

�
:

Assumption .Irr/ implies that one of the factors is finite. By M2 being infinite
and (5.4), we obtain that Z�2.N2/ is of finite index in �1; hence, �2 < �1 is of finite
index. So �0 is finite. Because of Œ�1 W Z�2.N2/� <1 and (5.5) we obtain that N1
and N2 are finite. The group L, being a lattice envelope of �0, is compact; thus, L
and �0 are trivial.

So Gss
1 D H D G

ss
2 D G

ss
3 . Using condition .Irr/ we can now also deduce that

there was only one irreducible factor; hence, nD 1 in (5.3).
Furthermore, the group N2 Š N td

2 , which is now known to be finite, has to be
trivial, because N td

2 is normal in G td
2 , while Radam.G

td
2 /D ¹1º. It follows that G3 D

G2 and Radam.G
td
3 / D ¹1º. In particular, the compact normal subgroup C G G td

3 is
actually trivial.

We deduce that there is a number field K , a connected, noncommutative, adjoint,
absolutely simple K-group H, and a finite set S D S1 [ Sfin of places as in Sec-
tion 4.1 so that

�1 D �2 D �3 'H
�
OŒS�

�C

is an irreducible S -arithmetic lattice in the lcsc group

G2 DG
ss
2 �G

td
2 DHCK;S1 �HC

K;Sfin :
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It remains to identify the lcsc group G1. We have established the triviality of �0 and
of L; hence,

Gss
1 DH �LDH DG

ss
2 DG

ss
3 DHCK;S1 :

It remains to identify the totally disconnected component G td
1 that contains

G td
2 DHC

K;Sfin D
Y

�2Sfin

H.K�/C

as a closed subgroup of finite covolume.

Step 4: Lattice envelope G td
1 of G td

2 DHC
K;Sfin

Let us enumerate the elements in Sfin D ¹
1; : : : ; 
nº in such a way that H has K�i -
rank at least 2 for 1 � i � k and has K�i -rank 1 for k < i � n. The extreme cases
k D n or k D 0 are, of course, possible.

Let Xi be the Bruhat and Tits building associated to H.K�i /, and let Hi WD
H.K�i /

C. We write

H DH1 � � � � �Hn and X DX1 � � � � �Xn:

With that notation, H DG td
2 . The spaces Xi are irreducible Euclidean buildings with

cocompact affine Weyl group. The group H acts by automorphisms on the simplicial
complex X , and this action is strongly transitive in the sense that H acts transitively
on pairs .C;A/, where C �A is a chamber in an apartment.

The proof of Theorem A is completed by applying the following general theorem
to the subgroup H DG td

2 in G DG td
1 , using Remark 4.5.

THEOREM 5.11
Let X be a locally finite affine building without Euclidean factors. Let H be a lcsc
group acting isometrically on X strongly transitively and with a compact kernel.
Assume that 	 W H ! G is a continuous homomorphism with compact kernel and
a closed image of cofinite volume. Then the action of H on X extends via 	 to an
isometric action with a compact kernel of G on X .

The proof of Theorem 5.11 proceeds in several steps: reduction to the case where
G is tdlc (already given in our main application), proof that the image ofH is cocom-
pact in G, and finally the use of techniques from geometric group theory, similar to
the approach taken in [35, Section 3].

Reduction to G being tdlc with trivial amenable radical
This reduction is not needed for our application, where G is G td

1 . We will first show
that both the connected componentG0 and Radam.G/ are compact normal subgroups,
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so that dividing by them we may assume G to be tdlc with trivial amenable rad-
ical. A group acting strongly transitively on a thick Euclidean building has trivial
amenable radical (cf. [21, Theorem 1.10], where this is deduced from [2]). There-
fore, Radam.H/ is contained in ker.H ! Aut.X//, which is compact by assump-
tion. It follows from Lemma 3.12 that Radam.G/ \ 	.H/ is a compact group. Let
G0 D G=Radam.G/, and let H 0 be the image of H in G0. By [9, Theorem 5.1] the
image of H=Radam.H/ in G0 is closed. (Note that H=Radam.H/ is quasisemisimple
(qss) by [9, Theorem 3.7].) It follows that M DH � Radam.G/ is a closed subgroup
of G, and applying Lemma 3.8 to the closed subgroups H <M < G we conclude
that M=H Š Radam.G/=Radam.H/ has finite volume. Since Radam.H/ is compact,
it follows that Radam.G/ has finite Haar measure and, therefore, is a compact group.

Dividing by the compact amenable radical, hereafter we assume that G and H
have trivial amenable radicals. The connected component G0 of the identity in G is
a connected, center-free, semisimple real Lie group, and we consider the action of
H on G0 by conjugation, providing a homomorphism � WH ! Aut.G0/. Note that
Aut.G0/ is a Lie group, and the image of H is closed (cf. [9, Theorem 5.1]). Since
H is tdlc, the image �.H/ is discrete. Considering the isometric continuous action
of H on the discrete space �.H/ we conclude by [9, Theorem 6.1] that H0 D ker�
has finite index in H . As before, the image of H in G=G0 is closed, so H � G0 is
closed in G, and the same applies to the finite-index subgroup H0 �G0. Lemma 3.8
applied to H0 < H0 � G0 < G shows that H0 � G0=H0 Š G0=.H0 \ G0/ has finite
Haar measure. But H0 \G0 D ¹1º because G0 is center-free. We conclude that G0

has finite Haar measure and, therefore, is a compact group. Thus, for the rest of the
proof we assume G to be tdlc with trivial amenable radical.

Compactness of G=H
By the Bruhat–Tits fixed-point theorem (see [16, Corollary 2.8, p. 179] for a more
general result on CAT(0)-spaces) every compact subgroup of H fixes a vertex of X .
But since there are only finitely many H -orbits of vertices, there are only finitely
many vertex stabilizer groups up to conjugation. In particular, H endowed with Haar
measure m has an upper bound on the Haar measure of its open compact subgroups:

sup
®
m.U /

ˇ̌
U is an open compact subgroup of H

¯
<C1:

Thus, Lemma 3.9 applies to H <G and implies the compactness of G=H .
Therefore, we are in a position to apply Lemma 3.30 in combination with

Remark 3.31 toH acting onX to obtain a homomorphism ofG to the quasi-isometry
group of X , 	 W G! QI.X/. In fact, we have a commutative diagram
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Further, there are constants C;L > 0 such that for every g 2 G there is an .L;C /-
quasi-isometry fg W X ! X that represents the class 	.g/ 2 QI.X/ and has the fol-
lowing property: for every bounded set B �X there is a neighborhood of the identity
V �G so that

8g2V8x2B dX
�
fg.x/; x

�
<C: (5.6)

In the following, we denote by NG and NH the corresponding images of G and H
in QI.X/; the commutativity of the diagram above implies that NH < NG. For a general
metric space the QI-group does not have a natural topological group structure. In the
arguments below we will take advantage of the large-scale geometry of X to obtain
information on NG to be able to place it in the image of Isom.X/ in QI.X/.

Definition of the subgroup NG0 < NG
We now apply the following splitting theorem by Kleiner and Leeb.

THEOREM 5.12 ([45, Theorem 1.1.2])
For every C;L > 0 there are L0;C 0;D > 0 such that every .L;C /-quasi-isometry
X!X is within distanceD from a product of .L0;C 0/-quasi-isometriesXi !X�.i/
between the factors for some permutation � 2 Symn.

At the expense of increasing the constants C and L, we may hence assume that,
for each g 2 G, the quasi-isometry fg W X ! X as in (5.6) is a product of .L;C /-
quasi-isometries f .i/g W Xi !X�g.i/ for some permutation �g 2 Symn. Another con-
sequence of Theorem 5.12 is that the product QI.X1/ � � � � � QI.Xn/ embeds into
QI.X/ as a subgroup of index at most nŠD jSymn j. We define the finite-index sub-
group NG0 < NG by

NG0 D NG \QI.X1/� � � � �QI.Xn/:

Let NH 0 D NH \ NG0, and let G0 <G and H 0 <H be the preimages of NG0 and NH 0.
It follows that there are .L;C /-quasi-isometries f .i/g W Xi ! Xi for every i 2

¹1; : : : ; nº and g 2 G0 such that f .i/g represents the i th component of the quasi-
isometry fg . In view of (5.6) and the quantitative statement in Theorem 5.12 and
at the expense of increasing C;L > 0 once more, the following holds true: for every
i 2 ¹1; : : : ; nº and for every bounded set Bi �Xi there is a neighborhood of the iden-
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tity V �G so that

8g2V\G08x2Bi dX
�
f .i/g .x/; x

�
<C: (5.7)

Openness of G0 <G
The group G0 is defined as the kernel of a homomorphism of G to a finite group.
But we do not know at this point that the homomorphism is continuous, which would
imply that G0 < G is open and, thus, an lcsc group itself. Next we provide a direct
argument that shows the openness of G0 <G.

Let dXi denote the metric Xi , and let the metric dX on X be the `2-sum of
dXi ’s. Let Bi � Xi be a bounded subset whose diameter exceeds 3C , and let B D
B1 � � � � �Bn. Let V �G be a neighborhood of the identity that satisfies (5.6). Next
we show that V is contained in G0 and so G0 <G is an open subgroup. Suppose it is
not. Then there is g 2 V such that �g is nontrivial; that is, there is i 2 ¹1; : : : ; nº such
that j WD �g.i/¤ i . Let xj ; x0j 2 Bj be points whose distance is at least 3C . Pick

points xl 2Bl for l 2 ¹1; : : : ; j �1; j C1; : : : ; nº. Then either dXj .f
.i/
g .xi /; xj / > C

or dXj .f
.i/
g .xi /; x

0
j / > C . Without loss of generality assume the first case. Let x D

.x1; : : : ; xn/ 2B . Then

dX
�
fg.x/; x

�
� dXj

�
f .i/g .xi /; xj

�
>C;

contradicting (5.6). Therefore, V �G0.

Mapping G0 to Isom.Xi / for the higher-rank factors Xi
The rigidity theorem for higher-rank irreducible buildings (such as X1; : : : ;Xk) by
Kleiner and Leeb [45] is the next important ingredient.

THEOREM 5.13 ([45, Theorem 1.1.3])
Let i 2 ¹1; : : : ; kº. For every C > 0 and L > 0 there is a constant D > 0 such that
every .L;C /-quasi-isometry Xi ! Xi is within distance D from a unique isometry
Xi !Xi .

Moreover, no two distinct isometries Xi ! Xi for i 2 ¹1; : : : ; kº are within
bounded distance from each other. Hence, the natural homomorphism Isom.Xi /!
QI.Xi / is an isomorphism for i 2 ¹1; : : : ; kº, and we obtain homomorphisms

 i W G
0 �! Isom.Xi /

for which the restriction to H 0 < G0 is the homomorphism H 0 ! Isom.Xi /. The
statement (5.7) and Theorem 5.13 applied to f .i/g show that there is a constant E > 0
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such that for every bounded subset B � Xi there is a neighborhood of the identity
V �G such that

8g2V8x2B dXi
�
 i .g/.x/; x

�
<E: (5.8)

LEMMA 5.14
The map  i is continuous for i 2 ¹1; : : : ; kº.

Proof
Let U � Isom.Xi / be an open neighborhood of the identity. We have to show that
there is an open neighborhood of the identity of G that is contained in  �1i .U /.

We rely on the following geometric fact about buildings that follows, for example,
from [63]: for every constant D > 0 and any open neighborhood W of the identity in
Isom.Xi /, there is a bounded set B �Xi , depending on D and W so that

®
� 2 Isom.Xi /

ˇ̌
sup
x2B

dXi
�
�.x/; x

�
<D

¯
�W: (5.9)

We apply this general fact to the constant E from (5.8) and the identity neighborhood
U . Let us fix a bounded subset B DB.E;U /�Xi such that

®
� 2 Isom.Xi /

ˇ̌
sup
x2B

dXi
�
�.x/; x

�
<E

¯
� U: (5.10)

Applying the statement (5.8) to this specific subsetB provides us with a neighborhood
V D V.E;B/�G of the identity such that

8g2V8x2B dXi
�
 i .g/.x/; x

�
<E: (5.11)

Since (5.10) and (5.11) mean that V � �1i .U /, the continuity of  i follows.

Mapping G0 to Homeo.@Xj / for the rank-1 factors Xj
Next we turn to the tree factors Xj with j 2 ¹kC1; : : : ; nº. For every tree of bounded
degree T , such as Xj with k < j � n, the space of ends @T is compact, and one has
an embedding of groups

QI.T / ,!Homeo.@T /:

For j 2 ¹kC 1; : : : ; nº let  j be the composition

 j W G
0
�j
�! QI.Xj / ,! Homeo.@Xj /;

and denote by NG0j D j .G
0/ the image in Homeo.@Xj /.
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LEMMA 5.15
The map  j is continuous and has a closed image for every j 2 ¹kC 1; : : : ; nº.

Proof
The continuity statement is proved in [35, Theorem 3.5]. The argument is analogous
to the one for Lemma 5.14. However, instead of the geometric fact about higher-rank
buildings (5.9) one uses the following fact about trees, which is a consequence of the
Mostow–Morse lemma for Gromov-hyperbolic spaces: for a tree T of bounded degree
and constants L;C;D > 0 and for any identity neighborhood U �Homeo.@T / there
is a compact subset B � T so that the image in Homeo.@T / of any .L;C /-quasi-
isometry f W T ! T with

sup
®
dT
�
f .x/; x

�
j x 2B

¯
<D

belongs to U . Since the image of H 0 is cocompact in G0 and the image of H 0 in
Homeo.@Xj / is closed, the image NG0j of G0 in Homeo.@Xj / is also closed.

Identifying the image of  j
Fix an index j 2 ¹k C 1; : : : ; nº. Let H 0j denote the image of H 0 in Isom.Xj /, and

let NH 0j denote the corresponding subgroup of Homeo.@Xj /. Consider the action of
NG0j on the Cantor set @Xj that comes from the quasiaction of NG0j on the tree Xj . The

latter is given by the family ¹f .j /g º of .L;C /-quasi-isometries of the locally finite

tree Xj such that f .j /g1 ı f
.j /
g2 is within uniformly bounded distance from f

.j /
g1g2 for

all g1; g2 2G0. Note that the maps f .j /g may be associated to the images  j .g/ 2 NG0j
rather than g 2G0. We proceed with two claims:
(1) There exist a locally finite tree Tj , an action � W NG0j ! Isom.Tj /, and a quasi-

isometry q W Tj !Xj so that the f .j /g ’s are within bounded distance from the
map q ı �.g/ ı q0, where q0 W Xj ! Tj is a coarse inverse of q.

(2) One can take tree Tj to be Xj .
Claim (1) follows from the deep work of Mosher, Sageev, and Whyte on quasiactions
on trees (see [54, Theorem 1]).

There is also an alternative argument based on the result of Carette–Dressen [24,
Theorem C]. Indeed, the fact that the action ofH 0j on the treeXj is strongly transitive

implies that the action of NH 0j on the Cantor set @Xj is 3-proper and 3-cocompact
(meaning the action on the space of distinct triples is proper and cocompact), and
these properties pass to the action of NG0j that contains NH 0j as a cocompact subgroup.
By [24, Theorem C] such an action of a locally compact group on a Cantor set is
sufficient to construct an isometric action on a locally finite tree Tj with @Tj being
identified with the given Cantor set.
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We now offer a few general remarks on trees and groups acting on trees. An
action of a group on a tree is called minimal if there are no proper subtrees invariant
under the group action. If an action on a locally finite tree is minimal, then the induced
action on the boundary of the tree is minimal in the sense of dynamical systems: there
are no proper closed invariant subsets. This is a consequence of the limit set being
the unique minimal closed invariant subset of the boundary (see [28, Théorème 5.1]
for a more general result, which is attributed to Gromov, in the context of Gromov-
hyperbolic spaces).

Conversely, if a group G is acting by automorphisms on a locally finite tree T
and L� @T is a minimal G-invariant set consisting of more than two points, then the
union of all geodesics in T with endpoints in L, called the convex hull co.L/ of L,
is a minimal G-invariant subtree of T . Any G-invariant subtree T 0 has @T 0 DL and,
therefore, contains co.L/. Moreover, there exists a retraction r W T 0! co.L/ given
by nearest point projection to co.L/. This retraction is equivariant with respect to
Aut.T /.

Returning to our situation, we may assume without loss of generality that the tree
Tj has no vertices of degree 1 and so Tj D co.@Tj /. We identify its boundary @Tj
with @Xj in a NG0j -equivariant way. Since the action of Hj on the tree Xj is minimal,

the topological action of NH 0j on the Cantor set @Xj D @Tj is minimal, and therefore,

the action of NH 0j on the tree Tj is minimal as well—that is, Tj does not contain any

proper NH 0j -invariant subtree.

LEMMA 5.16
The action homomorphism NG0j ! Isom.Tj / is injective and continuous and has a
closed image.

Proof
Since both the isometry group and the quasi-isometry group of either Xj or Tj inject
into the homeomorphism group of @Xj D @Tj , the map NG0j ! Isom.Tj / is injec-
tive. Since Isom.Tj / embeds as a closed subgroup into Homeo.@Tj /, continuity and
closedness follow from the continuity and closedness of the composition

NG0j ! Isom.Tj /!Homeo.@Tj /DHomeo.@Xj /:

The argument for claim (2) relies on the fact that the structure of the tree Xj can
be read from the intersection patterns of vertex stabilizers, which are maximal open
compact subgroups of NH 0j (see, e.g., [1, Corollary 11.35, Theorem 11.38] for the
more general discussion of groups with BN-pairs acting on Euclidean buildings). In
our case, NH 0j acts on the tree Xj , transitively on edges and with two orbits of vertices.
Let eD .v1; v2/ be an edge in Xj , and denote
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Ki D Stab NH 0
j

�
¹viº

�
.i D 1; 2/:

Then K1 and K2 are maximal compact (and open) nonconjugate subgroups of NH 0j .

The group NH 0j is generated by K1 [K2, and it acts transitively on the edges of Xj ,
with K1 \K2 being the stabilizer of edge e D .v1; v2/. For each i D 1; 2, the sub-
group K1 \K2 is a maximal subgroup in Ki , and all maximal subgroups on Ki are
conjugate in Ki (because Ki acts transitively on the edges emerging from vi ).

LEMMA 5.17
There are k 2N and an NH 0j -equivariant cellular homeomorphism f W Xj ! Tj such
that f is a homothety with stretch factor k.

Proof
Upon subdividing, we may assume that NH 0j acts on Tj without inversion. By the
continuity part of Lemma 5.16, the orbits of the compact subgroups K1 and K2 in Tj
are bounded. By the Bruhat–Tits fixed-point theorem [16, Corollary 2.8, p. 179], there
is a vertex in Tj that is fixed under K1 or K2, respectively. Choose a pair .w1;w2/ of
vertices in Tj with Kiwi Dwi that has minimal distance.

Since NH 0j is generated by K1 and K2, the NH 0j -orbit T 0 D
S
h2 NH 0

j
Œhw1; hw2� of

the geodesic segment Œw1;w2� between w1 and w2 is connected. Thus, T 0 is a NH 0j -
invariant subtree of Tj . By the proceeding discussion this implies that T 0 D Tj .

The segment Œw1;w2� is fixed by K1 \K2. The map that sends the vertex vi to
wi for i D 1; 2 and the edge Œv1; v2� onto Œw1;w2� by an affine homeomorphism can
be extended to an NH 0j -equivariant cellular surjective map f W Xj ! Tj .

Next we show that f is locally injective. It is enough to show local injectivity
at the Ki -fixed vertex vi of Xj . By symmetry let us consider v1 only. Consider its
neighbors v2 and v02 D hv2 for some h 2 NH 0j . Since K1 and K2 are not conjugated,
the f -images w1, w2, w02 of v1, v2, and v02 are pairwise distinct. Let w be the center
of the tripod given by w1, w2, w02. We want to show that w Dw1, which implies the
local injectivity of f at v1. Both K1 \K2 and K1 \ hK2h�1 are contained in the
stabilizer S of w. Since K1 \K2 is maximal in K1 and K1 \ hK2h�1 ¤K1 \K2 it
follows that S DK1. So w D w1 since we chose .w1;w2/ to have minimal distance
among the vertices fixed by K1 or K2, respectively.

As a surjective, locally injective map between trees, f is a homeomorphism. Let
k be the distance between w1 and w2. Obviously, f is locally a homothety with
stretch factor k. Thus, it is globally so.

Conjugating with a homothety as in Lemma 5.17 we obtain a topological isomor-
phism
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Isom.Tj /Š Isom.Xj /

compatible with the two embeddings of NH 0j . Hence, NG0j can be embedded as a closed

intermediate subgroup NH 0j < NG
0
j < Isom.Xj /, and the homomorphism  j can be

regarded as a homomorphism G0 ! NG0j ,! Isom.Xj / composed with the natural

embedding Isom.Xj /! Homeo.@Xj /. Thus, we also denote the map G0! NG0j !

Isom.Xj / by  j . Let � W G0!
Qn
iD1G

0
i be the diagonal embedding. We obtain a

continuous homomorphism with closed image

 0 W G0
Q
 iı�
�����!

nY
iD1

Isom.Xi /

whose restriction to H 0 corresponds to the embedding NH 0 ,!
Qn
iD1 Isom.Xi /.

Finally we argue that this homomorphism  0 W G0 !
Q
NG0i ,!

Q
Isom.Xi /

extends to a homomorphism  W G ! Isom.
Q
Xi /. Recall that, by Theorem 5.12,

the image NG of G in QI.X/, where X D X1 � � � � � Xn, is a finite extension of the
product NG0 D NG01 � � � � � NG

0
n with NG0i < QI.Xi /, by the finite group �.G/ < Symn.

The conjugation action of G on G0 D G01 � � � � � G
0
n that descends to the conjuga-

tion action of NG on NG0 D NG01 � � � � � NG
0
n and for each g 2 G induces isomorphisms

pg;i W NG
0
i !

NG0
�g.i/

. As a consequence of the proof so far we identify the groups NG0i
as closed intermediate subgroups

NH 0i <
NG0i < Isom.Xi /

�
i 2 ¹1; : : : ; nº

�

and observe that the isomorphisms pg;i W NG0i ! NG0
�g.i/

are continuous (as in Lem-

mas 5.14 and 5.16). Any continuous group isomorphism NG0i Š
NG0j is induced by an

isometry Xi Š Xj—for higher-rank buildings (corresponding to i; j � k) this fol-
lows from [45, Theorem 5.13], and for rank-1 cases (corresponding to k � i; j � n) it
can be deduced from Lemma 5.17. Therefore, for every g 2G, �g.i/D j only if Xi
is isometric to Xj . Thus, each g 2G defines an isometry  .g/ of X DX1� � � ��Xn,
thereby defining the claimed continuous homomorphism  W G ! Isom.

Qn
iD1Xi /

that extends  0 WG0!
Q

Isom.Xi /. This completes the proof of Theorem 5.11 and,
therefore, also the proof of the main classification result—Theorem A.

6. Proofs of Theorems B–F

Proof of Theorem B
Let � <H be a lattice embedding that is
(i) either an irreducible lattice embedding into a connected, center-free, semisim-

ple real Lie groupH without compact factors, which is not locally isomorphic
to SL2.R/,



LATTICE ENVELOPES 263

(ii) or an S -arithmetic lattice embedding as in Definition 4.4.
Such � satisfies all the assumptions of Theorem A. As a lattice, the group � is

Zariski-dense in the semisimple algebraic group H by Borel’s density theorem [50,
Theorem II(4.4)]. Thus, Theorem 1.4(2) ensures that � satisfies conditions .CAF/ and
.NbC/. As an irreducible lattice, � satisfies .Irr/. Moreover, lattices in semisimple
groups are known to be finitely generated (see [50, Section IX(3.2)]). So any lattice
envelope of � is compactly generated by Lemma 3.7. We also note that neither �
nor any finite-index subgroup � 0 < � has nontrivial finite normal subgroups. Indeed,
such a subgroup group N G� 0 would be centralized by a finite-index subgroup � 00 D
ker.� 0!Aut.N //, which forms an irreducible lattice in H . So N �ZH .�

00/, while
by Borel’s density theorem from [50, Section II(6.3)], ZH .�

00/DZ.H/ is the center
of H , which is trivial.

Let G be some lcsc group, and let � <G be a lattice embedding. By Theorem A
there is an open subgroup of finite index G0 < G and a compact normal subgroup
K G G0 so that, by denoting G00 WD G

0=K and � 0 WD � \ G0, the lattice embedding
� 0 ,! G00 (by the above discussion � 0 \K D ¹1º) induced from � < G is of one of
the following three types:
(1) G00 is a connected, center-free, semisimple, real Lie group without compact

factors and � 0 ,!G00 is an irreducible lattice;
(2) � 0 ,!G00 is an S -arithmetic lattice, possibly up to tree extension, in the sense

of Definition 4.4;
(3) G00 is a tdlc group with trivial amenable radical.
First, note that � < H as in (i) is incompatible with � 0 < G00 being of type (2), and
� <H as in (ii) is incompatible with � 0 < G00 being of type (1). Indeed, Margulis’s
superrigidity theorem [50, Theorem VII(7.1)] precludes the same group � 0 from being
both an S -arithmetic lattice (with both real and non-Archimedean unisotropic factors
present) and being a lattice in a purely real Lie group.

We will show in Theorem 6.2 below that � <H as in (i) or (ii) is incompatible
with nontrivial lattice embeddings � 0 <G00 of type (3). Before delving into this argu-
ment, let us now discuss in some detail the situations, where � < H is as in (i) and
� 0 <G00 is of type (1), and then the case of � <H as in (ii) and � 0 <G00 of type (2).
We recall the famous strong rigidity theorem of Mostow, Prasad, and Margulis.

THEOREM 6.1 (Strong rigidity theorem)
Let H and H [ be connected, center-free, semisimple real Lie groups without non-
trivial compact factors, with H � PSL2.R/, and let ƒ < H and ƒ[ < H [ be irre-
ducible lattices. Then any isomorphismƒŠƒ[ extends to a continuous isomorphism
H ŠH [.
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The strong rigidity theorem was discovered by Mostow in [55] for all the cases
where H and H [ are semisimple real Lie groups and ƒ<H and ƒ[ <H [ are uni-
form irreducible lattices. Prasad in [60] extended this result to some nonuniform lat-
tices, including all nonuniform lattices in rank-1 real Lie groups. Higher-rank cases,
for both uniform and nonuniform lattice embeddings, follow from Margulis’s super-
rigidity theorem ([50, Theorem VII(7.1)]). The latter result is even more general and
implies strong rigidity for irreducible lattices in a larger class of groups, including
ƒ<H being an S -arithmetic lattice as in Setup 4.1 and H [ being a product of real
and non-Archimedean simple Lie groups over local fields.

Let � < H � PSL2.R/ be an irreducible lattice in a real semisimple group as
in (i), and assume that a finite-index subgroup � 0 < � and the group G00 are as
in (1). Then by the strong rigidity theorem applied to ƒ D � 0 and H [ D G00, we
get a continuous isomorphism �0 W G00 Š H that intertwines the lattice embedding
j 0 W � 0 ,!G0!G00 and the restriction i 0 D i j�0 of the lattice embedding i W � ,!H .

Peeking into the proof of Theorem A (see Theorem 5.1 and Proposition 5.3),
we see that K G G0 is the amenable radical of G. So we also have the induced lat-
tice embedding � ,! G0 WD G=K . The action of G on G0 by conjugation gives a
continuous homomorphism � W G!Aut.H/ with K < ker.�/ so that the restriction

� 0 D �jG0 coincides with the composition G0! G00
	0

�!H Š inn.H/ ,! Aut.H/.
This shows that the following diagram is commutative; that is, two homomorphisms
� 0 ı j 0 and innıi 0 describing embeddings � 0 ,!H ,!Aut.H/ coincide:

(6.1)

We claim that the diagram below is also commutative—that is, the homomorphisms
˛D � ı j W �!Aut.H/ and ˇD innıi W �!Aut.H/ also coincide:

(6.2)

Indeed, � 0 is normal in � and ˛j�0 D ˇj�0 , so for any � 2 � and � 0 2 � 0 we
have ˛.� 0/ D ˇ.� 0/ and ˛.�� 0��1/ D ˇ.�� 0��1/. This implies that the element
˛.�/�1ˇ.�/ 2 Aut.H/ centralizes the lattice ˛.� 0/ D ˇ.� 0/ in H . Borel’s density
theorem and the fact that Z.H/D ¹1º imply that ˛.�/D ˇ.�/ for every � 2 � . This
proves the commutativity of the diagram (6.2) and thereby proves Theorem A for
� <H as in (i) and � 0 <G00 satisfying (1).
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Next, assume that � < H is an S -arithmetic lattice as in (ii), and assume that
� 0 < G00 is of type (2); that is, it is an S -arithmetic lattice, possibly up to a tree
extension. We view G00 as an intermediate closed group H [ <G00 < Isom.X/, where
H [ D

Q
H[
i .K�i / is a product of real and non-Archimedean simple Lie groups and

X D
Q
Xi is a product of irreducible symmetric spaces and irreducible Bruhat–Tits

buildings. In fact, we can write X D X ss �X td, where X ss is a (possibly reducible)
symmetric space and X td is a (possibly reducible) Euclidean building; the notation is

motivated by the inclusions .H [/
ss
< Isom.X ss/ and .H [/

td
< Isom.X td/.

Note that the image of � 0 in G00 is contained inH [, so there are two S -arithmetic
lattice embeddings i 0 W � 0 ,!H and j 0 W � 0 ,!H [. The superrigidity theorem ([50,
Theorem VII(7.1)]) implies a form of strong rigidity that provides a continuous iso-
morphism � 0 W H [ ! H intertwining these embeddings: � 0 ı j 0 D i 0, similarly to
the situation in diagram (6.1). In particular, we may think of H and G00 acting by
isometries on the same space X DX ss �X td.

Note that the connected component .G=K/0 of the identity is precisely
Isom.X ss/0, and the action G by automorphisms of .G=K/0 gives a continuous
homomorphism G! Isom.X ss/. Thus, the continuous homomorphism G0!G00 ,!

Isom.X ss/0 � Isom.X td/ extends to the continuous homomorphism

G!G0 ,! Isom.X ss/� Isom.X td/ < Isom.X/:

Considering two isometric actions of � on X that agree on the normal subgroup of
finite index � 0 and using the fact that the centralizer of � 0 in Isom.X/ is trivial, we
deduce that an analogue of diagram (6.2) is also commutative (i.e., the two �-actions
on X coincide). This completes the proof of Theorem A in case (ii) and (2).

The following statement will complete the proof of Theorem B.

THEOREM 6.2
Let � <H be a lattice embedding as in (i) or (ii). Then any lattice embedding of �
into a tdlc group with trivial amenable radical is trivial.

Let us say that a Polish group L has property NSS (no small subgroups) if there is
an identity neighborhood 1 2 V � L that contains no nontrivial compact subgroups.
Examples of such groups include discrete countable groups, Homeo.S1/—the group
of homeomorphisms of the circle with compact open topology—and all real Lie
groups. In proving Theorem 6.2 we will use the following.
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LEMMA 6.3
Let � < G be a lattice embedding in a tdlc group G with Radam.G/D ¹1º. Let L be
a Polish group with property NSS, and let � W G!L be a continuous homomorphism
that is injective on � . Then � <G is a trivial lattice embedding.

Proof
Let V � L be a neighborhood that does not contain nontrivial compact subgroups.
In a tdlc group, compact open subgroups form a basis of neighborhoods of the iden-
tity. Let U be a compact open subgroup of G contained in ��1.V /. Then �.U / is a
compact subgroup of V ; therefore, it is trivial. Hence, the subgroup ker.�/ is open,
since it contains an open subgroup U . As ker.�/ \ � D ¹1º and � < G is a lat-
tice, ker.�/ has finite Haar measure. Thus, ker.�/ is compact and is therefore trivial
because Radam.G/D ¹1º by assumption. This implies thatG is discrete and is a trivial
lattice envelope for � .

By Selberg’s lemma, � as above is virtually torsion-free. Hence, any lattice
embedding of � into a tdlc group is uniform according to Lemma 3.9. To construct
the homomorphism � WG!L as in Lemma 6.3, we will use the homomorphism

�0 W G!QI.G/
Š
�!QI.�/: (6.3)

We consider several cases.

Case � <H is a nonuniform lattice
By a theorem of Struble [69, Theorem, p.127], the group G possesses a continuous,
proper, left-invariant metric d , and d has to be quasi-isometric to the word metric. So
the kernel can be described as

ker.�0/D
®
g 2G

ˇ̌
sup
h2G

d.gh;h/ <1
¯
;

which implies that ker.�0/ is a Borel subgroup of G.
For a nonuniform, irreducible lattice � <H , the group QI.�/ŠQI.G/ coincides

with the commensurator of � inH , which is a countable group. This was first proved
by Schwartz in [65] for rank-1 real Lie groups; then by Schwartz in [66], by Farb
and Schwarz in [31], and by Eskin in [30] for higher-rank real Lie groups; and by
Wortman in [74] for S -arithmetic cases.

Since ker.�0/ has countable index in G, the Borel subgroup ker.�0/ has posi-
tive Haar measure. Thus, ker.�0/ is an open subgroup (see [13, IX Section 6, No. 8,
Lemma 9]). Thus, the quotient homomorphism

G�!L WDG=ker.�0/
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is a continuous homomorphism into a countable discrete group. This homomorphism
is injective on � because � embeds in QI.�/. Thus, the proof of Theorem 6.2 is
concluded by applying Lemma 6.3.

For the rest of the proof, we assume � <H to be a uniform lattice, we write H
as a product of simple factors H DH1 � � � � �Hn, and we let X DX1 � � � � �Xn be
the product of the associated symmetric spaces or Bruhat–Tits buildings. At least one
of the factors Hi is a simple real Lie group, and we will assume H1 is such. Since �
is quasi-isometric to X , we can view the homomorphism (6.3) as

�0 WG�! QI.�/ŠQI.X/:

In view of our splitting theorem, Theorem 5.12, from Kleiner and Leeb, there is an
open normal subgroup of finite index G0 <G whose image �0.G0/ is contained in the
subgroup QI.X1/� � � � �QI.Xn/ of finite index in QI.X/. By denoting � 0 D � \G0,
the homomorphism �0 is compatible with the natural embedding � 0! Isom.X1/!
QI.X1/:

Let us now consider the homomorphism G0!QI.X1/ and denote its image by NG01.

Case � <H is uniform and X1 DH2

This case occurs if H1 Š PSL2.R/ is one of several factors of H . Note that the pro-
jection � !H1 is injective. The boundary @H2 is homeomorphic to the circle S1,
and we have a homomorphism

� W G0!QI.H2/ ,!Homeo.S1/:

This homomorphism is continuous by [35, Theorem 3.5], and the restriction to � is
the composition of injective homomorphisms � �!H1 Š PSL2.R/ ,!Homeo.S1/.
The Polish group Homeo.S1/ has the NSS property, so Lemma 6.3 applies, and the
proof of Theorem 6.2 is concluded in this case.

Case � <H is uniform and X1 DHm with m� 3.
The boundary at infinity @Hm is a sphere Sm�1 with a natural conformal structure
that is preserved by Isom.Hm/. Moreover, there is an isomorphism Isom.Hm/ Š

Conf.Sm�1/ that extends to an isomorphism

QI.Hm/ŠQConf.Sm�1/
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between the group of quasi-isometries and the group of quasiconformal home-
omorphisms of the sphere. The topology of Isom.Hm/ coincides with that of
Conf.Sm�1/ <Homeo.Sm�1/. By a result of Tukia [72, Corollary G], a subgroup NG01
of QConf.Sm�1/ that is uniformly quasiconformal and acts cocompactly on triples
of points of Sm�1 can be conjugated into Conf.Sm�1/.

Since the homomorphism G0! QI.X/! QI.Hm/ represents a quasiaction of
G on Hm, the image NG01 �QI.Hm/ŠQConf.Sm�1/ is a uniformly quasiconformal
group of homeomorphisms of Sm�1 due to the Mostow–Morse lemma. The homo-
morphism

G0�! QI.Hm/ ,!Homeo.Sm�1/

is continuous by [35, Theorem 3.5]. Since � acts cocompactly on triples of points in
Sm�1, the same is true for NG01. By Tukia’s result, NG01 can be conjugated into the simple
Lie group Conf.Sm�1/Š Isom.Hm/. Thus, we obtain a continuous homomorphism

� W G0�! Isom.Hm/:

Since Isom.Hm/ is a Lie group, Lemma 6.3 applies, and Theorem 6.2 is proved in
this case.

Case � <H is uniform and X1 DHm
C

with m� 2.
This symmetric space is a complex hyperbolic space Hm

C
; its boundary sphere @Hm

C

has a natural conformal class of a sub-Riemannian Carnot–Carathéodory structure.
Carnot–Carathéodory analogues of the theory of quasiconformal mappings and a
result analogous to Tukia’s theorem imply (see [27]) that NG01 can be quasiconformally
conjugated into Conf.@Hm

C
/D Isom.Hm

C
/. This gives us a homomorphism

� W G0�! Isom.Hm
C
/

that is continuous by [35, Theorem 3.5] and takes values in a Lie group. So by apply-
ing Lemma 6.3, we prove Theorem 6.2 in this case.

Case � <H is uniform and X1 DHm
H

or H2
O

.
By the result of Pansu [58, Théorème 1] in the case of X1 being the quater-
nionic hyperbolic space Hm

H
and the Cayley plane H2

O
, the natural homomorphism

Isom.X1/ ! QI.X1/ is actually an isomorphism. The embedding Isom.X1/ ,!
Homeo.@X1/ is homeomorphic on its image, so the homomorphism

� W G0�! QI.X1/Š Isom.X1/

is continuous (see [35, Theorem 3.5]). Thus, Lemma 6.3 yields the proof of Theo-
rem 6.2 in this case too.
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Case � <H is uniform and rk.X1/� 2
For irreducible symmetric space X1 of higher rank, the work of Kleiner and Leeb
in [45] shows that the natural homomorphism Isom.X1/! QI.X1/ is an isomor-
phism. Thus, we obtain a homomorphism

� W G0�! QI.X1/Š Isom.X1/

into a Lie group and would like to apply Lemma 6.3. The proof of Theorem 6.2 will
be completed once we verify the continuity of the homomorphism �.

According to Lemma 3.30 from which we obtained �, there is a constant C > 0
such that for every bounded subset B � X1 there is a neighborhood of the identity
V �G0 such that

8g2V8x2B dX1
�
�.g/.x/; x

�
<C: (6.4)

Let U � Isom.X1/ be an open neighborhood of the identity. We have to show that
there is open neighborhood of the identity of G that is contained in ��1.U /.

We rely on the following geometric fact about symmetric spaces: for every con-
stant D > 0 and any open neighborhood W of the identity in Isom.X1/, there is a
bounded set B �X1, depending on D and W so that

®
� 2 Isom.X1/

ˇ̌
sup
x2B

dX1
�
�.x/; x

�
<D

¯
�W: (6.5)

We apply this general fact to the constant C from (6.4) and the identity neighborhood
U . Let us fix a bounded subset B DB.C;U /�X1 such that

®
� 2 Isom.X1/

ˇ̌
sup
x2B

dX1
�
�.x/; x

�
<C

¯
� U: (6.6)

Applying the statement (6.4) to this specific subsetB provides us with a neighborhood
V D V.C;B/�G of the identity such that

8g2V8x2B dX1
�
�.g/.x/; x

�
<C: (6.7)

Since (6.6) and (6.7) mean that V � 	�1.U /, the continuity of 	 follows. As men-
tioned above, the now proved Theorem 6.2 also completes the proof of Theorem B.

Proof of Theorem C
Let � be a finite extension of a finitely generated non-Abelian free group, and let
� < G be a lattice envelope. Since � satisfies all the assumptions of Theorem A by
Theorem 1.4, we only need to discuss three possibilities.

(1) � < G is virtually isomorphic to an irreducible lattice in a center-free semi-
simple real Lie group H . The first `2-Betti number of � is positive. By Olbrich’s
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work [56] (see also Chapter 5 about computations of `2-invariants of locally sym-
metric spaces in Lück’s book [47]) the only such lattices with positive first `2-Betti
numbers are the ones in PSL2.R/. In this case, � is a nonuniform lattice, since, for
example, � has virtual cohomological dimension 1.

(2) � < G is virtually isomorphic to an S -arithmetic lattice as in Setup 4.1. In
particular, it is virtually isomorphic to a lattice embedding into a product of two non-
compact lcsc groups. This can be ruled by the nonvanishing of the first `2-Betti num-
ber of � (see the argument in the proof of Theorem F). Alternatively, this situation
can be ruled out by the fact that S -arithmetic lattices as in Section 4 are not Gromov-
hyperbolic.

(3) � < G is virtually isomorphic to a uniform lattice ƒ<H in a tdlc group H
with trivial amenable radical. Since � and thus ƒ are virtually isomorphic to a non-
Abelian free group, we can appeal to the work of Mosher, Sageev, and Whyte in
[54]. Theorem 9 in [54] states that there are a tree T and a continuous homomor-
phismH ! Isom.T / with cocompact image and compact kernel. SinceH has trivial
amenable radical, the kernel is trivial. Hence, � < G is virtually isomorphic to a lat-
tice embedding into a closed cocompact subgroup of the automorphism group of a
tree.

Proof of Theorem D
Let � be a uniform lattice in PSL2.R/, and let � < G be another lattice embedding.
As a Gromov-hyperbolic group, � satisfies all the assumptions of Theorem A accord-
ing to Theorem 1.4. So we only need to discuss three possibilities.
(1) � <G is virtually isomorphic to an irreducible lattice in a semisimple real Lie

group H . As in the proof above, by the positivity of the first `2-Betti number
of � , one is reduced to the case of H ' PSL2.R/. In this case, � has to be
cocompact, but the two embeddings of �! PSL2.R/ need not be conjugate.

(2) � <G is virtually isomorphic to an S -arithmetic lattices, as in Setup 4.1. This
case is ruled out for the same reason as case (2) in the proof of Theorem C.

(3) � < G is virtually isomorphic to a uniform lattice in a tdlc group. This is
covered by [35, Theorem C]: the only possibility is a trivial lattice embedding.

Proof of Theorem E
Let M be a closed Riemannian manifold of dimension at least 5 with sectional cur-
vatures ranging in

h
�
�
1C

1

n� 1

�2
;�1

i
:
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Let � D �1.M/ be the fundamental group, and let � <G be a lattice envelope of � .
Since � is finitely generated, G is compactly generated by Lemma 3.7. The group �
is Gromov-hyperbolic, so it has the properties .CAF/, .NbC/, and .Irr/ according to
Theorem 1.4. As a fundamental group of a closed aspherical manifold, � is torsion-
free. In particular, � also has property .BT/. By Theorem A, we have the following
three possibilities for the lattice embedding � < G up to virtual isomorphism. Since
� is torsion-free, we may assume, upon replacing � by a finite-index subgroup, G
by a finite-index subgroup and a quotient by a compact normal subgroup, and M
by a finite cover, that we still have � D �1.M/ and � < G is isomorphic (not just
virtually) to one of the following cases.
(1) � < G is an (irreducible) lattice embedding into a semisimple real Lie

group G.
(2) � <G is an S -arithmetic lattice in the sense of Setup 4.1,
(3) � <G is a uniform lattice, and G is a tdlc group with trivial amenable radical.

We need to show that the only possibility is case (3) with G being discrete unless
M is homeomorphic to a hyperbolic manifold. Since � is Gromov-hyperbolic, we
can rule out case (2). By the same reason, case (1) is only possible if G has real rank
1 and � < G is uniform; note here that nonuniform lattices contain a free Abelian
subgroup of rank 2. Let us analyze the situation where � < G is a uniform lattice
in a simple Lie group of real rank 1. Let X D G=K be the associated symmetric
space which is thus real, complex, quaternionic, or Cayley-hyperbolic. As aspherical
spaces with the same fundamental group, the locally symmetric space �nX and M
are homotopy-equivalent.

If X is real hyperbolic, then M is homeomorphic to the closed hyperbolic man-
ifold �nX by the following striking result of Farrell and Jones [33] in their work on
the Borel conjecture. So this possibility is ruled out by assumption.

THEOREM 6.4 (Topological rigidity; see [33])
Let Y be a closed nonpositively curved manifold of dimension not equal to 3, 4. If a
closed manifold Z is homotopy-equivalent to Y , then Y and Z are homeomorphic.

The possibilities that X is complex, quaternionic, or Cayley-hyperbolic are ruled
out by applying the following result by Mok, Siu, and Yeung [52] to Y D �nX and
Z DM , along with the pinching assumption for M .

THEOREM 6.5 (Geometric rigidity; [52, Theorem 1])
Let Y and Z be homotopy-equivalent, closed Riemannian manifolds. Assume that
Z is negatively curved, and assume that Y is complex, quaternionic, or Cayley-
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hyperbolic. Then Y and Z are isometric up to scaling. In particular, the sectional
curvatures of Z cannot range in Œ�a;�1� for a < 4.

In summary, case (2) never occurs. Case (1) can only occur if M is homeomor-
phic to a hyperbolic manifold. As for case (3), we have to show that the tdlc group
G is discrete upon dividing out a compact normal subgroup. Consider the natural
homomorphism

	 W �! Isom. QM/!QI. QM/!Homeo.@ QM/DHomeo.Sn�1/:

Of course, 	 coincides with the natural action �! Homeo.@�/ of � on its Gromov
boundary. We can refer to Lemma 3.30 or, in this situation, to [35, Theorem 3.5] to
conclude that the map 	 extends to a homomorphism

N	 W G!Homeo.Sn�1/:

In the latter reference it is also shown that N	 is continuous, the kernel K WD ker. N	/
is compact, and the image of N	 is locally compact in the subspace topology. By the
open mapping theorem from [13, IX, Section 5.3], G is topologically isomorphic to
im. N	/. Since G has trivial amenable radical, K is trivial.

Since the tdlc groupG acts continuously and faithfully on the sphere Sn�1, a pos-
itive solution of the Hilbert–Smith conjecture would imply that G is discrete and thus
finish the proof. The general Hilbert–Smith conjecture remains open, but in our situ-
ation we can appeal to the work of Mj in [51] that contains the following result.

THEOREM 6.6 (Hilbert–Smith conjecture for boundary actionsp; [51, Corollary 2.2.5])
Let ƒ be a Gromov-hyperbolic Poincaré duality group. Let Q < Homeo.@ƒ/ be a
subgroup that is finite-dimensional and locally compact in the subspace topology
and that lies in the image of the natural homomorphism QI.ƒ/! Homeo.@ƒ/. Let
h be the Hausdorff dimension of @ƒ with respect to the visual metric, and let t be the
topological dimension of @ƒ. We assume that h < t C 2. Then Q is a Lie group.

We apply this theorem to Q D im. N	/Š G and ƒD � . The topological dimen-
sion of @� D Sn�1 is t D n� 1. It remains to verify that we have h < t C 2D nC 1.
The Hausdorff dimension h equals the volume entropy hvol of QM (see [75, Theo-
rem C]); that is,

hD hvol WD lim sup
R!1

1

R
log vol

�
B QM .x;R/

�
:

As a direct consequence of the Bishop–Gunther comparison theorem [38, Theo-
rem 3.101, p. 169] we obtain that, if the n-dimensional manifold QM has sectional
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curvature in Œ�b2;�a2�, then

.n� 1/a � hvol � .n� 1/b:

In the present situation, b D 1C 1=.n� 1/, so we obtain

hD hvol � .n� 1/
�
1C

1

n� 1

�
D n < nC 1D t C 2:

So the assumptions in Theorem 6.6 are satisfied, and we conclude that G is at the
same time a Lie group and a tdlc group and, thus, discrete.

Proof of Theorem F
Let � be a group with positive first `2-Betti number ˇ.2/1 .�/ > 0 and property .BT/.
Assume that � admits a nonuniform compactly generated lattice envelope G. Since,
by Theorem 1.4, � satisfies all the conditions of Theorem A and .BT/, � <G is vir-
tually isomorphic to some lattice embedding � 0 <G0 that is one of the first two types
in Theorem A; the totally disconnected case is ruled out by .BT/. The nonvanish-
ing of the first `2-Betti number is preserved under virtual isomorphism (this is easily
deduced from basic properties), even under quasi-isometry (see [64, Theorem 1]).
So ˇ.2/1 .� 0/ > 0. Hence, � 0 cannot be a lattice in a product of two noncompact lcsc

groups. That is because ˇ.2/1 .� 0/ > 0 implies that the first `2-Betti number of any lat-
tice envelope of � 0 is positive (see [46, Theorem B]), and the first `2-Betti number of
a product of two noncompact unimodular lcsc groups is zero (see [59, Theorem 6.5]).
This excludes that � 0 < G0 is an S -arithmetic lattice as in Setup 4.1, so type (2) is
ruled out. Hence, � 0 <G0 is a lattice in a connected center-free semisimple Lie group
without compact factors. By Olbrich’s work [56] (see also Chapter 5 about computa-
tions of `2-invariants of locally symmetric spaces in Lück’s book [47]), the only such
lattices with positive first `2-Betti numbers are the ones in PSL2.R/. Since � 0 <G0 is
also nonuniform, the group � 0 (hence, �) is virtually isomorphic to a free group.
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