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Abstract

In this paper, we consider a technique called the generic Principal Component Analysis
(PCA) which is based on an extension and rigorous justification of the standard PCA. The
generic PCA is treated as the best weighted linear estimator of a given rank under the
condition that the associated covariance matrix is singular. As a result, the generic PCA is
constructed in terms of the pseudo-inverse matrices that imply a development of the special
technique. In particular, we give a solution of the new low-rank matrix approximation
problem that provides a basis for the generic PCA. Theoretical aspects of the generic PCA
are carefully studied.

1 Introduction

In this paper, we consider an extension and rigorous justification of Principal Component Anal-
ysis (PCA) for the case of singular data and weighting matrices used in the PCA structure.
Such a technique is here called the generic PCA. Differences from the known results and the
innovation of the proposed methodology are specified in Section 3.

The PCA is a procedure of finding the so called principal components of observed data
presented by a large random vector, i.e. of components of a smaller vector which preserves
principal features of observed data. In particular, this means that the original vector can be
reconstructed from the smaller one with the least possible error.

The standard PCA [12] works under a strong assumption on non-singularity of the associated
covariance matrix. At the same time, intrinsic data features imply singularity of the covariance
matrix that leads to the necessity of exploiting the pseudo-inverse operator in constructing
the PCA. Although an approach to a derivation of the PCA in the case of the pseudo-inverse
operator has been outlined in [11], the technique associated with the pseudo-inverse operator
is not straightforward and requires a more detailed and rigorous analysis. It is shown below
(see Theorem 4 and Remark 4 in Section 5.1), that such a technique requires an extension of
the known low-rank matrix approximation [4] to the more general cases presented by [5] and
Theorem 1 in Section 4.

Observed data is normally corrupted with random noise. Therefore, a procedure of finding the
principal components (such a procedure is often called data compression) should be accompanied
by filtering. We note that filtering and data compression could be separated. Nevertheless,
simultaneous filtering and compression is more effective in the sense of minimizing the associated
error (see [30, 33], for example). The generic PCA considered below performs these operations
simultaneously. See Section 5.2 in this regard.

Next, many applied problems require a development of weighted estimators. Examples of such
problems are determining the electroencephalography (EEG) envelope in neuropsychobiology
[7], a statistical analysis of shells in biology [2], data dimensionality reduction in neural systems
[3, 23], modelling automobile assembly operation [34], parameter estimation in linear regression
[32], filter design [17, 18, 19, 26], state-space modelling [9, 25], array signal processing [31]
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and channel estimation [20]. For other relevant applications, see, e.g., [12, 24].1 The proposed
generic PCA is the new effective weighted estimator. In this regard, see (4)–(5) in Section 3,
and Theorems 2 and 4 in Section 5.1.

The main question addressed in the paper is as follows: What is a constructive representation
of the generic PCA and its rigorous theoretical justification? In turn, this implies the following
questions. What kind of an extension of the low-rank matrix approximation problem should
be used in a derivation of the generic PCA? Is a solution of such a problem unique? If not, in
what analytical form can we represent its non-uniqueness? What is a condition that leads to
the uniqueness? The answers are given below.

2 Standard Principal Component Analysis (PCA)

By Jolliffe [12], ‘Principal component analysis is probably the oldest and best known of the
techniques of multivariate analysis.’ The PCA was discovered by Pearson [22] in 1901 and then
independently developed by Hotelling [10] in 1933, by Karhunen [13] in 1947 and by Loève [16]
in 1948. Owing to its versatility in applications, PCA has been extended in many directions (see,
in particular, [11, 21, 24, 33] and the corresponding bibliographies). In engineering literature,
PCA is normally called the Karhunen-Loève transform.

Note that PCA can be reformulated as a technique which provides the best linear estimator
of a given rank for a random vector (see [11, 24]). The error associated with the estimators
[11, 12, 21] based on the PCA idea is the smallest in the corresponding class of linear estimators
with the same rank.

To represent the PCA, we begin with some notation which will be used here and in the fol-
lowing Sections. Let (Ω, Σ, µ) signify a probability space, where Ω = {ω} is the set of outcomes,
Σ a σ–field of measurable subsets in Ω and µ : Σ → [0, 1] an associated probability measure on
Σ with µ(Ω) = 1.

Suppose that x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn) are random vectors such that x = (x1, . . . ,
xm)T and y = (y1, . . . ,yn)T with xi,yk ∈ L2(Ω,R) for i = 1, . . . , m and k = 1, . . . , n, respec-
tively. Here, y is noisy observable data and x represents unknown random data to be estimated
from y. No special relationship between y and x is assumed except a covariance matrix formed
from y and x. In particular, y can be a sum of x and some additive noise. If hypothetically y
contains no noise then y = x.

We write

〈xiyj〉 =
∫

Ω
xi(ω)yj(ω)dµ(ω), Exy = {〈xiyj〉}m,n

i,j=1 and ‖x‖2
E

=
∫

Ω
‖x(ω)‖2dµ(ω)

where 〈xiyj〉 < ∞ and ‖x(ω)‖ is the Euclidean norm of x(ω).

Let the eigendecomposition of Exx be given by Exx =
m∑

j=1

λjuju
T
j , where uj and λj are eigen-

vectors and corresponding eigenvalues of Exx. Let A : L2(Ω,Rn) → L2(Ω,Rm) be a linear
operator2 defined by the matrix A ∈ Rm×n so that

[A(y)](ω) = A[y(ω)]. (1)

The PCA can be represented in the following way. Given x ∈ L2(Ω,Rm) and Exx, the PCA
produces a linear operator P0 : L2(Ω,Rm) → L2(Ω,Rm) of maximum possible rank r(≤ m) that
minimizes

J (P ) = ‖x− P(x)‖2
E

1Concrete application examples can be found, for example, in [2, 3, 15, 23, 34].
2Hereinafter, an operator defined similarly to that by (1) will be denoted with a calligraphic letter.
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over all linear operators P : L2(Ω,Rm) → L2(Ω,Rm) of the same rank r. Here, rank(P) =
dim P(L2(Ω,Rm)).

The matrix P0, associated with operator P0, is given by

P0 = UrU
T
r ,

where Ur = [u1, u2, . . . , ur]. Thus, UT
r performs a determination of the principal components

in the form of a shorter vector in UT
r (x) ∈ L2(Ω,Rr) and Ur performs a reconstruction of the

vector of principal components to x̂ so that x̂ = P0(x). The ratio

c =
r

m
, (2)

where r is the number of principal components of vector x and c is often called the compression
ratio.

3 Differences from known results. Statement of the problem

While, as we have mentioned above, the standard PCA has been extended in many directions,
we consider here the works that are directly concerned with the result derived in this paper.

Scharf [24] presented an extension of the standard PCA as a solution of the problem

min
rank P≤r≤m

‖x−P(y)‖2
E

(3)

where x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rm). A difference of the PCA extension in [24] from the
standard PCA is that P transforms an arbitrary y, not x. The crucial assumption in [24] is that
the covariance matrix E[yyT ] is nonsingular.

Yamashita and Ogawa [33] proposed a version of the PCA for the case where E[yyT ] is
singular and y = x + w with w an additive noise.

Hua and Liu [11] outlined the generalized PCA with a replacement of the inverse of matrix
E[yyT ] by its pseudo-inverse.

An attractive feature of the methods [11, 33] is that they are constructed in terms of pseudo-
inverse matrices (i.e. invertibility of the covariance matrix E[yyT ] is not assumed) and therefore,
they always exist. Some other known extensions of the PCA work under the condition that
E[yyT ] is nonsingular, and this restriction can impose certain limitations on the applicability
of the method. In many practical situations, the matrix E[yyT ] is singular. See, for example,
[27, 28] and [29] in this regard.

At the same time, the usage of pseudo-inverse matrices, as it proposed in [11, 33], requires
special techniques for its justification and implementation. In Sections 4 and 5 we present a
rigorous generalization of the methods [11, 24, 33] in terms of the pseudo-inverse matrices.

The problem we consider is as follows. Let Wx ∈ Rp×m, WF ∈ Rp×s and Wy ∈ Rq×n be
weighting matrices.3 For x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rn) and F ∈ Rs×q, let

J(F ) = ‖Wx(x)−WF (F [Wy(y)])‖2
E
. (4)

We wish to find a linear operator F0 : L2(Ω,Rq) → L2(Ω,Rs) such that

J(F 0) = min
rank F≤k≤min{m,n}

J(F ). (5)

We say that F0 provides the generic PCA.
3They are assumed to be known from particular problems such as those mentioned in references in Section 1.

For the sake of generality, here, the weighting matrices are assumed to be arbitrary.
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Differences from [11, 24, 33] and an innovation are as follows.
First, we give a solution of the new low-rank matrix approximation problem (Theorem 1 in

Section 4) that provides a basis for the generic PCA. See Remark 4 in Section 5.1 for more
detail.

Second, the problem (5) is formulated in terms of weighting matrices. The motivation for
using the weighting matrices Wx, Wy and WF follows from a number of applied problems
mentioned in Section 1. We note that weighted estimators are normally studied when s = m,
q = n, Wx = WF and Wy = I (see [18], for example). Such a simplified case follows directly
from (4)–(5).

The solution to the problem (5) is given in a completed form by Theorem 2. The generic
PCA follows from Theorem 2 and is described in Section 5.2.

4 Generic low-rank matrix approximation problem

A solution to the problem (4)–(5) is based on the results presented in this section.
Let Cm×n be a set of m× n complex valued matrices, and denote by R(m,n, k) ⊆ Cm×n the

variety of all m× n matrices of rank k at most. Fix A = [aij ]
m,n
i,j=1 ∈ Cm×n. Then A∗ ∈ Cn×m is

the conjugate transpose of A. Let the SVD of A be given by

A = UAΣAV ∗
A, (6)

where UA ∈ Cm×m and VA ∈ Cn×n are unitary matrices, ΣA := diag(σ1(A), . . . , σmin(m,n)(A))
∈ Cm×n is a generalized diagonal matrix, with the singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ 0
on the main diagonal.

Let UA = [u1 u2 . . . um] and VA = [v1 v2 . . . vn] be the representations of U and V in terms
of their m and n columns, respectively. Let

PA,L :=
rank A∑

i=1

uiu
∗
i ∈ Cm×m and PA,R :=

rank A∑

i=1

viv
∗
i ∈ Cn×n (7)

be the orthogonal projections on the range of A and A∗, correspondingly. Define

Ak := (A)k :=
k∑

i=1

σi(A)uiv
∗
i = UAkΣAkV

∗
Ak ∈ Cm×n (8)

for k = 1, . . . , rank A, where

UAk = [u1 u2 . . . uk], ΣAk = diag(σ1(A), . . . , σk(A)) and VAk = [v1 v2 . . . vk]. (9)

For k > rank A, we write Ak := A (= Arank A). For 1 ≤ k < rank A, the matrix Ak is
uniquely defined if and only if σk(A) > σk+1(A).

Recall that
A† = (VA)rank A(ΣA)−1

rank A(UA)∗rank A (10)

is the Moore-Penrose generalized inverse.
Henceforth ‖ · ‖ designates the Frobenius norm.
In this section, we consider a problem of finding a matrix X0 such that

||A−BX0C|| = min
X∈R(p,q,k)

||A−BXC||. (11)

Theorem 1 below provides a solution to the problem (11) and is based on the fundamental
result in [5] (Theorem 2.1) which is a generalization of the well known Eckart-Young theorem
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[4, 8]. The Eckart-Young theorem states that for the case when m = p, q = n and B = C = I,
the solution is given by X0 = Ak, i.e.

||A−Ak|| = min
X∈R(m,n,k)

||A−X||, k = 1, . . . , min{m,n}. (12)

Some related references are [6], [17]–[21], [26]–[33].

Theorem 1 Let A ∈ Cm×n, B ∈ Cm×p and C ∈ Cq×n be given matrices. Let

K := (Ip − PB,R)S and L := T (Iq − PC,L) (13)

where S ∈ Cp×p and T ∈ Cq×q any matrices, and Ip is the p × p identity matrix. Then the
matrix

X0 := (Ip + K)B†(PB,LAPC,R)kC
†(Iq + L) (14)

is a minimizing matrix for the minimal problem (11). Any minimizing X0 has the above form
if and only if either

k ≥ rank PB,LAPC,R (15)

or
1 ≤ k < rank PB,LAPC,R and σk(PB,LAPC,R) > σk+1(PB,LAPC,R). (16)

Proof. The proof follows a line of reasoning in [5]. We have ||A−BXC|| = ||Ã−ΣBX̃ΣC ||,
where Ã := U∗

BAVC and X̃ := V ∗
BXUC . Matrices X and X̃ have the same rank and the same

Frobenius norm. Thus, it is enough to consider the minimal problem

mineX∈R(p,q,k)
||Ã− ΣBX̃ΣC || (17)

in the following sense: we can first find X̃0 that minimizes ||Ã − ΣBX̃ΣC || and then find
X0 = VBX̃0U

∗
C that minimizes ||A − BXC||. Therefore, matrices B and C can be identified

with matrices ΣB and ΣC , respectively.
Let s = rank B and t = rank C. Clearly if B or C is a zero matrix, then X = O is the

solution to the minimal problem (11). Here, O is the zero matrix. Let us consider the case
1 ≤ s, 1 ≤ t. Define B1 := diag(σ1(B), . . . , σs(B)) ∈ Cs×s, C1 := diag(σ1(C), . . . , σt(C)) ∈ Ct×t.
Partition Ã and X̃ into four block matrices Aij and Xij with i, j = 1, 2 so that Ã = [Aij ]2i,j=1 and

X̃ = [Xij ]2i,j=1, where A11, X11 ∈ Cs×t. Next, observe that Z := ΣBX̃ΣC =
[

Z11 O
O O

]
, where

Z11 = B1X11C1. Since B1 and C1 are invertible we deduce rank Z = rank Z11 = rank X11 ≤
rank X̃ ≤ k.

The approximation property of (A11)k yields the inequality ||A11 − Z11|| ≥ ||A11 − (A11)k||
for any Z11 of rank k at most. Thus

X̃0 =
[

X11 X12

X21 X22

]
, (18)

where X11 = B−1
1 (A11)kC

−1
1 , and X12, X21, X22 are arbitrary such that X̃0 ∈ R(p, q, k), is a

solution to the problem (17). Any solution to this problem has such a presentation if and only
if the solution Z11 = (A11)k is the unique solution to the problem min

Z11∈R(s,t,k)
||A11 − Z11||. This

happens if either k ≥ rank A11 or 1 ≤ k < rank A11 and σk(A11) > σk+1(A11).
Next, to preserve rank X̃0 = k we must have

X12 = X11G12, X21 = H21X11 and X22 = H21X11G12, (19)
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where G12 and H21 are arbitrary matrices. Let us show that X̃0 by (18)-(19) can equivalently
be represented in the form

X̃0 = (Ip + K̃)Σ†B(PΣB ,LÃPΣC ,R)kΣ
†
C(Iq + L̃), (20)

where K̃ = (Ip − PΣB ,R)S̃ and L̃ = T̃ (Iq − PΣC ,L) with S̃ and T̃ arbitrary.

First, we observe that PΣB ,R =
[

Is O
O O

]
and PΣC ,L =

[
It O
O O

]
. Partition S̃ and T̃

into four block matrices Sij and Tij with i, j = 1, 2, respectively, so that S̃ = [Sij ]2i,j=1 and

T̃ = [Tij ]2i,j=1, where S11 ∈ Cs×s and T11 ∈ Ct×t. Then we have K̃ =
[
O O
S21 S22

]
and

L̃ =
[
O T12

O T22

]
. We also have

Σ†B(PΣB ,LÃPΣC ,R)kΣ
†
C =

[
B−1

1 O
O O

][
A11 O
O O

]

k

[
C−1

1 O
O O

]
=

[
X11 O
O O

]
(21)

because
[

(A11)k O
O O

]
=

[
A11 O
O O

]

k

. Then (20) implies

X̃0 =
[

X11 X11T12

S21X11 S21X11T12

]
. (22)

In (19), G12 and H21 are arbitrary, therefore, (20)-(22) implies (18)-(19) with G12 = T12 and
H21 = S21.

Conversely, on the basis of (21), it is shown that (18)-(19) implies (20) as follows:

X̃0 =
[

X11 X11G12

H21X11 H21X11G12

]
=

[
Is O

H21 Ip−s + H22

] [
X11 O
O O

]

×
[

It G12

O Iq−t + G22

]

=
[

Is O
H21 Ip−s + H22

]
Σ†B(PΣB ,LÃPΣC ,R)kΣ

†
C

[
It G12

O Iq−t + G22

]
(23)

with G22 and H22 arbitrary. Putting H21 = S21, H22 = S22, G12 = T12 and G22 = T22, we have[
Is O
S21 Ip−s + S22

]
= Ip + K̃ and

[
It T12

O Iq−t + T22

]
= Iq + L̃, and then (20) follows.

Thus, if we denote Z := Σ†B(PΣB ,LÃPΣC ,R)kΣ
†
C then

X0 = VBX̃0U
∗
C = VBZU∗

C + VBZL̃U∗
C + VBK̃ZU∗

C + VBK̃ZL̃U∗
C . (24)

Here, VBZU∗
C = X̄, where X̄ = B†(PB,LAPC,R)kC

†, and

VBZL̃U∗
C = VBZU∗

CUCL̃U∗
C = X̄L,

where
UCL̃U∗

C = UC T̃U∗
CUC(Iq − PΣC ,L)U∗

C = L.

Similarly,
VBK̃ZU∗

C = KX̄ and VBK̃ZL̃U∗
C = KX̄L.

Therefore, (24) implies (14).
The representation (14) is unique if either (15) or (16) is true.

Corollary 1 If p = m, q = n and B, C are non-singular then the solution to (11) is unique
and given by X0 = B−1AkC

−1.

Proof. Under the conditions of the Corollary, rank (BXC) = rank X. In this case, also
PB,L = Im, PC,R = In and K = L = O. Then X0 = B−1AkC

−1 follows from (14).
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5 Generic PCA

5.1 Solution to the problem (4)–(5)

Now, we are in the position to give a solution to the problem (4)–(5). To formulate and prove
our main result in Theorem 2 below, we need the following notation:

Ã = WxExy(E1/2
yy )†, B̃ = WF and C̃ = WyE

1/2
yy . (25)

Theorem 2 Let
K̃ := (Is − P

B̃,R
)S̃ and L̃ := T̃ (In − P

C̃,L
) (26)

where S̃ ∈ Rs×s and T̃ ∈ Rn×n any matrices. Then the matrix

F 0 := (Is + K̃)B̃†(P
B̃,L

ÃP
C̃,R

)kC̃
†(In + L̃) (27)

provides the generic PCA, i.e. is a minimizing matrix for the problem (4)–(5). Any generic
PCA F 0 has the above form if and only if either

k ≥ rank (P
B̃,L

ÃP
C̃,R

) (28)

or
1 ≤ k < rank (P

B̃,L
ÃP

C̃,R
) and σk(PB̃,L

ÃP
C̃,R

) > σk+1(PB̃,L
ÃP

C̃,R
). (29)

Proof. Let us denote ∆xy = Wx(x)−WF {F [Wy(y)]}. We have

‖∆xy‖2
E

= tr{E[∆xy∆T
xy]}

= tr{WxExxW T
x −WxExyW

T
y F T W T

F −WF FWyEyxW T
x

+WF FWyEyyW
T
y F T W T

F }
= ‖WxE1/2

xx ‖2 − ‖WxExy(E1/2
yy )†‖2 + ‖WxExy(E1/2

yy )† −WF FWyE
1/2
yy ‖2 (30)

because E†
yyE

1/2
yy = (E1/2

yy )† and ExyE
†
yyEyy = Exy. The latter expression is true by Lemma

2 in [27].
In (30), the only term that depends on F is ‖WxExy(E

1/2
yy )† −WF FWyE

1/2
yy ‖2. In notation

(25), this term is represented as

‖WxExy(E1/2
yy )† −WF FWyE

1/2
yy ‖2 = ‖Ã− B̃F C̃‖2. (31)

Let R(m, n, k) ⊆ Rm×n be the variety of all m× n matrices of rank k at most. It follows from
Theorem 1 that a solution to the minimal problem

min
F∈R(m,n,k)

‖Ã− B̃F C̃‖2

is given by (27)–(29).

Remark 1 It follows from (27)–(29) that, for arbitrary Wx, WF and Wy, the solution to
the problem (4)–(5) is still not unique even if Eyy is non-singular. In such a case, Ã =
WxExy(E

1/2
yy )−1. If p = m, q = n and B̃, C̃ are non-singular then the solution to the prob-

lem (4)–(5) is unique and is given by F 0 = B̃−1ÃkC̃
−1. This is true by Corollary 1.
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5.2 Structure of generic PCA

By Theorem 2, F0 determined by (26)–(29) provides the generic Principal Component Analysis.
For G = PB̃,LÃPC̃,R, we write G = UGΣGV T

G and Gk = UGkΣGkV
T
Gk where UGΣGV T

G and
UGkΣGkV

T
Gk are the SVD and the truncated SVD defined similarly to (6) and (8), respectively.

Compression of vector y (in fact, the simultaneous filtering and compression of data y) by
the generic PCA is provided by the matrix V T

GkC̃
†(In + L̃) or by the matrix ΣGkV

T
GkC̃

†(In + L̃).
Reconstruction of the compressed vector is performed by the matrix (Is + K̃)B†UGkΣGk or by
the matrix (Is + K̃)B†UGk, respectively. The compression ratio is given by

c =
k

m

where k is the number of principal components, i.e. the number of components in the compressed
vector x(1) = V T

GkC̃
†y or x(2) = ΣGkV

T
GkC̃

†y with x(1), x(2) ∈ Rk.
As we have pointed out above, the generic PCA always exists since F0 is constructed from

the pseudo-inverse matrices.

5.3 Description of algorithm

It follows from the above that the numerical realization of the generic PCA consists of compu-
tation of its components presented in Theorem 2 and Section 5.2.

The device of numerical realization for the generic PCA is summarized as follows.

Initial parameters: x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rn), p ∈ N.
Final parameters: x̌(1), x̌(2), x̂(1), x̂(2).

Algorithm:
Compute:

Ã := WxExy(E
1/2
yy )†; B̃ := WF ; C̃ := WyE

1/2
yy ;

K̃ := (Is − P
B̃,R

)S̃; L̃ := T̃ (In − P
C̃,L

);

% The truncated SVD for G = PB̃,LÃPC̃,R defined similarly to (6) and (8):

Gk := UGkΣGkV
T
Gk;

% Compression of data y:

x̌(1) := V T
GkC̃

†(In + L̃)y; or x̌(2) := ΣGkV
T
GkC̃

†(In + L̃)y;

% Reconstruction of the compressed data:

x̂(1) = (Is + K̃)B̃†UGkΣGkx̌
(1); or x̂(2) = (Is + K̃)B̃†UGkx̌

(2) ;

end.

Remark 2 Here, as has been mentioned in Section 5.2, the compressed data can be represented
either by x̌(1) or by x̌(2). Consequently, the reconstructed data can be represented either by x̂(1)

or by x̂(2), respectively.
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5.4 The minimum norm generic PCA

The generic PCA presented by (26)–(29) depends on arbitrary matrices S̃ and T̃ and therefore,
it is not unique. This implies a natural question: What kind of condition should be imposed
on the statement of the problem (4)–(5) and the solution (26)–(29) to make it unique?

The answer follows from imposing an additional constraint of the minimum norm for F 0 and
is based on the main result in [5].

Theorem 3 [5] The minimal norm solution to the problem (11) follows when Xij = O in (18)
for (i, j) 6= (1, 1) and it is given by

X0 = B†(PB,LAPC,R)kC
†. (32)

The solution is unique if and only if either (15) or (16) is true.

A related solution to the problem (4)–(5) is as follows.

Corollary 2 The solution to the problem (4)–(5) having the minimal ||F 0|| is given by

F 0 = B̃†(PB̃,LÃPC̃,R)kC̃
†, (33)

and it is unique if and only if either

k ≥ rank (PB̃,LÃPC̃,R) (34)

or
1 ≤ k < rank (PB̃,LÃPC̃,R) and σk(PB̃,LÃPC̃,R) > σk+1(PB̃,LÃPC̃,R). (35)

Proof. The proof follows when Theorem 3 [5] is applied to the term (31) in (30).

5.5 A particular case: generalized PCA

Now, we wish to represent a solution of the particular case of the problem (4)–(5) when q = n,
s = p = m and Wx = WF = Wy = I, i.e. when the problem is to find F̄ 0 such that

J(F̄ 0) = min
rank F≤k≤min{m,n}

J(F ) (36)

where J(F ) has the form
J(F ) = ‖x−F(y)‖2

E
. (37)

The problem (36)–(37) relates to the generalized PCA considered, for example, in [11, 33]. A
particular associated feature is that the generalized PCA is constructed in terms of the pseudo-
inverse matrix, i.e. it always exists. Here, we show that the solution to the problem (36)–(37)
is given by (40) (see Theorem 4 below), and its related analysis requires Theorem 1 and the
following Lemma 1.

Lemma 1 Let Ā = ExyE
1/2†
yy and Āk still denote the truncated SVD defined similarly to (8).

Then

Āk(E1/2
yy )†E1/2

yy = Āk. (38)
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Proof. As an extension of the technique presented in proving Lemmas 1 and 2 in [27], it can
be shown that for any matrices Q1, Q2 ∈ Rm×n,

N (Q1) ⊆ N (Q2) ⇒ Q2(I −Q†
1Q1) = O, (39)

where N (Qi) is the null space of Qi for i = 1, 2. In regard of the equation under consideration,
N ([E1/2

yy ]†) ⊆ N (Exy[E
1/2
yy ]†). The definition of Āk implies that

N (Exy[E1/2
yy ]†) ⊆ N (Āk) and N ([E1/2

yy ]†) ⊆ N (Āk).

On the basis of (39), the latter implies

Āk[I − (E1/2
yy )†E1/2

yy ] = O,

i.e. (38) is true.

Now, we are in the position to give a rigorous justification of the generalized PCA. In this
regard, also see Remark 4 below.

Theorem 4 Let Ā = ExyE
1/2†
yy and C̄ = E

1/2
yy , and let L̄ = T̄ (In − P

C̄,L
) where T̄ ∈ Rn×n any

matrix. Then the matrix
F̄ 0 = ĀkC̄

†(In + L̄) (40)

provides the generalized PCA, i.e. is a minimizing matrix for the problem (36)–(37). The error
associated with the generalized PCA is given by

‖x− F̄0(y)‖2
E

= ‖E1/2
xx ‖2 −

k∑

j=1

σ2
j (Ā). (41)

Proof. Similarly to (30),

‖x−F(y)‖2
E

= ‖E1/2
xx ‖2 − ‖Ā‖2 + ‖Ā− FC̄‖2. (42)

Then (40) follows when Theorem 1 is applied to ‖Ā− FC̄‖2. We note that ĀP
C̄,R

= Ā.
Next, let rank Ā = `. Then on the basis of Lemma 1 and the relation P

C̄,L
C̄ = C̄, we

have ‖Exy(E
1/2
yy )† − F̄ 0E

1/2
yy ‖2 = ‖Exy(E

1/2
yy )† − Āk‖2 =

∑l
j=k+1 σ2

j (Ā). Since ‖Exy(E
1/2
yy )†‖2 =∑l

j=1 σ2
j (Ā), then (42) implies (41).

We note that the generalized PCA given by (40) is not unique because F̄ 0 depends on the
arbitrary matrix T̄ .

Remark 3 The expression (41) justifies a natural observation that the accuracy of the vector x
estimation increases if k increases.

Corollary 3 The minimum norm generalized PCA F̃ 0 is unique and it is given by

F̃ 0 = (ExyE
1/2†
yy )kE

1/2†
yy . (43)

The error associated with F̃ 0 is still presented by (41).

Proof. The proof of (43) follows from the proof of Corollary 2 when B̃ is the identity matrix,
Ã = Ā and C̃ = C̄. The error representation follows directly from the proof of Theorem 4.
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Remark 4 In references [11, 33] where the solution to the problem (36)–(37) in the form (43)
has been outlined, it is proposed to determine rank-constrained minimum of the term (42) from
the Eckart-Young theorem (see [4, 8] and (12)). Nevertheless, the Eckart-Young theorem can be
applied to the term (42) only if rank (FE

1/2
yy ) = rank F . The latter is true if E

1/2
yy is nonsingular

which is not a case. Thus, Theorem 1 is needed for establishing the solution. Besides, the
justification of the related error requires Lemma 1 above.

Remark 5 To make the solution of the problem (36)–(37) unique, an alternative condition could
seemingly be a minimization of ‖F̄0(y)‖2

E
with F̄0 given by (40). Nevertheless, a minimization of

‖F̄0(y)‖2
E

does not affect the uniqueness issue because ‖F̄0(y)‖2
E

does not depend on an arbitrary
matrix T̄ . Indeed, we have

‖F̄0(y)‖2
E

= tr E[ĀkC̄
†
k(In + L̄)yyT (In + L̄T )C̄†T

k ĀT
k ]

= tr [ĀkC̄
†
kEyyC̄

†T
k ĀT

k + ĀkC̄
†
kL

T C̄†T
k ĀT

k + ĀkC̄
†
kLC̄†T

k ĀT
k + ĀkC̄

†
kLLT C̄†T

k ĀT
k ]

= ‖Āk(E1/2
yy )†E1/2

yy ‖2 = ‖Āk‖2

where C̄†
kL

T = O because of C̄†
kP

T
C̄,L

= C̄†
k.
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