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We propose a practical algorithm for the calculation of the relative entropy of entanglement
(REE), defined as the minimum relative entropy between a state and the set of states with positive
partial transpose. Our algorithm is based on a practical semi-definite cutting plane approach. In
low dimensions the implementation of the algorithm in MATLAB provides an estimation for the
REE with an absolute error smaller than 10−3.

I. INTRODUCTION

With the emergence of quantum information science,
entanglement was recognized as a valuable resource for
a variety of quantum information tasks, such as telepor-
tation and superdense coding (for review, see e.g. [1, 2]).
With this recognition, much of the research in the field fo-
cused on how to quantify this quantum resource. Among
the different proposed measures quantifying entangle-
ment, the relative entropy of entanglement (REE) is one
of the most important ones. Its importance comes from
the fact that its asymptotic version provides the unique
rate for reversible transformations [3] – recently it was
discovered that the regularized REE is the unique func-
tion that quantify the rate of interconversion between
states in a reversible theory of entanglement, where all
types of non-entangling operations are allowed [4].

The REE is defined by [5]

ER(ρ) = min
σ′∈D

S(ρ‖σ′) ≡ S(ρ‖σ) , (1)

where D is the set of separable states or, as will be con-
sidered in this paper, the set of positive partial transpose
(PPT) states, and σ is the corresponding (possibly non-
unique) minimizer. Recall the relative entropy is defined
by

S(ρ‖σ′) ≡ Tr (ρ log ρ− ρ log σ′) .

The REE quantifies to what extent a given state can be
operationally distinguished from the closest PPT state.
Besides of being an entanglement monotone it also has
nice properties such as asymptotic continuity.

The state σ = σ(ρ) in Eq. (1) is called the closest PPT
state (or closest separable state). Recently, the inverse
problem to the long standing problem [6] of finding the
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formula for the closest PPT state σ(ρ) was solved in [7]
for the case of two qubits and in [8] for all dimensions and
for any number of parties. In [7, 8] the authors found a
closed formula for the inverse problem. That is, for a
given state σ on the boundary of PPT states (or separa-
ble states), ∂D, an explicit formula was found describing
all entangled states for which σ is the closest PPT state.
However, despite the complete solution in [8] for the in-
verse problem, the original problem remained unsolved.
Moreover, the results on the inverse problem in [7, 8],
suggests that the solution to the original problem may
not be analytical. Hence the need for numerical estima-
tion of the REE.

In this paper, we provide, for the first time (to our
knowledge), an algorithm for the calculation of the REE.
At the core of our approach lies a classical geometric idea
that a convex set may be, in principle, approximated
by its supporting hyperplanes. Our algorithm is based
on the so-called cutting planes combined with positive
semi-definite optimization. Namely, we attempt to suc-
cessively refine the epigraph of the relative entropy func-
tion S(ρ‖σ′) using supporting hyperplanes, building a
piece-wise linear lower-approximation to S(ρ‖σ′), while
using positive semi-definite optimization techniques to
characterize our feasible set D. In low dimensions where
D corresponds to qubit-qubit and qubit-qutrit pairs, our
numerical approach appears to recover the REE value up
to small absolute error in relatively short time without
much of a difficulty. For example, on a modest desktop
station we could compute REE for 50 randomly gener-
ated qubit-qutrit problems with an average run-time of
under 1 second per problem with pre-set precision of 10−2

for REE, see the last computational section for more de-
tails. In addition, in higher dimensions, our approach
readily generalizes to computing an approximate REE
over PPT states rather than the more elusive separable
states set.

The paper is organized as follows. In the next sec-
tion we introduce notations and preliminary results con-
cerning the REE. We then discuss our algorithm in Sec-
tion III. In Section IV we discuss our computational
results. Finally, in last section we summarize our find-
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ings with a few conclusions. In addition, in [9] there is a
link to the MATLAB driver code.

II. PRELIMINARIES

In what follows we use the following notation. Let
Cm×n denote the space ofm×n complex-valued matrices.
A ∈ Cm×n has entries Ai,j , i = 1, . . . ,m, j = 1, . . . , n.
A† is the conjugate transpose of A. Hk ⊂ Ck×k is the
space of Hermitian k × k matrices, Hk,+ ⊂ Hk – the
closed convex cone of Hermitian positive semi-definite
k× k matrices, Hk,++ ⊂ Hk,+ – the open convex cone of
Hermitian positive definite k×k matrices, Hk,+,1 ⊂ Hk,+

– the set of Hermitian positive semi-definite matrices of
trace 1 (i.e. density matrices).

We write A ≥ 0, A 
 0, A > 0 if A is positive semi-
definite, nonzero positive semi-definite, positive definite,
respectively. More generally for A,B ∈ Hk we let

A ≥ B ⇐⇒ A−B ≥ 0
A 
 B ⇐⇒ A−B 
 0
A > B ⇐⇒ A−B > 0.

We denote by Ik the identity matrix of order k, which is
also denoted by I when no ambiguity arises. A standard
inner product on Hk ×Hk is the trace-inner product de-
fined as 〈A,B〉 = A ◦B = trace (A†B); for concreteness,
we may fix our norm choice ‖A‖ =

√
〈A,A〉.

Remark: Unlike the introduction, for the remainder
of the manuscript we adapt more math-and-optimization
friendly notations, as in detailing our approach we gener-
ously borrow on optimization techniques and expect the
remaining audience to be fairly optimization savvy. Par-
ticularly, for an excellent introduction to the area of the
so-called convex optimization see [10].

eig(X) = {ξi,x(i)}i=1,k denotes the set of eigenvalue-
eigenvector pairs of X ∈ Hk. We assume that
x(1), . . . ,x(k) is an orthonormal basis in Ck, called
an eigenbasis of X. Then X is a diagonal matrix
Diag(ξ1, . . . , ξk) in its eigenbasis, which is also denoted
as Diag(ξ), where ξ = (ξ1, . . . , ξk) is the eigenvalue mul-
tiset.

For X ∈ Hk,++ denote by logX the logarithm function
of X. In the eigenbasis of X, logX is the diagonal matrix
Diag(log ξ) = Diag(log ξ1, . . . , log ξk). It is well known
that logX is order preserving, i.e., logX ≥ log Y for
X ≥ Y > 0, and matrix-concave, i.e., log(tX+(1−t)Y ) ≥
t logX + (1 − t) log Y for X,Y > 0, t ∈ [0, 1] on Hk,++;
see, for example [11]. Moreover, logX is also strongly
order preserving [8]: if X 
 Y > 0 then logX 
 log Y
(more results about strict concavity of logX can be found
in [8]).

Assume we are given fixed integers m,n > 1 and a
fixed non-zero A ∈ Hmn,+,1. We are interested in finding

the REE of A, that is, in finding

ER(A) = inf
X∈Dm,n

S(A‖X)

= inf
X
{A ◦ logA−A ◦ logX : X ∈ Dm,n} ,

where the set of separable states Dm,n is defined as

Dm,n = conv (Hm,+,1 ⊗Hn,+,1) ⊂ Hmn,+,1

with conv(·) denoting a convex hull and ⊗ denoting the
standard Kronecker product. Recall the Kronecker prod-
uct A ⊗ B of two matrices A,B may be defined using
a block-matrix notation as a matrix with (i, j) blocks
(A⊗B)i,j = ai,jB, ∀i, j. The following basic fact justifies
the inclusion Dm,n ⊂ Hmn,+,1 and is readily established
from the definition:

if eig(A) = {αi,a(i)}i=1,m denotes the set of
eigenvalue-eigenvector pairs of A ∈ Hm, likewise,
eig(B) = {βj ,b(j)}j=1,n, B ∈ Hn, then eig(A ⊗
B) = {αiβj ,a(i) ⊗ b(j)}i=1,m, j=1,n.

Clearly, finding ER(A) in the above is equivalent to
solving

inf
X
{−A ◦ logX : X ∈ Dm,n} (2)

Since Dm,n is compact and the objective −A ◦ logX is
continuous, the infimum is achieved and may as well be
replaced by the minimum.

We turn our attention to the objective function in (2).
For a moment, if we assume that X is a diagonal ma-
trix Diag(ξ) ≥ 0 and A 
 0, then −A ◦ logX =∑k
i=1Ai,i log ξi. Therefore, in the limiting sense, −A ◦

logX = ∞ if and only if Ai,i > 0 and ξi = 0 for some
i. Likewise, if A > 0 and X ≥ 0 is singular, then
A ◦ logX = −∞. In the same limiting sense we may
write 0 log ξ = 0 for any ξ ≥ 0. So, our objective func-
tion −A ◦ logX may approach infinity or stay bounded
as X approaches the boundary of Dm,n. We may state
our first elementary proposition.

Proposition II.1. The objective function of (2), −A ◦
logX, is convex with respect to X on Hmn,++. Moreover,
the minimum of −A◦logX over Hmn,++ is −A◦logA and
is achieved at X = A. Consequently, if A /∈ int Dm,n–
the interior of Dm,n, then the solution to (2) lies on the
boundary of Dm,n.

For brevity we only sketch the proof; using a limiting
argument one has to carefully work out the boundary
case where −A ◦ logX approaches infinity. Convexity
follows from logX being matrix-concave on Hmn,++. The
first differential of −A ◦ logX vanishes at affine-feasible
X = A + ∆ – a sufficient condition for the minimum
of a smooth convex function. Namely, borrowing from
Subsection III A, expressions (4), (3), we know that for
small ∆ ∈ Hmn with trace ∆ = 0, up to first order −A ◦
log(A+ ∆) ≈ −A ◦ logA+ ∆ ◦ I = −A ◦ logA. Finally,
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if A /∈ int Dm,n, the last part follows from both the t-
level sets of the objective function {X ∈ Hmn,+,1 : −A ◦
logX ≤ t}, as well as Dm,n, being convex.

In fact, one may state an even stronger statement
about the logX and the objective as in [8, Appendix
A].

Theorem II.2. The function logX is strongly matrix-
concave on Hk,++. Consequently, the function −A◦logX
is strictly convex on Hk,++ for each fixed A ∈ Hk,++.

Therefore, if A > 0 then the solution to (2) is given
by a unique boundary point [8]. If A is singular, then
X(A) does not have to be unique [7]. In general, the set
of minimizing separable states form a compact convex
subset of Dm,n which intersects the boundary of Dm,n.

The problem (2) may look deceptively simple. In gen-
eral, even deciding if a certain X is separable is NP-
hard [12]; see [13] for a similar problem pertaining to the
graph isomorphism. Thus, despite the fact that (2) is
a convex optimization problem –the objective function
is convex– we do not attempt to solve (2) simply rely-
ing on, for example, the so-called (polynomial) ellipsoid
method, as finding a separating oracle for Dm,n might be
already quite difficult. To emphasize the distinction be-
tween Dm,n and its containing superset Hmn,+,1 we state
our next simple proposition.

Proposition II.3. Dm,n is a proper subset of Hmn,+,1,
and, in particular, has flat faces besides those that coin-
cide with faces of Hmn,+,1.

Proof. Consider the rank-1, a.k.a. a pure state, ma-
trix X = xx> where x = 1√

2
(1, 0, . . . , 0, 1). Clearly

X ∈ Hmn,+,1 but not in Dm,n, so indeed Dm,n 6= Hmn,+,1

(here and below to see that X /∈ Dm,n we rely on
Fact II.4).

Likewise, let Y =
(
(1, 0) · (1, 0)>

)
⊗
(
(1, 0) · (1, 0)>

)
∈

D2,2 and Z =
(
(0, 1) · (0, 1)>

)
⊗
(
(0, 1) · (0, 1)>

)
∈ D2,2,

and consider Y+Z
2 ∈ D2,2, clearly Y+Z

2 cannot be written
as A⊗B for any A,B ∈ H2,+,1; the last construction may
be easily generalized to arbitrary m,n > 1.

Surprisingly, in small dimensions m = 2, n = 2, 3 the
set Dm,n admits very easy alternative characterization
using the so-called partial transpose [14]. The partial
transpose (with respect to the second factor) is the linear
map PT2 : Hmn → Hmn, which is given by partial ex-
change of matrix entry indices, and may be conveniently
stated as PT2(A⊗B) = A⊗B>.

Fact II.4. For m = 2, n = 2, 3, X ∈ Dm,n if and only
if X ∈ Hmn,+,1 and the corresponding partial transpose
PT2(X) ∈ Hmn,+. Moreover, for higher dimensions m,n
the partial transpose condition is necessary.

(The necessity easily follows from the earlier mentioned
property of the eigenvalues for the Kronecker product.)

The above characterization of Dm,n, m = 2, n = 2, 3, is
equivalent to viewing the set as an affine slice of Hk,+,1 for

some k > 0, which in turn allows us to capture Dm,n via
positive semi-definite optimization [15, 16] techniques.
Thus, in the latter case of m = 2, n = 2, 3 where the
feasible set is relatively simple and the derivative of the
objective function −A ◦ logX is relatively easy to com-
pute, see the next section, we do expect to find an efficient
approach to solving (2), as in, for example, [10].

III. THE APPROACH

Our main goal is solving (2), and the proposed tech-
nique is fairly simple. Since the objective function is
convex, we rely on constructing a successively refined se-
quence of approximations to the epigraph of the objective
restricted to intDm,n ⊂ Hmn,+,1, defined as

epi(−A ◦ logX)|intDm,n

= {(X, t) ∈ intDm,n × R : −A ◦ logX ≤ t} ,

which in turn may be viewed as a convex set. The re-
sulting relaxations to (2) corresponding to the positive
semi-definite optimization may be efficiently solved with
off-the-shelf (and even free) numerical software.

We do not attempt to prove the convergence of the pro-
posed approach. Instead, we provide numerical evidence
of its efficiency. Lastly, we want to remark that our ap-
proach is consistent with the classical cutting planes ap-
proach in non-linear optimization, with the latter being
already well established in many practical settings.

A. First differential of log X and approximate
epi(−A ◦ log X)|intDm,n

Recall that for diagonal matrix Diag(λ) ∈ Hk,++,λ =
(λ1, . . . , λk), the first-order expansion of log(Diag(λ) +
∆X) for small ∆ ∈ Hk may be written as [17, (6.6.31)]

log(Diag(λ) + ∆X) = log Diag(λ) +D(λ) ·∆ +O(‖∆‖2)

where D(λ) is the k × k Hermitian matrix

D(λ)i,j =

{
log λi−log λj

λi−λi
, λi 6= λj ,

1
λi

, i.e., the limiting value , λi = λj ,

A ·B denotes entry-wise (Hadamard) product of two ma-
trices, and O(‖∆‖2) is a k × k matrix with O(‖∆‖2) en-
tries; regular matrix product takes precedence over entry-
wise product.

Recall that log(UXU†) = U log(X)U† for unitary U
and any X. Thus, for arbitrary X ∈ Hk,++, the first-
order expansion of log(X + ∆) may be written by ap-
plying spectral decomposition of X = UXDiag(λX)U†X
with the unitary matrix of eigenvectors UX and the ma-
trix Diag(λX) of the corresponding eigenvalues λX of X,
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resulting in

log(X + ∆)

= log
(
UXDiag(λX)U†X + UXU

†
X∆UXU

†
X

)
= UX

(
log Diag(λX) +D(λX) · U†X∆UX + O(‖∆‖2)

)
U†X

= logX + UX

(
D(λX) · U†X∆UX

)
U†X + O(‖∆‖2).

Using the above and a sequence of fixed points X(i) ∈
intDm,n, i = 0, . . . , N , we may proceed with constructing
an approximation to epi(−A ◦ logX)|intDm,n

. Namely,
since −A ◦ logX is convex on int Dm,n, its epigraph is
supported by tangent hyperplanes at every X(i), and
so epi(−A ◦ logX)|intDm,n

is a subset of all (X, t) ∈
intDm,n × R satisfying

max
i
−A ◦

[
logX(i)

+ U(i)

(
D(λ(i)) · U†(i)(X −X

(i))U(i)

)
U†(i)

]
≤ t,

where for brevity of notation we write U(i),λ(i) for
UX(i) ,λX(i) , or equivalently, for all i,

A ◦
(
U(i)

(
D(λ(i)) · U†(i)XU(i)

)
U†(i)

)
+ t− si

= −A ◦ logX(i) +A ◦
(
U(i)

(
D(λ(i)) · U†(i)X

(i)U(i)

)
U†(i)

)
with si ≥ 0, which is the same as

E(i) ◦X + t− si = −A ◦ logX(i) + E(i) ◦X(i), ∀i

with si ≥ 0 and

E(i) =
(
U(i)

(
D(λ(i)) · U†(i)AU(i)

)
U†(i)

)
, (3)

since A · B = B · A, noting that trace ((A · B)C) =
trace (A(B> · C)), and D(λ(i)) = D(λ(i))>. Finally, re-
calling that from Proposition II.1 we have t ≥ −A◦logA,
the above approximation to epi(−A ◦ logX)|intDm,n

may
be refined to

E(i) ◦X + t− si = −A ◦ logX(i) + E(i) ◦X(i) (4)
t ≥ −A ◦ logA, si ≥ 0, ∀i = 0, . . . , N.

Note that (4) contains only linear inequalities. Intu-
itively, if N is large and the sequence X(i) forms a nearly-
dense cover of Dm,n, then the approximation (4) to the
epigraph of the objective would be fairly accurate. Con-
sequently, in order to find an approximate solution to
our problem (2), we might as well work with the above
approximation to epi(−A ◦ logX)|intDm,n

, minimizing t.
That is, instead of (2) we want to find the minimum of
t satisfying (4) over all X ∈ Dm,n. It turns out that the
latter problem may be handled efficiently numerically as
described in Subsection III C, where we also propose a
scheme for generating X(i) incrementally with the end
goal of keeping N small.

B. Equivalent re-parametrization of
Dm,n, m = 2, n = 2, 3

From now, Dm,n represents the set of separable states
only for the cases of m = 2 and n = 2 or 3. In higher
dimensions, our approach will work if we take Dm,n to
be the set of PPT states. We adapt a somewhat unusual
re-parametrization of Dm,n relying on Fact II.4, which
will prove to be useful in Subsection III C.

Recall that X ∈ Dm,n if and only if X ∈ Hmn,+,1 and
PT2(X) ∈ Hmn,+. That is, X ∈ Hmn,+, traceX = 1, and
PT2(X) ∈ Hmn+ . These conditions may be re-written in
the following way. Denote

F (i,j,o,p) =
(
e(i)e(j)>

)
⊗
(
e(o)e(p)>

)
,

G(i,j,o,p) =
(
e(i)e(j)>

)
⊗
(
e(p)e(o)>

)
.

(5)

Here e(i), e(j) and e(o), e(p) are the standard unit vectors
in Rm and Rn respectively, i.e., e(i)

i = 1 and e(i)
j = 0, j 6=

i. Then the conditions that X ∈ Dm,n can be written as
follows:
(a) Unit trace of X:

I ◦X = 1. (6)

(b) Diagonal blocks of PT2(X): F (i,i,o,p) ◦X −G(i,i,o,p) ◦ Y = 0,
∀i = 1, . . . ,m,
∀o = 1, . . . , n, p = o, . . . , n,

(7)

(c) Strictly upper-triangular blocks of PT2(X): F (i,j,o,p) ◦X −G(i,j,o,p) ◦ Y = 0,
∀i = 1, . . . ,m, j = i+ 1, . . . ,m,
∀o = 1, . . . , n, p = 1, . . . , n,

(8)

(d) Positive semi-definiteness of

PT2(X) X,Y ∈ Hmn,+ . (9)

Here the matrix Y corresponds to PT2(X). Note that
due to X,Y being Hermitian, it suffices to specify the
re-ordering of the entries of X into Y = PT2(X) only for
the upper-triangular part of X.

C. Sequential positive semi-definite optimization
approach

A problem corresponds to positive semi-definite opti-
mization [15] if it may be written as

inf
X
{C ◦X : A(i) ◦X = bi, i = 1, . . . `, X ∈ Hk,+}

where k × k matrices C,A(i) are fixed. Note that
the above includes block-diagonally structured matrices
by choosing appropriate A(i), bi to zero-out off-diagonal
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blocks, nonnegativity constraints x ≥ 0 by considering
diagonal 1 × 1 positive semi-definite blocks, and the so-
called free variables by taking x = y− z where y, z ≥ 0.
Without loss of generality we may assume C,A(i) ∈ Hk;
indeed, for any k × k matrix C and X ∈ Hk we have

C ◦X = trace
(
CX + CX

2

)
=

trace (CX)
2

+
trace

(
X†C†

)
2

=
(
C + C†

2

)
◦X.

So, even if C,A(i) are non-Hermitian initially, we may
easily symmetrize those by following the procedure
above.

Efficient numerical algorithms exist for solving this
type of problems. In particular, the so-called interior-
point methods [15] provide both the theoretical polyno-
mial bound on the number of iterations needed to find
an ε-approximate solution and decent practical perfor-
mance. There is a number of freely available interior-
point method solvers, e.g., SeDuMi, SDPT3, CSDP,
DSDP, etc., suitable for solving these type of problems.
For our purposes we rely on MATLAB-based SeDuMi
solver.

The approximation of epi(−A ◦ logX)|intDm,n
given

by (4) combined with the parametrization of Dm,n given
by (6),(7),(8),(9) form a basis for our numerical scheme
to compute an approximate solution to (2). Based on re-
fining our approximation of epi(−A ◦ logX)|intDm,n

, we
build a sequence of positive semi-definite optimization
problems, with each problem resulting in finer and finer
approximation to a solution of (2).

Let r∗ denote the optimal value of (2),

r∗ = inf
X
{−A ◦ logX : X ∈ Dm,n}.

As we explained in §II, r∗ is attainable and we may re-
place inf by min. Let r ≤ r∗ ≤ r denote lower and upper
bounds on r∗ respectively. For a given ε > 0, we say that
X∗ ∈ Dm,n is an ε-approximate solution to (2) if

−A ◦ logX∗ ≤ r∗ + ε. (10)

Recalling that 1
mnI ∈ Dm,n, the basic approach to find

X∗ and approximate the true value r∗ may be summa-
rized as follows:

[0] if A ∈ Dm,n then return X∗ = A, r = r = 0 (recall
Fact II.4) and stop, else

[1] set the desired accuracy ε > 0, initialize N =
0, X∗ = X(0) = 1

m+nI, r = −A ◦ logA, r =
−A ◦ logX∗,

[2] solve positive semi-definite optimization problem
corresponding to

min
t,X
{t : (t,X) satisfy (4), (6), (7), (8), (9) and t ≥ r},

(11)
and store its optimal solution pair (t,X),

[3] update r = t,

[4] if r − r ≤ ε then return X∗, r, r and stop, else
set X(N+1) to be the next X-refinement point for
epi(−A ◦ logX)|intDm,n

and increment N = N + 1
and if −A ◦ logX(N) ≤ −A ◦ logX∗ then update
X∗ = X(N), r = −A ◦ logX∗, go to [2].

To justify our termination criteria in [4], ob-
serve that since the approximation to (convex)
epi(−A ◦ logX)|intDm,n

is based on supporting hyper-
planes, the solution to (11) always corresponds to a lower
bound on the optimal value of −A ◦ logX in (2). Note
that r and r are non-decreasing and non-increasing re-
spectively at each iteration of our scheme.

It is left to explain how we construct X-refinement
points.

D. X-refinement point for epi(−A ◦ log X)|intDm,n

Given a sequence of points X(0), . . . , X(N) in intDm,n,
a point X solving (11), and some fixed reference point
Z ∈ intDm,n, we generate X(N+1) simply by minimizing
−A ◦ logX on the linear segment [Z,X], that is,

X(N+1) = arg min
X

{
−A ◦ logX : (12)

X = αZ + (1− α)X,α ∈ [0, 1]
}
.

In fact, we are interested in finding the approximate
minimizer in (12) with a given precision, so the equal-
ity above should be interpreted in approximate sense.
Given the tolerance δ > 0, the one-dimensional minimiza-
tion may be efficiently performed using, say, the standard
derivative-based bisection scheme as follows:

• set the end points Xstart = Z,Xend = X of
the interval containing the approximate minimizer
of (12) Xmin 3 [Xstart, Xend], set the initial value
of Xmin = Xstart+Xend

2 ,

• while ‖Xend −Xstart‖ ≥ δ repeat

if the directional derivative along Xend−Xstart

of −A ◦ logX at Xmin is negative set Xstart =
Xmin else set Xend = Xmin, and set Xmin =
Xstart+Xend

2 .

This scheme quickly terminates with an interval
[Xstart, Xend] 3 Xmin such that ‖Xend − Xstart‖ < δ;
note that the directional derivative of −A◦ logX may be
easily evaluated using (3). We set X(N+1) = Xmin.

Particularly, we experiment with two choices of the
reference point Z:

A. (conservative strategy) Z = 1
mnI,

B. (aggressive strategy) Z = X∗, where X∗ corre-
sponds to the best upper bound r on r∗ obtained
so far.
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Recall that generally in the absence of degeneracies the
solution to (11) lies in the boundary of semi-definite cone.
Therefore, intuitively, choice A may encourage the next
refinement point X(N+1) to be more centered, while B.
would be more aggressive choice that in a sense targets
“minimizing the discrepancy” between the lower and up-
per bounds r, r, and so we would generally expect B to
result in smaller N needed, i.e., a fewer number of cut-
ting planes added. Indeed, our intuition seems to be
concurred by numerics, see the next section.

Despite its seeming simplicity, our choice of X(N+1)

proves to be very effective numerically in refining the ob-
jective epigraph epi(−A ◦ logX)|intDm,n

near the region
of interest, i.e., close to an ε-approximate solution to (2);
see the next section for some illustrations.

Next we comment on a few possible reasons for this
surprising efficiency.

Remark III.1. We solve (11) only approximately since,
in general, presently this is the only option for handling
positive semi-definite optimization problems efficiently,
i.e., in polynomial time. However, this does not seem
to negatively affect our approach to (2) as practically
optimization problem (11) is solved to a very high (near-
machine) precision.

Remark III.2. It is only for notational convenience that
in Subsection III A and from that point on we restrict
X(i) to belong to the interior of Dm,n rather than the
whole set itself. Observe that in general −A ◦ logX may
approach infinity when X approaches the boundary of
Dm,n. Since we want to use (4) in forming (11) and
subsequently solve the problem numerically, such a sit-
uation is clearly undesirable. In practice, to overcome
such a tendency for X(i) we implement a simple numer-
ical safeguard re-centering procedure, briefly outlined at
the end of the subsection.

In principal, one can prove the convergence of a mini-
mization algorithm if it is possible to show that the ob-
jective function gets reduced by some non-trivial amount
at each iteration of the algorithm. If we have a smooth
objective function with no constraints, one natural choice
is to follow the steepest descent direction –the direction
of the negative gradient– at each iteration, until a sig-
nificant decrease in the objective is achieved. However,
when constraints are present, such as the case of (2), fol-
lowing the steepest descent direction might not work well
as the direction might send us back to the boundary of
the feasible region over and over again, thus, hindering
the progress of our algorithm. Therefore, intuitively, we
want to (i) make long enough steps that guarantee a suf-
ficient decrease of the objective at each iteration, and, at
the same time, (ii) stay away from the boundary of Dm,n
whenever possible.

The first goal is accomplished by considering (11) in-
stead of, say, merely minimizing −A ◦ logX along the
steepest descent direction. Potentially, this allows us to
traverse the whole feasible region Dm,n in search of a
better next iterate. In other words, solving (11) rather

than minimizing the objective function along the gradient
hopefully prevents the algorithm from being stuck near
the boundary of Dm,n and allows for long enough steps.
Recall that to guarantee that we actually decrease the
objective at each iteration rather than overshoot towards
a point with even larger objective value as compared to
the one we started with, we combine solving (11) with
backtracking line-search (12) along [Z,X].

The second goal is in part accomplished by relying on
the maximal-rank property of the path-following IPM
used to solve (11). Here, interestingly, a seemingly triv-
ial refinement in (4) that replaces unrestricted t with
t ≥ −A ◦ logA makes a dramatic difference in the nu-
merics. That is, while t ≥ −A ◦ logA probably does not
have such a huge impact on refining the epigraph itself,
it certainly helps to produce a well-centered solution X∗
to (11) by finding a full-rank solution X∗ –hopefully far
away from the boundary of Dm,n– if such exists at least
during the very first iterations of our scheme.

Furthermore, if the addition of next point
X(N+1) to the approximate description of the
epi(−A ◦ logX)|intDm,n

according to (4) causes nu-
merical problems for solving (11), we augment X(N+1)

(as many times as necessary) by re-centering it towards
1
mnI, that is, by setting X(N+1) = βX(N+1)+(1−β) 1

mnI
where β ∈ (0, 1) is some pre-set constant. In our experi-
ments we use the default value of β = .5. The rationale
for the latter is that 1

mnI is a well-centered point in
Dm,n and hence does not cause any numerical problems
in (4).

IV. COMPUTATIONAL RESULTS

Our numerical approach was implemented in MAT-
LAB, using SeDuMi solver version 1.1R3 and tested with
MATALB version R2007a. We tested our algorithm on
Intel Xeon 2.4 Ghz machine with 2GB RAM.

We ran our numerical scheme on a set of 100 ran-
domly generated matrices A: 50 instances correspond-
ing to m = 2, n = 2 with targeted default solution pre-
cision of ε = 10−3, and 50 instances corresponding to
m = 2, n = 3 with targeted default solution precision of
ε = 10−2, setting δ = 10−10. All the runs were successful.

Comparing strategies A and B, indeed, the latter ag-
gressive approach appears to produce superior numerical
results. For example, on the 50 problems corresponding
to m = 2, n = 3, the average solution times per prob-
lem instance were decreased almost 5-fold, with average
65.14 outer iterations per problem in case of A resulting
in slightly over 5 seconds run-time per instance, com-
pared to only average 13.8 outer iterations and under 1
second run-time per problem while using B.

For the randomly generated problems, our choice of
the termination precision level ε was stipulated by the
following performance metric that may be used to judge
the quality of the approximation. For a given problem
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instance, one may introduce relative gap defined as

gr =
r − r
r∗

.

Note that since A◦logA is negative due to the eigenvalues
of A being non-negative and adding up to 1, and so r > 0,
we can bound

gr ≤
r − r
r

.

So, for example, despite a seemingly high value of of ε =
10−2 in case of m = 2, n = 3, most of the problems were
terminated with gr < 10%.

For a more detailed illustration, we report on the fol-
lowing three examples, where, in addition, one may com-
pute the relative entropy

A ◦ logA− inf
X
{−A ◦ logX : X ∈ Dm,n}

analytically:

• 4 × 4 simple rank-1 (pure) state, here m = n = 2
and

A =

 1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 1/2

 ,

ε-approximate solution is found in 2 iterations with
the reported approximate relative entropy value
r = .6931... and | log 2 − r| ≈ 2.8227 · 10−11 com-
puted with MATLAB (where log 2 is the true ana-
lytic value) and

X∗ ≈

 1/3 0 0 1/6
0 1/6 0 0
0 0 1/6 0

1/6 0 0 1/3

 ,

with ≈ meaning that the actual computed values
in X∗ differ form the above by no more than 10−7,
relying on strategy A, in case of B the results are
similar with solution being found in 2 iterations,

• 4× 4 simple rank-2 state, here m = n = 2 and

A =

 1/2 0 0 1/4
0 0 0 0
0 0 0 0

1/4 0 0 1/2

 ,

ε-approximate solution is found in 62 iterations
with the reported approximate relative entropy
value r = .1308... and | log 2 − (1/4 log 4 +
3/4 log 4/3) − r| ≈ −2.2268 · 10−8 computed with
MATLAB (where log 2− (1/4 log 4 + 3/4 log 4/3) is
the true analytic value) and

X∗ ≈

 1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2

 ,

with ≈ meaning that the actual computed values
in X∗ differ form the above by no more than 10−5,
relying on strategy A, in case of B the results are
similar with solution being found in 5 iterations,

• 4× 4 full-rank (entangled) Werner state, here m =
n = 2 and

A =
1
4

 1− f 0 0 0
0 f + 1 −2f 0
0 −2f f + 1 0
0 0 0 1− f

 , f = 2/3,

ε-approximate solution is found in 93 iterations
with the reported approximate relative entropy
value r = 0.1308... and |3/4 log 3/2 + 1/4 log 1/2−
r| ≈ 2.4489 ·10−8 computed with MATLAB (where
3/4 log 3/2 + 1/4 log 1/2 is the true analytic value)
and

X∗ ≈

 1/6 0 0 0
0 1/3 −1/6 0
0 −1/6 1/3 0
0 0 0 1/6

 ,

with ≈ meaning that the actual computed values in
X∗ differ form the above by no more than 6 · 10−5,
relying on strategy A, in case of B the results are
similar with solution being found in 25 iterations.

For the above examples, in an attempt to make it even
more convincing case, we set the targeted precision to
ε = 10−7 (with the corresponding δ = 10−12).

Ref. [9] contains MATLAB driver routine that calls
SeDuMi solver as its internal subroutine; note that func-
tions vec and mat are internal to SeDuMi but are trivial
to re-implement as stand-alone routines. For more de-
tails on the implementation of SeDuMi see [18] and the
references therein. If needed, one may replace SeDuMi
by some other appropriate solver such as SDPT3, CSDP,
etc. The driver routine is written with the primal goal
of having the code transparent and readable, rather than
achieving maximal computational efficiency. For exam-
ple, although the use of MATLAB’s cells allows for a
greater transparency, it is definitely not the most effi-
cient and fast approach from the computational point of
view.

V. CONCLUSION

We propose the first, to our knowledge, numerical al-
gorithm for computing REE ER(σ) in small dimensions
for general σ. Our numerical experiments support the
viability of our approach.

The efficiency of our numerical scheme may poten-
tially be improved by considering the second-order-based
approximation to epi(−A ◦ logX)|intDm,n

and conse-
quently relying on the so-called convex quadratic posi-
tive semi-definite optimization problems instead of (11),
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which are still amenable to the interior-point methods.
We do not pursue this route since we are quite satisfied
with the performance of our numerical approach so far.

Optimistically, we hope that one may actually estab-
lish a (polynomial) complexity bound on finding an ε-
approximate solution to (2) by following a variant of the
proposed scheme. Also, we hypothesize that in turn ε
gives rise to a bound on the proximity to the true solution
of (2). Presently, both are under further investigation.

Note that our approach is also applicable in a straight-
forward fashion to computing the lower bound on (2)

where Dm,n is replaced by positive partial transpose
states. We experimented with larger matrix sizes go-
ing up to m = 5, n = 10 and still were able to get the
10−2-approximate solutions, although, the actual com-
putations took much longer. If desired, in general in
low dimensions we could achieve far greater numerical
precision than 10−2 as illustrated in the computational
section.
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