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1 Introduction

Theory of matrices related to many fields of biology, business, engineering, medicine, science
and social sciences. Let us give a few examples. Recall that

a11 a2 ce Q1n

ag1 a9 e aA2n,
A =

am1 am?2 <o Amnp

is called an m x n matrix and briefly denoted by A = (a;;);;Z, or just A = (a;;). If the
entries a;; are in some given set S we denote by S™*™ the set of all m x n with entries in
S. In some other books S™*™ is denoted by M,,,(S) and M, (S) stands for M,,,(S). As
usual R,C,Z and F stands for the set of real numbers, complex numbers, integers, and a
field respectively.

Consider A € R™ ™. Tt can be interpreted as a digital picture seen on a screen. Then
a;; encodes the color and its strength in the location of (4,7). In many case m and n are
very big, so it is very costly and time consuming to storage the information, or to transmit
it. We know that there is a lot of redundancy in the picture. Is there a way to condense
the information to have almost the same picture, when an average person looks at it? The
answer is yes, and one way to achieve it is to use the singular value decomposition discussed
later in this course.

An other possibility is that A represents DNA gene expression data, where a;; is the
expression level of the gene 7 in the experiment number j. The number of genes is huge, e.g.
from 6,000 to 100,000 and the number of experiments can be from 4 to 30. This is done by
lasers and computers, and certain percentage of entries is corrupted. To do some statistics
on DNA we need the values of all entries of A. Is there a good way to impute, (complete),
the values of A using matrix theory? The answer is yes, and one can use least squares and
inverse eigenvalue techniques to do it.

In many applications one has a linear system given schematically by the input-output
(black box) relation x — y where x,y € R™ are column vectors with n coordinates, and
y = Ax, where A € R™*™. If one repeats this procedure m times, (closed loop, then
X, = A™x, m = 1,2,.... How does x,, loos like where m is very big? This question is
very natural in stationary Markov chains, which are nowadays are very popular in many



simulations and algorithms for hard problems in combinatorics and computer science. The
answer to this problem is given by using the Jordan canonical form.

Let G = (V, E) be a digraph on the set of n vertices V', and the set of edges E C V x V.
Then G is represented by A = (a;;) € {0,1}"*", where a;; = 0 or a;; = 1 if there is no edge
or there is an edge from the vertex i to the vertex j respectively. Many properties of graph are
reflected in the spectrum, (the set of eigenvalues), of A, and the corresponding eigenvectors,
in particular to the eigenvector corresponding to the nonnegative eigenvalue of the maximal
modulus. This topis is covered by the Perron-Frobenius theorem for nonnegative matrices.

2 Jordan Canonical Form

2.1 Statement of the Problem

Remark 2.1 In this notes we sometimes are going to emphasize that certain results
hold for a general field F. The student unfamiliar with this notion can safely assume that F
is either the field of complex numbers or the field of the real numbers.

Let V be a vector space over the field F of dimension n, e.g. V = F". (Here F" is the
set of column vectors with n coordinates in the field F. To save space we denote the column
vector x with coordinates x1,...,2, as x = (x1,...,2,)".) Let uy,...,u, be a basis in
V, ie. any vector x € V, is uniquely expressed as a linear combination of uy,...,u,:
X = z1uy + ZaUs + ... + zpu,. (Any set of n linearly independent vectors forms a basis
in n-dimensional vector space.) The vector (z1,z2,...,7,) € F" is called the coordinate
vector of x in the basis [uy,...,u,] of V, and 1, ..., x, are called the coordinates of x with
respect to [uy, ..., u,]. It is convenient to use the formalism: x = [uy, ..., u,](x1,...,2,)".
In F", (R™ or C™), we have the standard basis

e; =(1,0,...,0)", e =(0,1,0,...,0)7,...,e, = (0,...,0,1) T,

where e; has the i-th coordinate equal to 1, while all other coordinates are equal to 0. Let

[Vi,...,Vy] be an other basis in V. Then there exists U = (u;;) € F**" such that
n
[111, .. .71,1.”] = [Vh. .. ,Vn]U — u; = Zujivj7 for i = 1,....n. (21)
j=1

Furthermore, U is an invertible matrix, i.e. there exists V' € F"*™ such that UV = VU = I,

where I, in n X n, identity matrix whose i-th column is the vector e;, for i = 1,...,n. (If
no confusion arises we sometimes denote I, by I.) V is a unique matrix which is denoted
by U™L, the inverse of U. U is called the the transition matriz from the base [uy, ..., u,]
to the base [vi,...,vy,].

Let [vq,...,Vy] be a basis and define vectors uy,...,u, asin (2.1). Then uy,...,u, is a
basis in V if and only U is an invertible matrix. Furthermore, if we multiply [uy,...,u,] =

[Vi,...,vn]U by U™! from the right we get that [vi,...,v,] = [u1,...,u,]JU"L, i.e. the
transition matrix from ”v”- basis to ”u”-basis is given by the inverse of the transition matrix
from "u”- basis to ”v”-basis.

Let T : V — V be a linear transformation: T(ax + by) = aT'(x) + bT'(y) for all scalars
a,b € F and vectors x,y € V. For example for A € F"*™ A :F"™ — F" is given by x — Ax,
for any column vector x € F", is linear transformation.

Any linear transformation 7' is determined uniquely by its representation matrix A =

(ai;) € F” in a given basis [uy,...,u,], defined as Tu; = ai;,u1 + agiUuz + ... + Gpily, i =
1,...,n. The formalism notation is
Ty, ..., u,] = [Tuy,...,Tu,] = [u,...,u,]A.



Note that if x and y are the coordinate vectors of v and T'v respectively, then y = Ax:
SO MITED SIEES 3) SRONED SRR 3) SR oty
i=1 i=1 i=1 j=1 i=j=1 j=1 i=1
This easily follows from the formalism
Tv =T([uy,...,u,)x) = (T[uy, ..., u,])x = ([ug,...,u,]JA)x = [uy, ..., u,](4Ax).

Let [V1,...,Vy,] be another basis in V. Assume (2.1). Then the representation matrix of T
7y ba51s is given by B = UAU !

Ty, ..., uy]) =[uy,...,un]A=T([vi,...,v,)JU) = ([v1,...,vp]U)A =
(T[vi,. sV )U = [Vi, ., Vi J(UA) = Tve, .. V] = [Vi, .., v J(UDAU ).

Definition 2.2 Let GL(n,F) C F™*" denote the set (group) of all n x n invertible
matrices with entries in a given field F. A, B € F™*"™ are called similar, and this is denoted
by A~ B, if B=UAU"" for some U € GL(n,F). The set of all B € F**" similar to a
fized A € F™*™ is called the similarity class corresponding to A, or simply a similarity class.

The following proposition is straightforward:

Proposition 2.3 Let F be a field, (F =R, C). Then the similarity relation on F"*™ is
an equivalence relation:

A~A A~B < B~A A~Band B~C = A~ B.
Furthermore if B=UAU"! then
1. det(zI, — B) =det(zl, — A), i.e. A and B have the same characteristic polynomial.
2. For any integer m > 2 B™ =UA™U L.

3. If in addition A is invertible, then B is invertible and B™ = UA™U~! for any integer
m.

Corollary 2.4 Let V be n-dimensional vector space over F. Assume that T : V — V
is a linear transformation. Then the set of all representation matrices of T is a szmzlarity

class. Hence, the characteristic polynomial of T is defined as det(zI, —A) = 2"+ 1" 01 a; 2",
where A is the representation matriz of T in any basis [uy,...,u,], and this definition is

independent of the choice of a basis. In particular detT := det A, and trace T™ = trace A™
for any nonnegative integer. (T is the identity operator, i.e TOv = v for all v € V, and
AY = 1. Here by the trace of B € F**" denoted by trace B, we mean the sum of all diagonal
elements of B.)

Problem 2.5 (The representation problem.) Let V be n-dimensional vector space over
F. Assume that T : V. — V is a linear transformation. Find a basis [v1,...,vy] in which
T has the simplest form. Equivalently, given A € F™"*™ find B ~ A of the simplest form.

In the following case the answer is well known. Recall that v € V is called an eigenvector
of T corresponding to the eigenvalue A € F, if v # 0 and T'v = Av. This is equivalent to
the existence 0 # x € F” such that Ax = Ax. Hence (A — A)x = 0 which implies that
det(A] — A) = 0. Hence X is the zero of the characteristic polynomial of A and T. The
assumption A is a zero of the characteristic polynomial yields that the system (A — A)x
has a nontrivial solution x # 0.

Corollary 2.6 Let A € F"*™. Then X is an eigenvalue of A if and only if \ is a zero of
the characteristic polynomial of A: det(zI — A). Let V be n-dimensional vector space over
F. Assume that T : V — V is a linear transformation. Then X is an eigenvalue of T if and
only if X is a zero of the characteristic polynomial of T.



Proposition 2.7 Let 'V be n-dimensional vector space over F. Assume thatT : V — 'V
is a linear transformation. Then there exists a basis in V' such that T is represented in this
basis dy a diagonal matriz

A1 0 0

0 Ao .. 0
diag<)\1a)‘25"'7)\n) = . . . . B

0 0 e A

if and only if the characteristic polynomial of T is (z — A )(z — A2)...(2 — A\n), and 'V has
a basis consisting of eigenvectors of T'.

Equivalently, A € F**™ is similar to a diagonal matriz diag(A1, Aa, ..., \,) if and only
ifdet(zl —A) = (z—A1)(z—A2) ... (22— A\pn), and A has n-linearly independent eigenvectors.

Proof. Assume that there exists a basis [uy,...,u,] in V such that T is represented
in this basis dy a diagonal matrix A := diag(A1,. .., A,). Then the characteristic polynomial
of T is det(zI — A) = []}_,(z — \i). From the definition of the representation matrix of T,

it follows that Tu; = A\;ju; for ¢ = 1,...,n. Since each u; # 0, we deduce that each u; is an
eigenvector of T. By our assumption uy, ..., u, for a basis in V.

Assume now that V has a basis [uy, . .., u,] consisting eigenvectors of T. So Tu; = \;u;
fori =1,...,n. Hence A is the representation matrix of T in the basis [uy,...,u,].

To prove the corresponding results for A € F"*™ let V := F" and define the linear
operator Tx := Ax for all x € F". O

Theorem 2.8 Let V be n-dimensional vector space over F. Assume thatT : V — V is
a linear transformation. Assume that the characteristic polynomial of T p(2) has n distinct
roots over F, i.e. p(z) = [[i_,(z — \i) where M\1,...,\, € F, and \; # \; for each i # j.
Then there exists a basis in V in which T is represented by a diagonal matrix.

Similarly, let A € F"*™ and assume that det(zI — A) has n distinct roots in F. Then A
is similar to a diagonal matriz.

Proof. It is enough to consider the case of the linear transformation T'. Recall that
each root of the characteristic polynomial of T is an eigenvalue of T' (Corollary 2.6). Hence
to each A; corresponds an eigenvector u;: Tu; = A\;u;. Then the proof of the theorem
follows Problem 1 of this section and Proposition 2.7. a

Given A € F™*™ it may happen that det(zI — A) does not have n roots in F. (See for
example Problem 2 of this section.) Hence we can not diagonalize A, i.e. A is not similar
to a diagonal matrix. If F is algebraically closed, i.e. any det(zI — A) has n roots in F we
can apply Proposition diagform in general and Theorem diagthm in particular to see if A
is diagonable.

Since R is not algebraically closed and C is, that is the reason that we sometimes we
view a real valued matrix A € R®*" as a complex valued matrix A € C"*™. (See Problem
2 of this section.)

Corollary 2.9 Let A € C" ™ be nondiagonable. Then its characteristic polynomial
must have a multiple root.

See Problem 3 of this section.

Definition 2.10 1. Let k be a positive integer and A € F. Then Ji(\) € FF>** pe
a k X k be an upper diagonal matriz, with A on the main diagonal, 1 on the next



sub-diagonal and other entries are equal to 0 for k > 1:

A 1 0 .. 00
0 Al ... 00
TN ={ ]
0 0 0 Al
0 0 0 0 A

(J1(A) = [Al.)
2. Let A; € F™"i*™ fori=1,...,l. Denote by

@f:lAi = Al D A2 D...D Ak = diag(Al,Ag, . ,Ak) =

Ay 0 .. 0
0 As w0
) . . eF"™ ™, n=n;+ns+...+ny,
0 0 v Ap
the n x n block diagonal matriz, whose blocks are Ay, Asg, ..., Ag.

Theorem 2.11 (The Jordan Canonical Form) Let A € C"*", (A € F**", where F
is an algebraically closed field.) Then A is similar to its Jordan canonical form ®5_, J,.(\;)
for some Ai,...., \p € C, (A\1,..., \r € F), and positive integers ny,...,ng. The Jordan
canonical form is unique up to the permutations of the Jordan blocks Jp, (A1), .., Jn, (Ak)-

Equivalently, let T : V — V be a linear transformation of an n-dimensional space over C,
or any other algebraically closed field. Then there exists a basis in 'V, such that ®F_, J,, (\i)
is the representation matriz of T in this basis. The blocks J,,(N\;),i=1,...,k are unique.

Note that A € C"*" is diagonable if and only in its Jordan canonical form k = n, i.e.
ny = ... =mn, = 1. For k < n, the Jordan canonical form is the simplest form of the
similarity class of a nondiagonable A € C™*".

We will prove Theorem 2.11 in the next several sections.

Problems

1. Let V be a vector space over F. (You may assume that F =C.) Let T: V — V be a
linear transformation. Suppose that u; is an eigenvector of T' with the corresponding

eigenvalue \; for i = 1,...,m. Show by induction on m that if A\{,...,\,, are m
distinct scalars then uy,...,u,, are linearly independent.
— 0 1 2x2
2.LetA{_1 O}GR .

(a) Show that A is not diagonable over the real numbers R.

(b) Show that A is diagonable over the complex numbers C. Find U €
C?%2 and a diagonal A € C?*? such that A = UAU .

3. Let A = ®F_J,,(\;). Show that det(z] — A) = [["_,(z — A\))". (You may use the
fact that the determinant of an upper triangular matrix is the product of its diagonal
entries.)

4. Let A = @k | A; where A; € C™*" i = 1,...,k. Show that det(zI, — A) =

Hle det(zl,, — A;). (First show the identity for k = 2 using the determinant ex-
pansion by rows. Then use induction for k > 2.



5. (a) Show that any eigenvector of J,(A) € C"*™ is in the subspace spanned by e;.
Conclude that J,()) is not diagonable unless n = 1.

(b) What is the rank of zI,, — J,, () for a fixed A € C and for each z € C?
(c) What is the rank of 2I —®k_, J,,,()\;) for fixed A1, ..., A\ € C and for each z € C?

6. Let A € C"™" and assume that det(zI,, — A) = 2" +a12" ' +... + a,_12 + a, has
n distinct complex roots. Show that A™ + a1 A" ' + ...ap_1A + anl, = 0, where
0 € C™*" denotes the zero matrix, i.e. the matrix whose all entries are 0. (This is
a special case of the Cayley-Hamilton theorem, which claims that the above identity
holds for any A € C**™.) Hint: Use the fact that A is diagonable.

2.2 Matrix polynomials

For a field F, F = R, C, denote by F[z], the ring of polynomials p(z) = apz"+a12" " +...+a,
with coefficients in F. The degree of p, denoted by degp, is the maximal degree n — j of
a monomial a;z"~7 which is not identically zero, i.e. a; # 0. So degp = n if and only if
ap # 0, the degree of a nonzero constant polynomial p(z) = ag is zero, and the degree of
the zero polynomial is agreed to be equal to —co. For two polynomials p, ¢ € F[z] and two
scalars a,b € F ap(z)+bq(z) is a well defined polynomial. Hence FF[z] is a vector space over F,
whose dimension is infinite. The set of polynomials of degree n at most, is n+ 1 dimensional
subspace of F[2]. Given two polynomials p = 71" ja;2" ", q = 37" 1 b;2" 7 € F[z] one can
form the product

n+m k
p(2)q(z) = Z (Z aiby_i)2" " where a; = b; = 0 for i > n and j > m.
k=0 i=0

Note that pg = gp and deg pqg = deg p+degq. The addition and the product in F[z] satisfies
all the nice distribution identities as the addition and multiplication in F. Here the constant
polynomial p = 1 is the identity element, and the zero polynomial as the zero element.
(That is the reason for the name ring of polynomials in one variable over F.)

Let P(2) = (pij(2))izj—; be an m x n matrix whose entries are polynomials in F[z].
The set of all such m x n matrices is denoted by F[z]™*™. Clearly F[z]™*™ is a vector
space over F, of infinite dimension. Given p(z) € F[z] and P(z) € F[z]™*™ one can define
p(2)P(2) := (p(2)pi;) € F[z]. Again, this product satisfies nice distribution properties. Thus
F[z] is a module over the ring F[z]. (Note F[z] is not a field!)

Let P(z) = (pi;(z)) € Flz]™*". Then deg P(z) := max; ; degp;;(z) = I. Write

l

pij(z) = Zpij_,kzl*k, Py = (pijk)isjey € F™" for k=0,...,1.
k=0

Then
P(2) =P+ P27 ... +P, P eF™" i=0,...,1, (2.2)

is a matrix polynomial with coefficients in F™*",

Assume that P(z),Q(z) € F[z]"*™. Then we can define P(z)Q(z) € F[z]. Note that in
general P(2)Q(z) # Q(z)P(z). Hence F[z]"*" is a noncommutative ring. For P(z) € F*>™
of the form (2.2) and any A € F"*" we define

l
P(A) = ZPiAl‘i = PyA' + PLAY 4+ ...+ P, where A° = I,,.
=0

Recall that given two polynomials p, ¢ € F[z] one can divide p by ¢ # 0 with the residue
r,i.e. p = tqg+r for some unique t,r € F[z], where degr < degq. One can trivially generalize
that to polynomial matrices:



Proposition 2.12 Let p(z),q(z) € F[z] and assume that ¢(z) Z 0. Let p(z) = t(z)q(z)+
r(z), where t(z),r(z) € Flz] are unique polynomials with degr(z) < degq(z). Letn > 1 be an
integer, and define the following scalar polynomials: P(z) := p(2)1,,Q(2) := q(2)1,,T(z) :=
t(2)In, R(z) :==r(2)I, € F[z]"*". Then P(A) =T(A)Q(A) + R(A) for any A € F"*".

Proof. Since A'A7 = A™J for any nonnegative integer, with A° = I,,, the equality
P(A) =T(A)Q(A) + R(A) follows trivially from the equality p(z) = t(2)q(2) + r(2). m

Recall that p is divisible by ¢, denoted as ¢|p, if p = tq, i.e. r is the zero polynomial.
Note that if ¢(z) = (z — a) then p(z) = t(z)(z — a) + p(a). Thus (z — a)|p if and only if
p(a) = 0. Similar results hold for square polynomial matrices, which are not scalar.

Lemma 2.13 Let P(z) € F[z]"*", A € F"*™ Then there exists a unique Ticp(2), of
degree degP — 1 if deg P > 0 or degree —cc if deg P < 0, such that

P(2) = Tief1(2) (21 — A) + P(A). (2.3)
In particular, P(z) is divisible from the right by 2I — A if and only if P(A) = 0.

Proof. We prove the lemma by induction on deg P. If deg P < 0, i.e. P(z) = Py € F**"
then Tjep = 0, P(A) = Py and the lemma trivially holds. Suppose that the lemma holds
for all P with degP < I — 1, where [ > 1. Let P(z) be of degree | > 1 of the form
(2.2). Then P(z) = Pyz! + P(z), where P(z) = 22:1 P;z'=1. By the induction assumption
P(2) = Tiest(2) (21, — A) + P(A), where Tj.f(2) is unique. A straightforward calculation
shows that

-1
Pyl = Tleft(z)(z[n —A)+ PyAl, where ’f}eft(z) = ZPOA"ZFFI,
i=0

and Tzeft is unique. Hence Tjcfi(2) = Tleft(z) + Tzeft is unique, P(A) = PyA' + ]S(A) and
(2.3) follows.

Suppose that P(A) = 0. Then P(z) = Ties:(2)(2f — A), i.e. P(z) is divisible by zI,, — A
from the right. Assume that P(z) is divisible by (zI,, — A) from the right, i.e. there exists
T(z) € Flz]™*™ such that P(z) = T(z)(zI, — A). Subtract (2.3) from P(z) = T(z)(zI, — A)
to deduce that 0 = (T'(z) — Tiese(2)) (21, — A) — P(A). Hence T'(2) = Tjef4(2) and P(A) = 0.

O

The above lemma can generalized to any Q(z) = Qoz! + Q121 +... + Q; € F[z], where
Qo € GL(n,F): There exists unique Tjesi(2), Riefi(2) € Flz] such that

!
P(Z) = T’left(z)Q(z) + Rleft(z)7 deg Rleft < deg Qa Q(Z) = ZQiZliia QO € GL(’H,,F)
i=0
(2.4)
Here we agree that (Az%)(Bz?) = (AB)z'*7 for any A, B € F"*" and nonnegative integers
1,7.
Theorem 2.14 ( Cayley-Hamilton theorem.) Let A € F™*" and p(z) = det(z1,, — A)
be the characteristic polynomial of A. Let P(z) = p(2)I, € F[z]"*™. Then P(A) = 0.

Proof. Let A(z) = zI,, — A. Fix z € F and let B(z) = (b;;(2)) be the adjoint matrix of
A(z), whose entries are the cofactors of A(z). That is b;;(2) is (—1)"*7 times the determinant
of the matrix obtained from A(z) by deleting row j and column 4. If one views z as
indeterminate then B(z) € F[z]"*™. Recall the identity

A(2)B(z) = B(2)A(z) = det A(2)I,, = p(z)I, = P(2).



Hence (zI, — A) divides from the right P(z). Lemma 2.13 yields that P(A) = 0. O

For p, q € F[z] let (p, q) be the greatest common divisor of p,q. If p and ¢ are identically
zero then (p,q) is the zero polynomial. Otherwise (p,q) is a polynomial s of the highest
degree that divides p and ¢. s is determined up to a multiple of a nonzero scalar. s can be
chosen as a unique monic polynomial:

s(2) =2 4+ 5127+ 5 € F[2]. (2.5)
For p,q # 0 s can be found using the Fuclid algorithm:
pi(2) = ti(2)pi+1(2) + piy2(2), degpiro <degpiy1 i=1,... (2.6)

Start this algorithm with p; = p, ps = ¢. Continue it until p = 0 the first time. (Note that
k > 3. Then py—1 = (p,q). It is straightforward to show from the above algorithm that

(b(2), () = w(2)p(2) + v(2)a(2), for some u(z), v(2) € F]. (2.7)
(This formula holds for any p, g € F[z].) p,q € F[z] are called coprime if (p,q) = 1.

Corollary 2.15 Let p,q € F[z] be coprime. Then there exists u,v € F[z] such that
1 =wup+wvgq. Let n > 1 be an integer and define P(z) := p(2)I,,Q(z) := q(2)I,,U(z) :=
w(2)1,,V(z) = u(z)l, € F[z]**™. Then for any A € F"*™ we have the identity I, =
U(A)P(A) + V(A)Q(A), where U(A)P(A) = P(A)U(A) and V(A)Q(A) = Q(A)V(A).

Let us consider that case where p,q € F[z] are both nonzero polynomials that split (to
linear factors) over F. So

p(z) =po(z —a1)...(z —a;),po #0, q(z) =qo(z—p1)...(z—05),q #0.

In that case (p,q) = 1, if p and ¢ do not have a common root. If p and ¢ have a common
zero then (p,q) is is a nonzero polynomial that has the maximal number of common roots
of p and g counting with multiplicities.

From now on for any p € F[z] and A € F"*" we identify p(A) with P(A), where

P(z) = p(2)In.

2.3 Minimal polynomial and decomposition to invariant subspaces

Recall that F»*™ is a vector space over F of dimension n?. Let A € F**™ and consider the
powers A = I,,, A, A% ... A™. Let m be the smallest positive integer such that these m+1
matrices are linearly dependent as vectors in F"*". (Note that A° #0.) So > i~ b;A™ ™" =
0, and (bg,...,bm)" # 0. If by = 0 then A° ..., A™~! are linearly dependent, which
contradicts the definition of m. Hence by # 0. Divide the linear dependence by by to obtain.

P(A) =0, Y)=2"+ Zaizm*i eFlz], a;= b fori=1,...,m. (2.8)
i=1 bo

1 is called the minimal polynomial of A. In principle m < n?, but in reality m < n:

Theorem 2.16 Let A € F™*™ and v(z) be its characteristic polynomial. Assume that
p(z) € F[z] is an annihilated polynomial of A, i.e. p(A) = 0. Then ¢ divides p. In
particular, the characteristic polynomial p(z) = det(z1I,, — A) is divisible by ¥(z). Hence
degy < degp =n.

Proof. Divide the annihilating polynomial p by 9 to obtain p(z) = t(2)¥(z) + r(2),
where degr < degvy = m. Proposition 2.12 yields that p(A) = t(A)yY(A) + r(A) which
implies that r(A) = 0. Assume that | = degr(z) > 0, i.e. r is not identically the zero



polynomial. So A, ..., Al

Hence r(z) = 0.
The Cayley-Hamilton theorem yields that the characteristic polynomial p(z) of A anni-
hilates A. Hence ¢|p and degvy < degp = n. O

are linearly dependent, which contradicts the definition of m.

Definition 2.17 A matriz A € F*"*" is called nonderogatory if the minimal polynomial
of A is equal to its characteristic polynomial.

Definition 2.18 Let 'V be a finite dimensional vector space over F, and assume that
Vi,...,V; nonzero subspaces of V. Then V is a direct sum of V1,...,V,;, denoted as
V = EBj-:lvj if any vector v.€ V has a unique representation as v = vy + ...+ v;, where
vj € Vj for j =1,...,i. Equivalently, let [v;1,...,vj;,] be a basis of V; for j =1,...,1.
Then dim'V = 23:1 dimV; = Z;‘:l l; and the dim'V wectors vi1,..., Vi, ..., Vil, ..., Vi,
are linearly independent.

Let T : V — V be a linear operator. A subspace U of V is called a T-invariant subspace,
or simply an invariant subspace when there is no ambiguity about 7', if Tu € U for each
u € U. We denote this fact by TU C U. Denote by T'|uy the restriction of T to the invariant
subspace of T'. Clearly, T'|y is a linear operator on U.

Note V and the zero subspace {0}, (which consist only of the zero element), are invariant
subspaces. Those are called trivial invariant subspaces. U is called a nontrivial invariant
subspace if U is an invariant subspace such that 0 < dimU < dim V.

Since the representation matrices of T in different bases form a similarity class we can
define the minimal polynomial ¥ (z) € F[z] of T, as the minimal polynomial of any repre-
sentation matrix of T. (See Problem 1 in the end of this section.) Equivalently ¢(z) is the
monic polynomial of the minimal degree which annihilates T: (T") = 0.

Theorem 2.19 Let T : V — V be a linear operator on a finite dimensional space
dim'V > 0. Let ¥(z) be the minimal polynomial of T. Assume that ¥(z) decomposes to
P(z) = 1(2) ... Yr(2), where each 1;(z) is a monic polynomial of degree at least 1. Suppose
furthermore that for each pair i # j ;(z) and ¥;(z) are coprime. Then V is a direct
sum of Vi,..., Vi, where each V; is a nontrivial invariant subspace of T'. Furthermore the
mianimal polynomial of Ty, is equal to ¥;(z) fori=1,... k. Moreover, each V; is uniquely
determined by ¥;(z) fori=1,... k.

Proof. We prove the theorem by induction on k > 2. Let £ = 2. So ¢(z) =
Y1(2)12(2). Let Vi :=¢o(T)V, Vo = 11(T)V be the ranges of the operators 1o (T), ¢ (T)
respectively. Observe that

TV =TW2(T)V) = (T92(T))V = (2(T)T)V = h2(T)(TV) S 2(T)V = V1.

Thus V; is a T-invariant subspace. Assume that V; = {0}. This is equivalent to that
Y9(T) = 0. By Theorem 2.16 1 divides 2 which is impossible since degy = deg; +
deg o > degtpy. Thus dim V; > 0. Similarly Vs is a nonzero T-invariant subspace. Let
T, =T|v, for i = 1,2. Clearly

Y1(T1) V1 =1 (T)V1 = Y1 (T)(2(T)V) = (1 (T)Y2(T))V = {0},

since v is the minimal polynomial of T. Hence ©;(Ty) = 0, i.e. 1 is an annihilating
polynomial of T;. Similarly, 19 (7T%) = 0.

Let U = V; NV, Then U is an invariant subspace of T. We claim that U = {0},
ie. dimU = 0. Assume to the contrary that dimU > 1. Let @ := T|y and denote by
¢ € F[z] the minimal polynomial of Q. Clearly deg¢ > 1. Since U C V; it follows that v,
is an annihilating polynomial of @ for i = 1,2. Hence ¢|¢); and ¢|iq, i.e. ¢ is a nontrivial




factor of ¢ and 1. This contradicts the assumption that ¢, and 9 are coprime. Hence
V; NV, ={0}.

Since (11,12) = 1 there exists polynomials f, g € F[z] such that ¢ f + ¥2g = 1. Hence
I =1 (T)f(T)+12(T)g(T), where I is the identity operator Iv = v on V. In particular for
any v € V we have v = va + vy, where vi = ¢¥o(T)(g(T)v) € Vi,ve = 1 (T)(f(T)v) € Va.
Since V1 NV, = {0} it follows that V. = V1 © V5. Let ¥; be the minimal polynomial
of T;. Then v;|¢; for i = 1,2. Hence ¥1¢9|th11ps. Let v € V. Then v = vy + vy, where
v; € Vi = 1,2, Using the facts that ¢ (T)o(T) = o(T)1(T), t; is the minimal
polynomial of T;, and the definition of T; we deduce

D1 (T)2(T)V = o (T) 1 (T)vy + 1 (T) 2 (T)va = 0.

Hence the monic polynomial (z) := 9 (2)ha(z) is an annihilating polynomial of 7. Thus
1(2)]6(z) which implies that 1 (z) = 6(z), hence ; = 1 for i = 1, 2.

It is left to show that V; and Vg are unique. Let V,; := {v € V : ;(T)v = 0} for
i=1,2. So V; is a subspace that contains V; for i = 1,2. If ¢;(T)v = 0 then

Gi(T)(T) = ((T)T)V = (T4;(T)v) = T(:(T)v) = T0 = 0.

Hence V; is T-invariant subspace. We claim that V; = V;. Suppose to the contrary that
dim V; > dimV; for some i € {1,2}. Let j € {1,2} and j # i. Then dim(V; N'V;) > 0.
As before we conclude that U := V; N'V; is T-invariant subspace. As above, the minimal
polynomial of T|y must divide v(2z) and 12(z), which contradicts the assumption that
(11,12) = 1. This concludes the proof of the theorem for k = 2.

Assume that k > 3. Let ¢y := tby... 0. Then (¥1,13) = 1 and ¢ = 111)5. Then
V=V & VQ, where T : V; — V7, has the minimal polynomial ¢, and T : \72 — Vg
has the minimal polynomial 1/;2. Note that V; and V, are unique. Apply the induction
hypothesis to T|V2 to deduce the theorem. O

Problems

1. Let A, B € F**™ and p(z) € F[z]. Show

(a) If B=UAU™!, for some U € GL(n,F), then p(B) = Up(A)U~*.
(b) If A~ B then A and B have the same minimal polynomial.

(¢) Let Ax = Ax. Then p(A4)x = p(A\)x. Deduce that each eigenvalue of A is a root
of the minimal polynomial of A.

(d) Assume that A has n distinct eigenvalues. Then A is nonderogatory.

2. (a) Show that the Jordan block Ji(\) € FF*¥ is nonderogatory.
(b) Let Aq,...,A\; € F be k distinct elements. Let

A= EB?’:Z;:IJMM()W), where m; =m;; > ... >my, > 1, fori=1,...,k. (2.9)
Here m;; and I; are positive integers be integers. Find the minimal polynomial
of A. When A is nonderogatory?

3. Find the characteristic and the minimal polynomials of

2 2 -2 4
-4 -3 4 —6
¢:= 1 1 -1 2|’

2 2 =2 4

10



4. Let A := [ z g } . Then A is a point in four dimensional space R*.

(a) What is the condition that A has a multiple eigenvalue (det(zl — A) = (2 — \)?)
? Conclude that the set (variety) all 2 x 2 matrices with a multiple eigenvalue is a
quadratic hypersurface in R%, i.e. it satisfies a polynomial equation in (z,y,u,v)
of degree 2. Hence its dimension is 3.

(b) What is the condition that A has a multiple eigenvalue and it is a diagonable
matrix, i.e. similar to a diagonal matrix? Show that this is a line in R*. Hence
its dimension is 1.

(¢) Conclude that the set (variety) of 2 x 2 matrices which have multiple eigenvalues
and diagonable is "much smaller” then the variety of matrices with multiple
eigenvalue.

This fact holds for any n x n matrices R™*™ or C™*".

5. Programming Problem

Spectrum and pseudo spectrum: Let A = (ai;);—; € C"*". Then det(zl, — A) =
(z = A1)...(2 = \») and the spectrum of A is given as spec A := {A\,..., Ay}, In
computations, the entries of A are known or given up to a certain precision. Say, in
regular precision each a;; is known with precision to eight digits: aj.as...ag x 10™
for some integer m., e.g. 1.2345678 x 10712, in floating point notation. Thus, with
a given matrix A, we associate a whole class of matrices C(A) C C™*™ of matrices
B € C™*™ that are represented by A. For each B € C(A) we have the spectrum
spec B. Then the pseudo spectrum of A is the union of all the spectra of B € C(A):
pspec A := Upgec(ayspec (B). spec A and pspec A are subsets of the complex plane
C and can be easily plotted by computer. The shape of pspec A gives an idea of
our real knowledge of the spectrum of A, and to changes of the spectrum of A under
perturbations. The purpose of this programming problems to give the student a taste
of this subject.

In all the computations use double precision.

(a) Choose at random A = (a;;) € R%*® as follows: each entry a;; is chosen at
random from the interval [—1, 1], using uniform distribution. Find the spectrum
of A and plot the eigenvalues of A on the X —Y axis as complex numbers, marked
say as +, where the center of + is at each eigenvalue.

i. For each e = 0.1,0.01,0.0001, 0.000001 do the following:
For i = 1,...,100 choose B; € R>*5 at random as A in the item (a) and
find the spectrum of A + eB;. Plot these spectra, each eigenvalue of A+ €B;
plotted as - on the X —Y axis, together with the plot of the spectrum of A.
(Altogether you will have 4 graphs.)

(b) Let A := diag(0.1C,[-0.5]), i.e. A € R®*5 be a block diagonal matrix where the
first 4 x 4 block is 0.1C, where the matrix C is given in Problem 3 above, and
the second block is 1 x 1 matrix with the entry —0.5. Repeat part (i) of part (a)
above with this specific A. (Again you will have 4 graphs.)

(c) Repeat (a) by choosing at random a symmetric matrix A = (a;;) € R5*5. That
is choose at random a;; for 1 <7 < j, and let aj; = a;; for i < j.

i. Repeat the part (i) of (a). (B, are not symmetric!) You will have 4 graphs.

ii. Repeat part (i) of (a), with the restriction that each B, is a random sym-
metric matrix, as explained in (c). You will have 4 graphs.

(d) Can you draw some conclusions about these numerical experiments?
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2.4 [Existence and uniqueness of the Jordan canonical form

Definition 2.20 A € F"*" or a linear transformation T : V — V s called nilpotent
respectively, if A™ =0 or T™ = 0. The minimal m > 1 for which A™ =0 or T™ =0 is
called the index of milpotency of A and T respectively, and denoted by index A or index T
respectively.

Assume that A or T are nilpotent, then the s-numbers are defined as

5;(A) := rank A""'—2rank A'4rank A" s;(T) := rank 7' —2rank T'+rank T i =1,...

(2.10)

Note that A or T are nilpotent with the index of nilpotency m if and only z™ is the minimal
polynomial of A or T respectively. Furthermore if A or 1" are nilpotent then the maximal [
for which s; > 0 is equal to the index of nilpotency of A or T respectively.

Proposition 2.21 Let T : V — V be a nilpotent operator, with the index of nilpotency
m, on the finite dimensional vector V. Then

rank 7% = Y (j—i)s; = (m—i)sm+(m—i—1)spm_1+...841, i=0,...,m—1. (211)
j=it1

Proof. Since 7' = 0 for [ > m it follows that s,,(T) = rank 7! and s, =
rank 7™~2 — 2rank 7™~ ! if m > 1. This proves (2.11) for i = m — 1, m — 2. For other values
of i (2.11) follows straightforward from (2.10) by induction on m — 4 > 2. O

Theorem 2.22 Let T : V — V be a linear transformation on a finite dimensional
space. Assume that T is nilpotent with the index of nilpotency m. Then V has a basis of
the form

xj,ij,...Tlflxj, 7=1,...,% wherely =m>...>1; > 1, andTlij =0,5=1,...,4.

(2.12)
More precisely, the number of l;, which are equal to an integer | € [1,m], is equal to s;(T')
given in (2.10).

Proof. Let s; := 5,(T),i = 1,...,m be given by (2.10). Since T" = 0 for [ > m it follows
that s, = rank 7™~ ! = dimrange T~ !. So [y1,...,¥s,,] is a basis for T""'V. Clearly
yi = T 1x; for some x1,...,%x,,, € V. We claim that the ms,, vectors

m—1 m—1
1, Tx, ., T X1,y Xy T Xy ey T X, (2.13)

are linearly independent. Suppose that there exists a linear combination of these vectors
that is equal to 0O:

m—1 s

> zm: ajrTIx;, = 0. (2.14)

7=0 k=1

Multiply this equality by T7™~!. Thus we obtain Z;":_Ol Sopmy T ixg, = 0. Recall
that T! = 0 for any [ > m. Hence this equality reduces to oo aoT™ 1%, = 0. Since
T 1xq,..., T x, form a basis in T~V it follows that g, = 0 for k = 1,...,sp,. If
m = 1 we deduce that the vectors in (2.13) are linearly independent. Assume that m > 1.
Suppose that we already proved that o, =0 for k=1,...,s, and j =0,...,l — 1, where
1 <1 < m-—1 Hence in (2.14) we can assume that the summation on j starts from
j = 1. Multiply (2.14) by 7™ !*1 and use the above arguments to deduce that oz = 0
for k =1,...,s,. Use this argument iteratively for [ = 1,...,m — 1 to deduce the linear
independence of the vectors in (2.13).
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Note that for m = 1 we proved the theorem. Assume that m > 1. Let p € [1,m] be an
integer. We claim that the vectors

zj,Txj,...,T% 'x;, for all j such that I; > p (2.15)

are linearly independent and satisfy the condition 7% x; = 0 for all [; > p. Moreover, the
vectors
TP 'x;,..., T 'x;, for all j such that I; > p (2.16)

is a basis for range TP~!. Furthermore for each integer | € [p, m] the number of I;, which
are equal to [, is equal to s;(7T).

We prove this claim by the induction on m—p+1. For p = m our previous argument give
this claim. Assume that the claim holds for p = ¢ > m and let p = ¢ — 1. By the induction
assumption the vectors in (2.15) are linearly independent for I; > ¢. Hence that vectors
T972x;,...,Tli~1x; for all I; > ¢ are linearly independent. Use the induction assumption
that the number of I; = [ € [¢,m] is equal to s;(T) to deduce that the number of this
vectors is equal to tg_o := (m—q+2)spy, + (M —q+1)sm—1+...+ 2s4. Also the number of
l; > qis Ly = 8 + Sm—1 + ... 5¢. Use the formula for rank T972 in (2.11) to deduce that
rank 7972 — tg—2 = Sg—1-

Suppose first that s,_1 = 0. Hence the vectors T972x;,..., T4~ !x; for all I; > ¢ form a
basis in range 7772, In this case we assume that there is no /; that is equal to ¢ — 1. This
concludes the proof of the induction step and the proof of the theorem in this case.

Assume now that s;—; > 0. Then there exist vectors z,..., zs,_, that together with
the vectors Tq_ij, . ,Tlf—lxj for all I; > ¢ form a basis in T972V. Let z;, = T9 %uy, k =
1,...,84—1. Observe next that by induction hypothesis the vectors given in (2.16) form a

1i—1
rJ:q—l ﬁkijer. Let v :=

u; — Z]—:lqu leil_l BkijT'_q'*'lxj. Clearly T% 'v;, = 0 for k = 1,...,84-1. Also

basis in range T7P~" for p = ¢. Hence 79 'uy = 37, 5, >

r=q
T1 2y, = z;, — Zj:lpq ij:_qlfl ﬁkm,jT’"*lxj. Hence T9 2v4,... ,quzvsq_l and the vec-
tors T972x;,..., T4 'x; for all [; > ¢ form a basis in T9"2V. From the above defi-
nition of Ly [; > ¢ if and only if j = [1,L,]. Let x; = v;_r, and I; = s,1 for

j=Lq+1,...,Lg_1 :=Lg+ s41.

It is left to show that the vectors given in (2.15) are linearly independent for p = ¢ — 1.
This is done as in the beginning of the proof of the theorem. (Assume that a linear com-
bination of these vectors is equal to 0. Then apply 792 and use the fact that T% x; =0
for j =1,...,Ls—1. Then continue as in the beginning of the proof of this theorem.) This
concludes the proof of this theorem by induction. O

Corollary 2.23 Let T satisfies the assumption of Theorem 2.22 hold. Denote
V; :=span (le—lxj, oo Ixj5,%x5) for j=1,...,i. Then each V; is a T-invariant subspace,
T'|v, is represented by J;,;(0) € Cl*li in the basis [T 1x;,...,Tx;j,%x;], and V = @;:Nj.
FEach 1 is uniquely determined by the sequence s;(T),i = 1,...,. Namely, the index m
of the nilpotent T is the largest i > 1 such that s;(T) > 1. Let k1 = s,(T),l1 = ... =
lg, = p1 = m and define recursively ky := ky_1 + sp.(T), lp,_,+1 = ... = l, = pr, where
2<r,pr €[L,m—1],5,(T) >0 and ky—1 = 327" sm—j1(T).

Definition 2.24 T : V — V be a nilpotent operator. Then the sequence (ly,...,1;)
defined in Theorem 2.22, which gives the lengths of the corresponding Jordan blocks of T in
a decreasing order, is called the Segré characteristic of T. The Weyr characteristic of T is the
dual to Segre’s characteristic. That is consider an m x i 0—1 matriz B = (byy) € {0,1}™%¢.
The j-th column of B has 1 in the rows 1,...,l; and 0 in the rest of the rows. Let w, be the
p-th row sum of B forp=1,...,m. Then wy > ... > wy,, > 1 is the Weyr characteristic.

Proof of Theorem 2.11 (The Jordan Canonical Form)
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Let p(z) = det(zl, — A) be the characteristic polynomial of A € C"*". Since C is
algebraically closed p(z) = H§=1
of A), where n; > 1 is the multiplicity of A; in p(z). Note that Zle n; = n. Let ¥(z) be
the minimal polynomial of A. By Theorem 2.16 ¢(z)|p(z). Problem 1(c) of §2.3 we deduce
that ¢(A;) =0for j =1,..., k. Hence

(z—A;)™. Here Aq,..., A\ are k distinct roots, (eigenvalues

k k
det(2I,—A) = [J(z=M)™, v(2) = [J(z=M\)™, L<m; <nj, Aj# Nifor j #4d, i, j=1,...,k.
j=1 j=1

(2.17)
Let ¢; := (2 — A;)™ for j = 1,...,k. Then (¢j,¢;) = 1 for j # i. Let V := C" and
T :V — V be given by Tx := Ax for any x € C". Then det(zl,, — A) and ¢(z) are the
characteristic and the minimal polynomial of T respectively. Use Theorem 2.19 to obtain
teh decomposition V = @?lei, where each V; is a nontrivial T-invariant subspace such
that the minimal polynomial of T; := Ty, is ¢; for i = 1,...,k. That is T; — \;I;, where
I; is the identity operator, i.e. I;v = v for all v € V;, is a nilpotent operator on V; and
index (T; — \I;) = my. Let Q; := T; — \;I;. Then @Q; is nilpotent and index Q; = m;.
Apply Theorem 2.22 and Corollary 2.23 to deduce that V; = @?j:lVl-,j, where each V; ;
is @;-invariant subspace, and each V; ; has a basis in which @); is represented by a Jordan
block Jp,,;(0) for j =1,...,q;. According to Corollary 2.23
m; = mi >

Mg, > 1, i=1,... k. (2.18)

Furthermore, the above sequence is completely determined by rank Qz, 7=0,1,... for i =
1,..., k. Noting that T; = Q; + A;I; it easily follows that each V; ; is a T;-invariant subspace,
hence T-invariant subspace. Moreover, in the same basis of V;; that @; represented by
Jm,;(0) T; is represented by Jp,,(\;) for j = 1,...,¢; and i = 1,...,k. This shows the
existence of the Jordan canonical form.

We now show that the Jordan canonical form is unique, up to a permutation of factors.
Note that the minimal polynomial of A is completely determined by its Jordan canonical
form. Namely ¢(z) = Hle(z — z;)™, where my; is the biggest Jordan block with the
eigenvalues );. (See Problems 1,2 in §2.3.) Thus m;; = m; for ¢« = 1,...,k. Theorem
2.19 yields that the subspaces V1,...,V} are uniquely determined by . So each T; and
Qi = T — X\iI; are uniquely determined. Theorem 2.22 yields that rank Q7,7 = 0,1,...
determines the sizes of the Jordan blocks of @;. Hence all the Jordan blocks corresponding
to A; are uniquely determined for each i € [1, k]. O

Problems

1. Let T': 'V — V be nilpotent with m = indexT. Let (wi,...,wy) be the Weyr
characteristic. Show that rank 77 = >3/ w; for j =1,...,m.

2. Let A € F**™. Denote by p(z) and v(z) its characteristic and minimal polynomials,
by adj (zI, — A) € F[z]"*™ the adjoint matrix if z2I,, — A, ¢(z) the g.c.d., (the greatest
common divisor) of the entries of zI,, — A, which is the g.c.d of all (n — 1) x (n — 1)
minors of (21, — A). (¢(z) is a assumed to be a monic polynomial in F[z].) The aim

of this problem to demonstrate the equality ¥ (z) =

(a) Show that g(z) divides p(z). (Hint: Expand det(zl, — A) be the first row.) Let

.— p(z)

P(2) == a(z)

(b) Show that adj (zI, — A) = ¢q(2)C(z) for some C(z) € F[z]"*". Show that

¢(z)I, = C(z)(zI,, — A). (Recall the proof of Theorem 2.14 that p(z)I, =
adj (zI, — A)(zI,, — A).) Show that ¢(A) = 0. Conclude that 1(z)|p(z).

(c) Let 0(z) := 225 Show that 0(z) € Fz].
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(d) Show that ¢(z)I, = D(z)(zl, — A) for some D(z) € F[z]"*". Conclude that
D(z) = ﬁadj (zI,, — A). Conclude that 6(z)|q(z). Show that ¢(2) = ().

3. Let A € C™*". Show that A is diagonable if and only if all the zeros of the minimal
polynomial 1 of A are simple, i.e. ¥ does not have multiple roots.

4. Let A € C"*™ and assume that det(zl, — A) = Hle(z — A)™, where Aq,..., A\, are
k distinct eigenvalues of A. Let

si(A, ;) == rank (A — \;1,,)""" — 2rank (A — \;1,,)" +rank (A — \;1,)" T, (2.19)
i=1,...,n5,j=1,...,k

(a) Show that s;(A, \;) is the number of Jordan blocks of order ¢ corresponding to
Ajfori=1,...,n;.

(b) Show that in order to find all Jordan blocks of A corresponding to A; one
can stop computing s;(A, \;) at the smallest i € [1,n;] such that 1s1(A,\;) +
282(A, )\J) oot Z'Si(A7 )\J) =n;.

3 Applications of Jordan Canonical form

3.1 Functions of Matrices

Let A € C™"*™. Consider the iterations
X = Axl_l, X|—1 € (Cn, [l = 1,... (31)

Clearly x; = A'xgy. To compute x; from x;_; one need to perform n(2n—1) flops, (operations:
n? multiplications and n(n—1) additions). If we want to compute x;s we need to 10%n(2n—
1) operations, if we simply program the iterations (3.1). If n = 10 it will take us some time
to do these iterations, and we will probably run to the roundoff error, which will render
our computations meaningless. Is there any better way to find x19s?7 The answer is yes,
and this is the purpose of this section. To do that we need to give the correct way to find
directly A20°, or for that matter any f (A), where f(z) is either polynomial, or more complex
functions as e*, cos z, sin z, an entire function f(z), or even more special functions.

Theorem 3.1 Let A € C"*" and

det(z1,, — A) = H(z — )", h(z) = H(z — )™ (3.2)

k k
1§m::deg¢:2mi§n:2ni, 1<my <ng, i # X fori#j, i,5=1,...,k,

i=1 i=1

where ¥(z) is the minimal polynomial of A. Then there exists unique m linearly independent
matrices Z;; € C"*" fori=1,....k and j =0,...,m; — 1, which depend on A, such that
for any polynomial f(z) the following identity holds

k m;—1 .
O
FA)=Y )z, (33)
(Zij,i=1,...,k,j=1,...,m; are called the A-components.)

Proof. We start first with A = J,(A\). So J,(\) = A, + H,,, where H,, := J,(0).
Thus H, is a nilpotent matrix, with H” = 0 and HJ has 1’s on the j-th subdiagonal and all
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other elements are equal 0 for j = 0,1,...,n—1. Hence I,, = H?, H,,,..., H"~! are linearly
independent.
Let f(z) = 2!. Then

l min(l,n—1)

A= (L, + H,)' =) <l) NoHD =y <l> NI H3 .

i=o M PR

The last equality follows from the equality H? = 0 for j > n. Note that 1(2) = det(z1I,, —
Jn(A) = (z = A)", i.e. k=1 and m =my = n. From the above equality we conclude that
Zyj=Hj for j=0,...1if f(z) = 2" and I = 0,1,.... With this definition of Z;; (3.3) holds
for K;2', where K; € C and [ = 0,1,.... Hence (3.3) holds for any polynomial f(z) for this
choice of A.

Assume now that A is a direct sum of Jordan blocks as in (2.9): A = @?él;':r]mij (Ni)-
Herem; =my > ... >my, > 1fori=1,... k and \; # A; for ¢ # j. Thus (3.2) holds with
n; = Zé;l m;; for i =1,..., k. Let f(z) be a polynomial. Then f(A) = @f;l;-:lf(.]mij (A\i)-
Use the results for J,(\) to deduce

mi;—1

. M (\;

r!
r=0

Let Z;; € C**" be a block diagonal matrix of the following form. For each integer [ €
[1,k] with I # ¢ all the corresponding blocks to J;-();) are equal to zero. In the block
corresponding to Jy,,, (A\;) Z;; has the block matrix Hﬂn for j =0,...,m; — 1. Note that
each Z;; is a nonzero matrix with 0 — 1 entries. Furthermore, two different Z;; and Z;
do not have a common 1 entry. Hence Z;;,i = 1,...,k,j = 0,...,m; — 1 are linearly
independent. It is straightforward to deduce (3.3) from the above identity.

Let B € C"*". Then B = UAU ! where A is the Jordan canonical form of B. Recall
that A and B have the same characteristic polynomial. Let f(z) € C[z]. Then (3.3) holds.
Clearly

: O,
fB)=UfAU " =>" i UZ;U L

3

|

-
~

Hence (3.3) holds for B, where UZ;;U~*,i=1,...,k,j =0,...,m;;_1 are the B-components.
The uniqueness of the A-components follows from the existence and uniqueness of the
Lagrange-Sylvester interpolation polynomial as explained below.
O

Theorem 3.2 (The Lagrange-Sylvester interpolation polynomial). Let Ay, ..., A\
C be k-distinct numbers. Let mq,...,my be k positive integers and let m = mq + ...+ my.
Let si5,1 = 1,...,k,j = 0,...,m; — 1 be any m complex numbers. Then there erists a
unique polynomial ¢(z) of degree at most m — 1 satisfying the conditions ¢\9)()\;) = s;; for
t=1,...,k,7 =0,...,m; — 1 satisfying the conditions. (For m; = 1,i =1,...,k ¢ is the
Lagrange interpolating polynomial.)

Proof. The Lagrange interpolating polynomial is given by the formula

b (Z—)\1)...(2—)\1;1)(2—)\141)...(2—)\k)

(=)= G5 V0 DU 6 VS VNS Y5 VS VN DU S VIS W R

i=1

In the general case one determines ¢(z) as follows. Let ¢(z) := Hle(z — A;)™i. Then

m;—1 ‘o
P(z) = (2) S S ver
; jZ::O (2 — Ag)mi=
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Now start to determine t;; recursively starting with any ¢ and j = 0. Then it is straight-

forward to show that t;0 = ¥;(\;), where ¥;(2) = (zip;% Now find ¢;; by taking the
derivative of the above formula for ¢(z) and let z = );. Continue this process until all
tij,i=1,...,k,j=1,...,m; — 1 are determined. Note that deg¢ < m — 1.

The uniqueness ¢ is shown as follows. Assume that 6(z) is another Lagrange-Sylvester
polynomial of degree less than m. Then w(z) := ¢(z) — 0(z) must be divisible by (z — ;)™
since wW(\;) = 0 for j = 0,...,m; — 1, for each i = 1,... k. Hence ¢(2)|w(z). As
degw(z) <m — 1 it follows that w(z) is the zero polynomial, i.e. ¢(z) = 6(2). O

Proof of the uniqueness of A-components. Let ¢;;(z) be the Lagrange-Sylvester
polynomial given by the data s;/ ;3" =1,...,k,j' =1,...,my — 1. Assume s;; = j! and all
other s; ;s = 0. Then (3.3) yields that Z;; = ¢;;(A). O

Proposition 3.3 Let A € C*"*". Assume that the minimal polynomial 1(z) be given
by (3.2) and denote m = degtp. Then for each integers u,v € [1,n] denote by all) and
(Zij)uv the (u,v) entries of A and of the A-component Z;; respectively. Then (Zij)uy,i =

1,....k,7=0,...,m; — 1 are the unique solutions of the following system with m unknowns

l max(l—j
>y <j>>\i 0 (7 Y =al), 1=0,...,m—1. (3.4)

k mifl
i=1 j=0

(Note that (é) =0 forj>1.)

Proof. Consider the equality (3.3) for f(z) = 2! where [ = 0,...,m — 1. Restrict-
ing these equalities to (u,v) entries we deduce that (Z;;)., satisfy the system (3.4). Thus
the systems (3.4) are solvable for each pair (u,v),u,v = 1,...,n. Let X;; € C"*" i =
1,...,k,j=1,...,m; — 1 such that ((Xj;)u., satisfy the system (3.4) for each u,v € [1,n].

Hence f(A) = Zle Z?lgl f(J)j(!’\i)Tij for f(z) =2' and I =0,...,m — 1. Hence the above
equality holds for any polynomial f(z) of degree less than m. Apply the above formula
to the Lagrange-Sylvester polynomial ¢;; as given in the proof of the uniqueness of the
A-components. Then ¢;;(A) = X;;. So X;; = Z;;. Thus each system (3.4) has a unique

solution. O

The algorithm for finding the A-components and its complexity.

1. (a) Seti=1.
(b) Compute and store A?. Check if I,,, A, ..., A are linearly independent. If inde-
pendent, set i =i+ 1 and go to (b).
(c) m =i and express A™ = > a; A"~ Then ¢(z) = 2™ — 3", a;2™ " is the
minimal polynomial.
(d) Find the k roots of ¢(z) and their multiplicities: (z) = Hle(z — )™
(e) Find the A-components by solving n? systems (3.4).

2. The maximum complexity to find ¢(z) happens when m = n. Then we need to com-
pute and store I,,, A, A%,... A™. So we need n® storage space. Viewing I,,, 4, ..., A’
as row vectors arranged as i x n? matrix B; € C””2, we bring B; to a row echelon
form: C; = U;B;,U; € C™%. Note that C; is essentially upper triangular. Then we
add i+ 1-th row: A" to the B; to obtain C; 1 = U;y1Biy1. (C; is i x i submatrix of
Cit1.) To get Ciyq from C; we need 2in? flops. In the case m = n C,2, has las row
zero. So to find ¢(2) we need at most Kn* flops. (K < 2?). The total storage space
is around 2n3.
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Now to find the roots of t(z) with certain precision will take a polynomial time,
depending on the precision.

To solve n? systems with n variables, given in (3.4), use Gauss-Jordan for the aug-
mented matrix [S T]. Here S € C"*™ stands for the coeflicient of the system (3.4),
depending on A1,..., A \p. T € crxn’ given the "left-hand side” of n? systems of (3.4).
One needs around n® storage space. Bring [S T to [I,, Q] using Gauss-Jordan to find
A-components. To do that we need about n? flops.

In summary, we need storage of 2n® and around 4n* flops. (This would suffice to find
the roots of ¥(z) with good enough precision.)

Problems

1. Let A € C*** be given as in Problem 3 of Section 2.3. Assume that the characteristic
polynomial of A is 2%(z — 1)2.
(a) Use Problem 4 of Section 2.4 to find the Jordan canonical form of A.
(b) Assume that the minimal polynomial of A is z(z—1)2. Find all the A-components.

(c) Give the explicit formula for any A'.

2. Let A € C™*" and assume that det(zI, — A) = Hle(z — A;)™, and the minimal
polynomial ¢(z) = Hle(z — A\;)™ where A1,..., g are k distinct eigenvalues of A.
Let Z;5,7=0,...,m; — 1,4 =1,...,k are the A-components.

(a) Show that Z;;Z,, = 0 for i # p.

(b) What is the exact formula for Z;;Z;,?

3.2 Power stability, convergence and boundedness of matrices

Corollary 3.4 Let A € C™*™ Assume that the minimal polynomial (z) be given by
(8.2) and denote by Z;;,i = 1,...,k,j =0,...,m; — 1 the A-components. Then for each

positive integer |
k m;—1
- l max(l—j
A=30> <j>>‘i 1027, (3.5)

i=1 j=0

If we know the A-components then to compute A! we need only around 2mn? < 2n3 flops!
Thus we need at most 4n* flops to compute Al including the computations of A-components,
without dependence on I! (Note that A} = elo8ii ) So to find x0s = A108X0 discussed in
the beginning of the previous section we need about 10 flops. So to compute x;¢s we need
about 10*10? flops compared with 102102 flops using the simple minded algorithm explained
in the beginning of the previous section. There are much simpler algorithms to compute A
which are roughly of the order (log,)?n? of computations and (log, 1)?n? (4n??) storage.
See Problem 7 However roundoff error remains a problem for large I.

Definition 3.5 Let A € C"*". A is called power stable if lim;_,, A = 0. A is called
power convergent if lim;_,.. A = B for some B € C"*". A is called power bounded if there
exists K > 0 such that the absolute value of every entry of every Al = 1,... is bounded
above by K.

Theorem 3.6 Let A € C**". Then

1. A is power stable if and only if each eigenvalue of A is in the interior of the unit disk:
|z| < 1.

2. A is power convergent if and only if each eigenvalue A of A satisfies one of the following
conditions
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(a) Al <1;
(b) A =1 and each Jordan block of the JCF of A with an eigenvalue 1 is of order 1,
i.e. 1 is a simple zero of the minimal polynomial of A.

3. A is power bounded if and only if each eigenvalue X of A satisfies one of the following
conditions

(a) N[ <1
(b) |\l =1 and each Jordan block of the JCF of A with an eigenvalue X is of order
1, i.e. X is a simple zero of the minimal polynomial of A.

Proof. Consider the formula (3.4). Since the A-components Z;;,i = 1,...,k,j =
0,...,m; — 1 are linearly independent we need to satisfy the conditions of the theorem for
each term in (3.4), which is (j.))\éfj Z;; for I >> 1. Note that for a fixed j lim;_, o (j.))\éfj =0
if and only if |A\;] < 1. Hence we deduce the condition I of the theorem.

Note that the sequence (;))\éfj,l =j,7+1,..., converges if and only if either |\;| < 1
or A; =1 and j = 0. Hence we deduce the condition 2 of the theorem.
Note that the sequence (j) )\i_],l =j,j7+1,..., is bounded if and only if either [A;| < 1
or |[A;] =1 and j = 0. Hence we deduce the condition 3 of the theorem.
O

Corollary 3.7 Let A € C™*™ and consider the iterations x; = Ax;_1 forl = 1,....
Then for any xq

1. lim;_. o x; = 0 if and only if A is power stable.
2. x1,1=0,1,... converges if and only if A is power convergent.
3. x;,1=0,1,... is bounded if and only if A is power bounded.

Proof. If A satisfies the conditions of an item 7 Theorem 3.6 then the corresponding
condition 4 of the corollary clearly holds. Assume that the conditions of an item 4 of the
corollary holds. Choose xg = €; = (d1;,. .. ,(5nj)T for j =1,...,n to deduce the correspond-
ing condition ¢ of Theorem 3.6. g

Theorem 3.8 Let A € C™"*"™ and consider the nonhomogeneous iterations
X =Ax;_1+b;, [=0,... (36)
Then

1. lim;_, oo x; = 0 for any xo € C™ and any sequence by, by, ... satisfying the condition
lim;_, o, b; = 0 if and only if A is power stable.

2. The sequence x;,1l = 0,1,... converges for any Xxg and any sequence by, by, ... satis-
fying the condition Z;ZO b; converges.

3. The sequence x;,1 =0,1,... is bounded for any x¢ and any sequence bg, by, ... satis-
fying the condition Zé:o [b[oc converges. (Here ||(z1,...,Tn)||cc = Max;ep o] |i].)

Proof. Assume that b; = 0. Since xq is arbitrary we deduce the necessity of all
the conditions from Theorem 3.6. The sufficiency of the above conditions follow from the
Jordan Canonical Form of A as follows.

Let J = U~'AU where U is an invertible matrix and .J is the Jordan canonical form of
A. By letting y; := U~ 'x; and ¢; = U~ 'by it is enough to prove the sufficiency part of the
theorem for the case where A is sum of Jordan blocks. In this case system (3.6) reduces to
independent systems of equations for each Jordan block. Thus it is left to prove the theorem
when A = J,(A).
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1. We show that if A = J,,(\) and |A| < 1, then lim;_, o x; = 0 for any xg and b;,l =1,. ..
if lim;_, o, b; = 0. We prove this claim by the induction on n. For n =1 (3.6) reduces
to

=Xy +0b, xzo,x;,0pClori=1,... (3.7)

It is straightforward to show, e.g. use induction that
l .
T = Z Nbj_;=bi+MNy_1+...4 Moy 1=1,..., were by := . (3.8)
i=0

Let By, = sup;>, |b;]. Since lim;_ b = 0, it follows that each (,, is finite, the
sequence (B, m = 0,1,... decreasing and lim,, .o, B, = 0. Fix m. Then for [ > m

l—m m

!
el <Y APl = Y Al A+ YA b <
i=0 i=0 j

1

l—m m [e%S) m
B Y I+ ™D A b < B D A+ AT Y Aoy =
=0 =0

Jj=1 Jj=1

Brm
1=\l

as | — oo.

AT YA by —

j=1

Bm
1—[Al
That is limsup;_, . |z1] < 1?—]’3\‘ As limy, 00 B = 0 it follows that limsup,_, |z =
0, which is equivalent to the statement lim;_. ., ; = 0. This proves the case n = 1.
Assume that the theorem holds for n = k. Let n = k+1. View x;' := (z1,,y/,)",b, =
(bl,l,cl—r,)—'—, where y; = (224, ... ,karl’l)T,CI € CF are the vectors composed of the
last k coordinates of x; and b; respectively. Then (3.6) for A = Ji1+1()\) for the last
k coordinates of x; is given by the system y; = Jp(A)y;—1 +¢; for I =1,2,.... Since
lim;_, o, ¢; = 0 the induction hypothesis yields that lim;_ ., y; = 0. The system (3.6)
for A = Jg41 () for the first coordinate is x1; = Azq -1+ (22, —1+b1 ;) for I = 1,ldots.
From induction hypothesis and the assumption that lim; .., b; = 0 we deduce that
lim;_, oo 2,;—1 + b1,; = 0. Hence from the case k = 1 we deduce that lim;_,, z1; = 0.
Hence lim;_. o, x; = 0. The proof of this case is concluded.

2. Assume that A satisfies the each eigenvalue A of A satisfies the following conditions:
either |A| < 1, or A = 1 and each Jordan block corresponding to 1 is of order 1. As we
pointed out we assume that A is a direct sum of its Jordan form. So first we consider
A = Ji(X\) with [A| < 1. Since we assumed that »_,°; b; converges we deduce that
lim; ., b; = 0. Thus, by part I we get that lim; ., x; = 0.

Assume now that A = (1) € C**!. Thus we consider (3.7) with A = 1. (3.8) yields
that x; = Zi:o b;. By the assumption of the theorem Z;’il b; converges, hence the
sequence x;,l = 1,... converges.

3. As in the part 2 it is enough to consider the case Ji(A) with |A\| = 1. Note that (3.8)
yields that |x;] < Zé:o |b;|. The assumption that Y .o, |b;| converges imply that
] < 32320 [bif < 0.

Remark 3.9 The stability, convergence and boundedness of the nonhomogeneous sys-
tems:

X] = Ale,h A€ Cn><n7 l=1,...,
Xl:Ale,1+bl, A €Cn><n, b, € C" l=1,...,
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are much harder to analyze. (If time permits we revisit these problems later on in the
course.)

Problems

1. Consider the nonhomogeneous system x; = A;x;_1, A; € C"*", [ =1,.... Assume
that the sequence A;,l = 1,..., is periodic, i.e. Aj1, = A;foralll =1,..., and a
fixed positive integer p.

(a) Show that for each x¢ € C™ limy_,oo x; = 0 if and only if B := A A, ;... A; is
power stable.

(b) Show that for each x¢ € C™ the sequence x;,! = 1,. .., converges if and only if the
following conditions satisfied. First, B is power convergent, i.e. lim;_ ., B! = C.
Second, A;,C=C fori=1,...,p

(¢) Find a necessary and sufficient conditions such that for each xg € C™ the sequence
x;,l=1,...,, is bounded.

3.3 ¢ and stability of certain systems of ODE
Recall that the exponential function e* has the MacLaurin expansion
52

e—1+z+§+4“% }:”

Hence for each A € C"*" one defines

A% A3 LAl
A
= I A . = .
nt A+ 5 + 5 + I
1=0
More generally, if ¢t € C then
A2 A3 Al
At . _

=1, + At + +(3+m_?0“.

Hence e”? satisfies the matrix differential equation

et At At

— = Ae”t = e AL 3.9

g7 (3.9)
Also one has the standard identity eA*e4® = eA(+%) for any complex numbers ¢, u.

Proposition 3.10 Let A € C™*"™ and consider the system of linear system of n ordinary
dx t) = Ax(t), where x(t) € C"™, satisfying
the initial conditions x(tg) = xo. Then x(t) =e Xq 18 the unique solution to the above
system. More generally, let b(t) € C™ be any continuous vector function on R and consider
the nonhomogeneous system of n ordinary differential equations with the initial condition:

differential equations with constant coefficients
A(t to)

dx(1)

e Ax(t) +b(t), x(to) = Xo. (3.10)

Then this system has a unique solution of the form

t
x(t) = eAlt=to)x, —|—/ eA(t_“)b(u)du. (3.11)

to
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Proof. The uniqueness of the solution of (3.10) follows from the uniqueness of solutions
to system of ODE (Ordinary Differential Equations). The first part of the proposition follows
from (3.9). To deduce the second part one does the variations of parameters. Namely one
tries a solution z(t) = eA!=%)y(t) where y(t) € C" is unknown vector function. Hence

< = (eA(t—to))/y(t) + eA(t—t(,)y/(t) — AeA(t_tO)y(t) + eA(t—to)yl(t) — AX(t) + €A(t_t0)y/(t).

Substitute this expression of x(t) to (3.10) to deduce the differential equation y’ = e~A(¢=t0)b(t).
Since y(to) = X¢ this simple equation have a unique solution y(t) = xq —|—f;: eA=to)b () du.
Now multiply by eA(*=%) and use the fact that eAteA" = eA(#+v) to deduce (3.11). 0

Note: The second term in the formula (3.11) can be considered as a perturbation term

to the solution d’;tt) Ax(t),x(to) = xo, i.e. to the system (3.10) with b(¢) =

Use (3.3) for e* and the observation that d;;z-t =tle*,j =0,1,... to deduce:

mi— tje)\ t

k
; i Zij. (3.12)

-0 :

We can substitute this expression for e4* in (3.11) to get a simple expression of the
solution x(¢) of (3.10).

Definition 3.11 Let A € C™**™. A is called exponentially stable, or simple stable, if
limy_o0 et = 0. A is called exponentially convergent if lim, o €' = B for some B €
C™*". A is called exponentially bounded if there exists K > 0 such that the absolute value
of every entry of every et t € [0,00) is bounded above by K.

Theorem 3.12 Let A € C**™. Then

1. A is stable if and only if each eigenvalue of A is in the left half of the complex plane:
Rz < 0.

2. A is exponentially convergent if and only if each eigenvalue A of A satisfies one of the
following conditions

(a) RX < 0;
(b) A =2nl\/—1 for some integer |, and each Jordan block of the JCF of A with an
eigenvalue X\ is of order 1, i.e. A is a simple zero of the minimal polynomial of

A.

3. A is exponentially bounded if and only if each eigenvalue \ of A satisfies one of the
following conditions

(a) RA < 0;

(b) RA =0 and each Jordan block of the JCF of A with an eigenvalue A is of order
1, i.e. A is a simple zero of the minimal polynomial of A.

Proof. Consider the formula (3.12). Since the A-components Z;;,i =1,...,k,j =
0,...,m; — 1 are linearly independent we need to satisfy the conditions of the theorem for
each term in (3.12), which is E—eA tZ;;. Note that for a fixed j lim;_ oo J,e)‘ it = 0 if and
only if A, < 0. Hence we deduce the condition 1 of the theorem.

Note that the function £ e*i? converges as t — oo if and only if either R\; < 0 or e = 1
and 7 = 0. Hence we deduce the condition 2 of the theorem.
Note that the function ;—J!ekit is bounded for ¢ > 0 if and only if either ®\; < 0 or

) =

d
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Corollary 3.13 Let A € C™*™ and consider the system of differential equations d’;gt) =

Ax(t),x(tg) = x¢. Then for any X

1. limy— 0o x(t) = 0 if and only if A is stable.
2. x(t) converges as t — oo if and only if A is exponentially convergent.
3. x(t),t € [0,00) is bounded if and only if A is exponentially bounded.

Theorem 3.14 Let A € C™"*"™ and consider the system of differential equations (3.10).
Then for any xo € C"

1. limy— oo x(t) = 0 for any continuous function b(t), such that lim;_, b(t) = 0, if and
only if A is stable.

2. x(t) converges as t — oo for any continuous function b(t), such that ftzo b(u)du
converges, if and only if A is exponentially convergent.

3. x(t),t € [0,00) is bounded for any continuous function b(t), such that ft u)|du
converges if and only if A is exponentially bounded.

Proof. The necessity of the conditions of the theorem follow from Corollary 3.13 by
choosing b(t) = 0.

1. Suppose that A is stable. Then Corollary 3.13 yields that lim,_ ., e**xo = 0. Thus
show that lim;_, ., x(t) = 0, it is enough to show that the second term in (3.11) tends
to 0. Use (3.12) to show that it is enough to demonstrate that

t
lim [ (t—u)e*Wg(u)du = 0, where R\ < 0,

t—o0 to

for any continuous g(t) € [tg,00), such that limg(¢t) = 0. For e > 0 there exists
T = T(e) such that |g(t)| < e for t > T(¢). Let t > T(¢). Then

t
‘ / WP g = | / M=) g (1) du + / (t = u) A g(u)dul

T(e)

<1/ = up g du|+\/ (g
0 6
T(e) ) t )
<] (t —u)? AW g(u)du| + 6/ (t —u)l ™=y,
to T(e)

Consider the first term in the last inequality. Since lim;_ o t/e* = 0 it follows that the
first term converges to zero. The second term bounded by €K for K := [t/ dt.

Hence as € — 0 we deduce that lim;_, j;to(t —w) M= g(u)du = 0.

2. Using part 1 we deduce the result for any eigenvalue A with R\ < 0. It is left to discuss
the case A = 0. We assume that the Jordan blocks of A correspond to A = 0 are of
length one. So the A-component corresponding to A = 0 is Z19. The corresponding
term is

4 Inner product spaces

4.1 Inner product

Definition 4.1 LetF =R, C and let 'V be a vector space over F. Then {-,-) : VXV —F
is called an inner product if the following conditions hold:
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(a) (ax+by,z) =a(x,z)+bly,z), foralla,belF, x,y,z€V,
(br) forF=R (y,x)=(x,y), foralx,yeV;

(
(

be) forF=C (y,x)=(x,y), forallx,y € V;
¢) (x,x) >0 forallxe V\{0}.

[|1x]] :== v/(x,%) is called the norm (length) of x € V.

Other standard properties of inner products are mentioned in Problems 4.2-4.3. We will
use the abbreviation IPS for inner product space. In this chapter we assume that F = R, C
unless stated otherwise.

Proposition 4.2 Let 'V be a vector space over R. Identify V. with the set of pairs
(x,¥), X,y € V. Then V. is a vector space over C with

(a+v-1b)(x,y) := a(x,y) + b(—y,x), forala,beR, x,y V.

If V has a basis ey, ..., e, over F then (e1,0),...,(e,,0) is a basis of V. over C. Any inner
product {-,-) on V over R induces the following inner product on V.:

<(X7y)7 (11, V)> = <Xa 11> + <Yav> + v 71(<Ya 11> - <X5V>)7 Xy, u,v E V.
We leave the proof of this proposition to the reader (Problem 4.4).

Definition 4.3 Let V be an IPS. Then
(a) x,y € V are called orthogonal if (x,y) = 0.
(b) S, T CV are called orthogonal if (x,y) =0 foranyx€ S,y €T.
(d) For any S C V, S+ C V is the mazimal orthogonal set to S.
(e) X1, ..., Xy 18 called an orthonormal set if

(xi,x5) =65, t,7=1,...m.

(f) X1, ..., Xy is called an orthonormal basis if it is an orthonormal set which is a basis in
V.

Definition 4.4 (Gram-Schmidt algorithm.) Let V be an IPS and S = {x1,...,Xm } C
V a finite (possibly empty) set (m > 0). Then S = {ey, ...,e,} is the orthonormal set (p > 1)
or the empty set (p =0) obtained from S using the following recursive steps:
(a) If x1; = 0 remove it from S. Otherwise replace x1 by ||x1||~'x;.
(b) Assume that X1,...,Xy is an orthonormal set and 1 < k < m. Let ypt+1 = Xpt1 —
Zf:1<xk+1, X)X Ifyrr1 = 0 remove X471 from S. Otherwise replace Xg11 by ||yr+1|| ™ yrt1-

Corollary 4.5 Let V be an IPS and S = {x1,...,X,} C V be n linearly independent
vectors. Then the Gram-Schmidt algorithm on S is given as follows:

Y1
y1:=x1, r11 = [y, e = o,
T11

Tji = (xi,e]), ] = 17 ,’L — 1, (41)

—1
\ yi .

yYi =X — eriej, Ty = ||y1||, e, = r, 1= 2,...,TL.
j=1

(Z3

In particular, e; € S; and ||y;|| = dist(x;, Si—1), where S; = span(x1,...,x;) fori =1,..,n
and Sy = {0}. (See Problem 4.5 for the definition of dist(x;, S;—1).)

Corollary 4.6 Any (ordered) basis in a finite dimensional IPS 'V induces an orthonor-
mal basis by the Gram-Schmidt algorithm.
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See Problem 4.5 for some known properties related to the above notions.

Remark 4.7 [t is known, e.g. [8] that the Gram-Schmidt process as described in (4.1)
is numerically unstable. That is, there is a severe loss of orthogonality of y1,... as we
proceed to compute y;. In computations one uses either a modified GSP or Householder
orthogonalization [8].

Definition 4.8 (Modified Gram-Schmidt algorithm.) Let V be an IPS and S =
{x1,..»Xm} C V a finite (possibly empty) set (m > 0). Then S = {ey,...,e,} is the
orthonormal set (p > 1) or the empty set (p = 0) obtained from S wusing the following
recursive steps:

e [nitialize j =1 and p = m.

Ifx; #0 lete; := ﬁxj. Ifx; = 0 replace p by p—1 and x; by X;41 fori=j,...,p.
J

o p; = (x;,e;)e; and replace x; by x; :=x; —p; fori=j+1,...,p.

e Let j =7+ 1 and repeat the process.

MGS algorithm is stable, needs mn? flops, which is more time consuming then GS
algorithm.

Problems
(4.2)
Let 'V be an IPS over F. Show
<07X> = <X, 0> =0,
for F = R (z,ax + by) = a{z,x) + b(z,y), forall a,b € R, x,y,z € V,
for F = C (z,ax + by) = a(z,x) + b(z,y), forall a,b € C, x,y,z € V.
(4.3)
Let V be an IPS. Show
(a) |lax|| = |a| ||x|| for a € F and x € V.
(b) The Cauchy-Schwarz inequality:
|Gy < I [yl
and equality holds if and only if x,y are linearly dependent (collinear).
(c) The triangle inequality
lx+yll < [Ix[ + [lyll;
and equality holds if either x =0 or y = ax for a € R;..
(4.4)
Prove Proposition 4.2.
(4.5)

Let V be a finite dimensional IPS of dimension n. Assume that S C V. Show

(a) If x4, ..., X, is an orthonormal set then x1,...,%,, are linearly independent.

(b) Assume that ey, ...,e, is an orthonormal basis in V. Show that for any x € V the
orthonormal expansion holds

x=> (x,e)e; (4.6)

=1
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Furthermore for any x,y € V

n

(xy) =3 (x ey, en. @)

i=1

(¢) Assume that S is a finite set. Let S be the set obtained by the Gram-Schmidt process.
Show that S = () <= spanS = {0}. Show that if S # () then e, ..., e, is an orthonormal
basis in span S.

(d) There exists an orthonormal basis ey, ...,e, in V and 0 < m < n such that

e1,....,en €5, span S =span(ey,...,en),
1
S~ = span(em1, .-, €n),

()t = spans.

(e) Assume from here to the end of the problem that S is a subspace. Show V = S @ S+.
(f) Let x € V and let x = u+v for unique u € S, v € S*. Let P(x) := u be the projection
of x on S. Show that P:V — V is a linear transformation satisfying

P?=P, RangeP=S, KerP=S5".

(g) Show
dist(x, S) := ||x — Px|| < ||x — w|| for any w € S
and equality <= w = Px. (4.8)
(h) Show that dist(x,S) = ||x — w|| for some w € S if and only if x — w is orthogonal to S.
(i) Let eq,...,en be an orthonormal basis of S. Show that for each x € V Px =
P
i:1<y7ei>ez‘~

(Note: Px is called the least square approzimation to x in the subspace S.)

(4.9)

Let X € C™*" and assume that m > n and rank X = n. Let xq,...,x, € C™ be the
columns of X, i.e. X = (x1,...,X,). Assume that C™ is an IPS with the standard inner
product < x,y >= y*x. Perform the Gram-Schmidt algorithm (4.5) to obtain the matrix
Q = (e1,...,e,) € C™*". Let R = (rj;)7 € C"™" be the upper triangular matrix with
7;iy j < given by (4.1). Show that QTQ = I,, and X = QR. (This is the QR algorithm.)
Show that if in addition X € R™*™ then ) and R are real valued matrices.

(4.10)

Let C € C™*™ and assume that {\1,...,\,} are n eigenvalues of C' counted with their
multiplicities. View C as an operator C' : C* — C". View C" as 2n-dimensional vector
space over R?". Let C = A++/—1B, A, B € M,,(R).

A A -B
a. Then C := B A
over R in suitably chosen basis.
b. Show that {A1, A1, ..., An, An} are the 2n eigenvalues of C' counting with multiplicities.
¢. Show that the Jordan canonical form of C, is obtained by replacing each Jordan block
M + H in C by two Jordan blocks A + H and A\ + H.

€ Ma, (R) represents the operator C' : C* — C™ as an operator

4.2 Geometric interpretation of the determinant

Definition 4.9 Letxy,...,X,, € R™ bem given vectors. Then the parallelepiped P(x1, ..
is defined as follows. The 2™ vertices of P(X1,...,Xy,) are of the form v := > 1"  a;x;,
where a; = 0,1 for i = 1,...,m. Two vertices v .= Y.." a;x; and w = Y . b;x; of
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P(X1,...,%m) are adjacent, i.e. connected by an edge in P(x1,...,%Xn), if |[(a1,-..,am) " —

1
(bi,...,bm) || =1, i.e. the 0—1 coordinates of (ay,...,am,)" and (by,...,by)" differ only
at one coordinate k, for some k € [1,m].

Note that if e, ..., e, is the standard basis in R", i.e. € = (d14,...,0n;) ,i=1,...,n,
then P(eq,...,ey) is the m-dimensional unit cube, whose edges are parallel to eq, ..., e,
and its center (of gravity) is %(1, ...,1,0,...,0)T, where 1 appears m times for 1 < m < n.

——

For m > n P(x1,...,X,,) is "flattened” parallelepiped, since xi,...,x,, are always

linearly dependent in R™ for m > n.

Proposition 4.10 Let A € R"*" and view A = [c1 Ca...¢y] as an ordered set of n vec-

tors, (columns), ¢1,...,¢,. Then |det A| is the n-dimensional volume of the parallelepiped
P(ey,...,cn). If c1,...,cp are linearly independent then the orientation in R™ induced by
Ci,...,Cp is the same as the orientation induced by ey, ...,e, if det A > 0, and is the

opposite orientation if det A < 0.

Proof. det A = 0 if and only if the columns of A are linearly dependent. If cq,...,c, are
linearly dependent, then P(cy,...,c,) lies in a subspace of R™, i.e. some n — 1 dimensional
subspace, and hence the n-dimensional volume of P(cy,...,c,) is zero.

Assume now that det A # 0, i.e. cq,...,c, are linearly independent. Perform that Gram-
Schmidt process 4.4. Then A = QR, where @ = [e1 e3...e,] is an orthogonal matrix and
R = (rj;) € R™™ is an upper diagonal matrix. (See Problem 4.9.) So det A = det Q) det R.
Since QTQ = I, we deduce that 1 = det ], = det Q" det @ = det Qdet Q = (det Q)2. So
det Q = +1 and the sign of det Q) is the sign of det A.

Hence | det A| = det R = 111722 . . . Tnn- Recall that 71 is the length of the vector ¢4, and
r4; 18 the distance of the vector e; to the subspace spanned by eq,...,e;_1 fori =2,... n.
(See Problem 4.5 parts (f-1).) Thus the length of P(cy) is r1;. The distance of ¢y to P(cq)
is 792. Hence the area, i.e 2-dimensional volume of P(cq,c3) is r11722. Continuing in this

manner we deduce that the 4 — 1 dimensional volume of P(cy,...,¢;—1) is 711 ... 7G—1)(i—1)-
As the distance of ¢; to P(cy,...,c;—1) is 74 it follows that the i-dimensional volume of
P(ey,...,¢;) i8 r11...14. For i = n we get that |det A| = r11...7y,, which is equal to the
n-dimensional volume of P(cy,...,¢,).

As we already pointed out the sign of det A is equal to the sign of det@Q = 1. If
det Q = 1 it is possible to "rotate” the standard basis in R™ to the basis given by the
columns of an orthogonal matrix @) with det Q = 1. If det Q = —1, we need one reflection,
i.e. replace the standard basis eq,...,e, be the new basis —eq,es,...,e, and the rotate
the new basis —eq, es, ..., e, to the basis consisting of the columns of an orthogonal matrix
Q, where det ) = —1. O

Theorem 4.11 (The Hadamard determinantal inequality) Let A =[cy,...,c,] €
C™*™. Then |det A| < ||c1|| |le2]|---|lenl]- Equality holds if and only if either ¢; = 0 for
some i or (c;,cj) =0 for all i # j, i.e. c1,...,¢, is an orthogonal system.

Proof. Assume first that det A = 0. Clearly the Hadamard inequality holds. Equal-
ity in Hadamard inequality if and only if ¢; = 0 for some i.
Assume now that det A # 0 and perform the Gram-Schmidt process. From (4.1) it
follows that A = QR where @ is a unitary matrix, i.e. Q*Q = I,, and R = (r;;) € C"*"
upper triangular with r;; real and positive numbers. So det A = det @ det R. Thus

1 =detl, =detQ*Q = det Q* det Q = det Qdet Q = | det Q|*> = | det Q| = 1.
Hence |det A| = det R = 11792 . . . 7pp. According to Problem 4.5 and the proof of Propo-

sition 4.10 we know that ||c;|| > dist(c;,span(cy,...,c;—1)) = ry for i = 2,...,n. Hence
|det A] = det R < ||cq|| ||czl] - - - ||en]]- Equality holds if ||c;|| = dist(c;,span(cq,...,ci—1))
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for i = 2,...,n. Use Problem 4.5 to deduce that ||c;|| = dist(c;,span(cy,...,c;—1)) if an
only if (c;,¢;) = 0 for j =1,...,i — 1. Use these conditions for i = 2,... to deduce that
equality in Hadamard inequality holds if and only if cq,...,c, is an orthogonal system. O

Problems

1. Let A = (a45)i,; € C**". Assume that |a;;| < K for all 4,5 = 1,...,n. Show that
|det A| < K™n~.

2. Let A = (a;;)};—; € C"*" such that |a;;| <1fori,j =1,...,n. Show that |det A| =
n? if and only if A*A = AA* = nl,. In particular, if |det A| = n? then |a;;| = 1 for
ij=1,...,n

3. Show that for each n there exists a matrix A = (a;;)7;_; € C"*" such that [a;;| =1
fori,5=1,...,n and |det A| = n%.

4. Let A = (a;;) € R"*" and assume that a;; = +1,4,j5 = 1,...,n. Show that if n > 2
then the assumption that |det A| = n? yields that n is divisible by 4.

5. Show that for any n = 2™, m = 0,1,... there exists A = (a;;) € R"*" such that
ai; = £1,i,5 = 1,...,n and |det A| = n%. (Hint: Try to prove by induction on
m that A € R2"*2" can be chosen symmetric, and then construct B € R2™ X2

using A.)

Note: A matrix A = (a;;);';—; € R™" such that a;; = £1 for 4,j = 1,...,n and
|det A| = n? is called a Hadamard matrix. It is conjectured that for each n divisible by 4
there exists a Hadamard matrix.

4.3 Special transformations in IPS

Proposition 4.12 Let 'V be an IPS and T : V — V a linear transformation Then there
exists a unique linear transformation T* : V — V such that < Tx,y >=< x,T*y > for all
x,y € V.

See Problems 4.3-4.4.

Definition 4.13 Let V be an IPS and let T : V — V be a linear transformation. Then
(a) T is called self-adjoint if T* =T;
(b) T is called anti self-adjoint if T* = =T
(c) T is called unitary if T*T =TT* = 1;
(d) T is called normal if T*T = TT*.

Denote by S(V), AS(V), U(V), N(V) the sets of self-adjoint, anti self-adjoint, unitary
and normal operators on V respectively.

Proposition 4.14 Let V be an IPS over F = R,C with an orthonormal basis E =
{e1,...,en}. Let T : V. — V be a linear transformation. Let A = (a;;) € F"*™ be the
representation matrix of T in the basis E:

ai; =< Tej,ei > i,7=1,...,n. (41)
Then for F =R:
(a) T isrepresented by AT,
(b) Tisselfadjoint <= A= AT,
(¢) T is antiselfadjoint <= A= —A",
(d) Tisunitary <= Aisorthogonal <= AA" = ATA=1,
(¢) Tisnormal <= Aisnormal <= AA" = AT A,
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and for F =C:

(a) T* is represented by A* (:= A"),

(b) T isselfadjoint <= Aishermitian <= A = A",

(¢) T is antiselfadjoint <= A is anti hermitian <= A = —A",
(d) T isunitary <= Aisunitary < AA*=A"A=1,

() Tisnormal <= Aisnormal <= AA* = A"A.

See Problem 4.5.

Proposition 4.15 Let V be an IPS over R, and let T € Hom(V). Let V. be the
complezification of V. Show that there exists a unique T. € Hom(V,.) such that T.|V =T.
Furthermore T is self-adjoint, unitary or normal if and only if T, is self-adjoint, unitary or
normal respectively.

See Problem 4.6

Definition 4.16 For a domain D with identity 1 let

S(n,D):={AeD"™™:. A=AT},
AS(n,D):={AecM,(D): A=-AT},
O(n,D):={AeD™": AAT = ATA=1T},
SO(n,D) :={A€0O(n,D): detA=1},
DO(n,D) := D(n,D) N O(n,D),
N(n,R):={AcR™" . AAT = AT A},
N(n,C) = {A € C™":  AA* = A*A),
H,={AcM,(C): A=A}

AH, ={AeC™": A=-A"}

U, ={AcC"": AA*=A"A=1T},
SU,:={AcU,: detA=1},

DU, := D(n,C) N U,,.

See Problem 4.7 for relations between these classes.

Theorem 4.17 Let 'V be an IPS over C of dimension n. Then a linear transformation
T :V — V is normal if and only if V has an orthonormal basis consiting of eigenvectors

of T.

Proof. Suppose first that V has an orthonormal basis ey, ..., e, such that T'e; = \;e;, i =
1,...,n. From the definition of T* it follows that T*e; = \;e;, i = 1,...,n. Hence TT* =
T*T.

Assume now T is normal. Since C is algebraically closed T has an eigenvalue A\;. Let
V1 be the subspace of V spanned by all eigenvectors of T' corresponding to the eigenvalue
A1. Clearly TV, C V1. Let x € V. Then Tx = A1x. Thus

T(T*x) = (TT*)x = (T"T)x =T*(Tx) = \T*x = T*V; C Vi.

Hence TV{,T*Vi C Vi. Since V = V; @ V{ it is enough to prove the theorem for 7|V

and T|V1i. B
As T|Vy = M Iy, it is straightforward to show T*|Vy = A1 Iy, (see Problem 4.4). Hence
for TV the theorem trivially holds. For T|Vi the theorem follows by induction. O

The proof of Theorem 4.17 yields:
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Corollary 4.18 Let'V be an IPS over R of dimensionn. Then the linear transformation
T : V — V with a real spectrum is normal if and only if V has an orthonormal basis
consiting of eigenvectors of T'.

Proposition 4.19 Let V be an IPS over C. Let T € N(V). Then

T is self — adjoint <= spec (T') C R,
T is unitary <= spec (T) C S'={2€C: |z|=1}.

Proof. Since T is normal there exists an orthonormal basis ey, ..., e, such that Te; =
Aie;, i =1,...,n. Hence T*e; = \;e;. Then

T=T" < M=\, i=1,..n,
TT* =TT =1 < |\|=1,i=1,...n.

Combine Proposition 4.15 and Corollary 4.18 with the above proposition to deduce:

Corollary 4.20 Let V be an IPS over R and let T € S(V). Then spec (T) CR and V
has an orthonormal basis consisting of the eigenvectors of T .

Proposition 4.21 Let V be an IPS over R andletT € U(V). Then'V = @ici_11.2,...k} Vis
where k > 1, V; and V; are orthogonal for ¢ # j, such that
(a) T|V—1 = _IV,l dimV_l > O,
(b) TV = Iy, dimV; >0,
(c) T|V; =V;, dimV; =2, spec (T|V;) C S\{-1,1} fori=2,....k.

See Problem 4.9.

Proposition 4.22 LetV be an IPS over R and letT € AS(V). Then'V = Dicf1,2
where k > 1, V; and V; are orthogonal for i # j, such that
(a) T|V1 = OV1 chmV1 Z 0,
(b) T|V; = V;, dim'V; = 2, spec (T|V;) C V/=1R\{0} fori=2,... k.

Vi,

.....

See Problem 4.10.

Theorem 4.23 Let V be an IPS over C of dimension n. Let T € Hom(V). (Here
Hom(V) stands for the algebra of all linear transformations from 'V to itself.) Let A1, ..., A, €
C be n eigenvalues of T' counted with their multiplicities. Then there exists a unitary basis
€1, ..., 8n of V with the following properties:

Tspan(gy, ...,8;) C span(gy, ..., 8:), (T8, 8i) =N, i =1,...,n. (4.2)

Let V be an IPS over R of dimension n. Let T € Hom(V) and assume that spec (T') C R.
Let M1, ..., A\n € R be n eigenvalues of T counted with their multiplicities. Then there exists
an orthonormal basis g1, ...,8n of V such that (4.2) holds.

Proof. Assume first that V is IPS over C of dimension n. The proof is by induction
on n. For n =1 the theorem is trivial. Assume that n > 1. Since \; € spec (T) it follows
that there exists g1 € V, (g1,g1) = 1 such that Tg; = \;g;. Let U := span(g;)*. Let P
be the orthogonal projection on U. Let Ty := PT|y. Then T} € Hom(U). Let A2, oy A be
the eigenvalues of T counted with their multiplicities. The induction hypothesis yields the
existence of an orthonormal basis go, ..., g, of U such that

Tlspan(gQa "'agi) C Span(g?» "'7gi)7 <ng>gz> = 5\7;’ i=1,..,n.
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It is straightforward to show that Tspan(gy,...,g;) C span(gi,...,g;) for i = 1,...,n. Hence
in the orthonormal basis g1, ...,g, T is presented by an upper diagonal matrix B = (b;;)7,
with b1 = A1 and b;; = 5\1-, i =2,...,n. Hence A1, 5\2, s 5\n are the eigenvalues of T counted
with their multiplicities. This establishes the theorem in this case. The real case is treated
similarly. O

Combine the above results with Problems 4.8 and 4.15 to deduce:

Corollary 4.24 Let A € C"*"™. Let Ay, ...,\n, € C be n eigenvalues of A counted with
their multiplicities. Then there exist an upper triangular matric B = (b;;)7 € M,(C),
such that by; = X\;, i = 1,....,n, and a unitary matriz U € U, such that A = UBU~'. If
A € N(n,C) then B is a diagonal matriz.

Let A € M, (R) and assume that spec (T) C R. Then A = UBU! where U can be
chosen a real orthogonal matriz and B a real upper triangular matriz. If A € N(n,R) and
spec (A) C R then B is a diagonal matriz.

It is easy to show that U in the above Corollary can be chosen in SU,, or SO(n,R) respec-
tively (Problem 4.14).

Definition 4.25 Let 'V be a vector space and assume that T : V. — V is a linear
operator. Let 0 # v € V. Then W = span(v,Tv,T?v,...) is called a cyclic invariant
subspace of T generated by v. (It is also referred as a Krylov subspace of T generated by
v.) Sometimes we will call W just a cyclic subspace, or Krylov subspace.

Theorem 4.26 Let 'V be a finite dimensional IPS. Let T : V — V be a linear operator.
For0+#v €V let W = span(v, TV, ...,T"~v) be a cyclic T-invariant subspace of dimension
r generated by v. Let uy, ..., u, be an orthonormal basis of W obtained by the Gram-Schmidt
process from the basis [v,TV,..,T""'v] of W. Then (Tu;,u;) =0 for 1 <i < j—2, i.e.
the representation matriz of T|W in the basis [ui,...,u,] is upper Hessenberg. If T is
self-adjoint then the representation matriz of T|W in the basis [ui,...,u,| is a tridiagonal
hermitian matrix.

Proof. Let W; = span(v,..., 77" !v) for j = 1,...,r + 1. Clearly TW,; C W, for
7 =1,...,r. The assumption that W is T-invariant subspace yields W = W, = W, ;.
Since dim W = r it follows that v, ..., 7"~ 1v are linearly independent. Hence [v,...,T""1v]
is a basis for W. Recall that span(uy,...,u;) = W; for j =1,...,r. Let r > j > i+ 2.
Then Tu; € TW; C Wii1. As u; L W, it follows that (Tu;,u;) = 0. Assume that
T* =T. Let r > i > j+ 2. Then (T'u;,u;) = (u;,Tu;) = 0. Hence the representation

matrix of T|W in the basis [uy,...,u,] is a tridiagonal hermitian matrix. O
Problems

(4.3)
Prove Proposition 4.12.

(4.4)
Let P,Q € Hom(V),a,b € F. Show that (aP + bQ)* = aP* + bQ*.

(4.5)
Prove Proposition 4.14.

(4.6)

Prove Proposition 4.15 for finite dimensional V. (Hint: Choose an orthonormal basis in V.)

(4.7)
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Show the following

SO(n,D) C O(n,D) C GL(n, D),

S(n,R) c H,, C N(n,C),

AS(n,R) C AH, C N(n,C),

S(n,R), AS(n,R) C N(n,R) C N(n,C),
O(n,R) c U, € N(n,C),

SO(n,D), O(n,D), SU,,, U,, are groups
S(n,D) is a D — module of dimension (n ; 1),
AS(n,D) is a D — module of dimension <Z> ,

H, is an R — vector space of dimension n?.

AH,=+v-1H,
(4.8)

Let E = {eq,...,e,} be an orthonormal basis in IPS V over F. Let G = {g1,...,8,} be
another basis in V. Show that F is an orthonormal basis if and only if the tranfer matrix
either from F to G or from G to E is a unitary matrix.

(4.9)

Prove Proposition 4.21
(4.10)

Prove Proposition 4.22
(4.11)

cosf sinf
—sinf cosf } 0 ER.
b. Show that SO(2,R) = 2SR That is for any B € AS(2,R) ¢ € SO(2,R) and
any A € SO(2,R) is e? for some B € AS(2,R). (Hint: Consider the power series for
B 0 6
¢ B= [ —0 0 })
c. Show that SO(n,R) = eAS("R) (Hint: Use Propositions 4.21 and 4.22 and part b.)
d. Show that SO(n,R) is a path connected space. (See part e.)
e. Let V be an n(> 1)-dimensional IPS over F = R. Let p € (n — 1). Assume that
X1,...,Xp and yi, ..., yp be two orthonormal systems in V. Show that these two o.n.s. are
path connected. That is there are p continuous mappings z;(t) : [0,1] — V, i = 1,...,p such
that for each ¢ € [0,1] z1(¢), ..., z,(¢) is an o.n.s. and 2;(0) = x;,2,(1) =y;, i =1,...,p.

a. Show that A € SO(2,R) is of the form A = [

(4.12)

a. Show that if @ is 3 x 3 orthogonal matrix with det @ = 1 then 1 is an eigenvalue of Q.
b. Let @ be 3 x 3 orthogonal matrix with det Q = 1. Show that there exists e € R?,||e|| = 1
and 0 € [0,27) such that for each x € R3 the vector @x can be obtained as follows.
Decompose x = u + v, where u = (x,e)e and (v,e) = 0. Let S := span(e)’ be the two
dimensional subspace orthogonal to e. Then @x = u + w, where w € S is obtained by
rotating v € S by an angle 0. (This is result is called Fuler’s theorem, i.e. a rotation of a
three dimensional body around its center of gravity can be obtained as a two dimensional
rotation along some axis, (given by the direction of e).)

¢. For which values of n any n X n orthogonal matrix @ has an eigenvalue 1 or —17 Can
you tell under what condition —1 is always an eigenvalue of Q7

(4.13)
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a. Show that U,, = eAHn. (Hint: Use Proposition 4.19 and its proof.)
b. Show that U,, is path connected.
c. Prove Problem 4.11e for F = C.

(4.14)
Show
(a) D1DDf = D for any D € D(n,C), D; € DU,,.
(b) Ae N(n,C) < A=UDU*, U € SU,,, D € D(n,C).
(c) Ae N(n,R), 0(A) CR < A=UDU", U € SO,,, D € D(n,R).
(4.15)

Show that an upper triangular or a lower triangular matrix B € C"*" is normal if and only
if B is diagonal. (Hint: consider the equality (BB*)11 = (B*B)11.)

(4.16)

Let the assumptions of Theorem 4.26 hold. Show that instead of performing the Gram-
Schmidt process on v,Tv,...,T"~'v one can perform the following process. Let wy := HX—H
Assume that one already obtained i orthonormal vectors wi,...,w;. Let W;1q := T'w; —
Z;:1<Twi,wj>wj. If W;11 = 0 then stop the process, i.e. one is left with ¢ orthonormal

vectors. If w;y; # 0 then w;;1 1= H:vylﬁ

ends after obtaining r orthonormal vectors wy, ..., w, and u; = w; for i = 1,...,r. (This is
a version of Lanczos tridiagonalization process.)

and continue the process. Show that the process

4.4 Quadratic and hermitian forms

In this section you may assume that D = R, C.

Definition 4.27 Let'V be a module over D and Q : VXV — D. Q is called a quadratic
form (on V) if the following conditions are satisfied:

(a) Q(x,y) = Q(y,x) for all x,y € V (symmetricity);
(b) Qax + bz,y) = aQ(x,y) + bQ(z,y) for all a,b € D and x,y,z € V (bilinearity).

For D =C Q is called hermitian form (on V) if Q satisfies the conditions (a’) and (b)
where

(@) Q(x,y) = Q(y,x) for all x,y € V (barsymmetricity).
The following results are elementary (see Problems 4.1-4.2):

Proposition 4.28 Let V be a module over D with a basis E = {ey,...,e,}. Then there
is 1 — 1 correspondence between a quadratic form Q on'V and A € S(n,D):

Q(x,y) =n'A¢,

n n
X = Z&ie% Yy = Znieia f = (517 "'7€H)T7n = (771’ "'ann)T € D".
=1 =1

Let 'V be a vector space over C with a basis E = {eq,...,e,}. Then there is 1 —1 correspon-
dence between a hermitian form @Q on'V and A € H,,:

Q(x,y) = n"AE,

X = Zgieh y = Znieia g = (517 "'7£n)—r7n = (7717 "'777n)T eC".
=1 =1

Definition 4.29 Let the assumptions of Proposition 4.28 hold. Then A is called the
representation matrix of Q in the basis E.
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Proposition 4.30 Let the assumptions of Proposition 4.28 Let F = {fy,...,fy} be an-
other basis of the D module V. Then the quadratic form Q is represented by B € S(n, D)
in the basis F', where B is congruent A:

B=UTAU, U < GL(n,D)
and U is the matriz corresponding to the basis change from F to E. For D = C the hermitian
form Q is presented by B € H,, in the basis F', where B hermicongruent to A:
B=U*AU, U € GL(n,C)
and U is the matriz corresponding to the basis change from F to E.
In what follows we assume that D =F = R, C.

Proposition 4.31 Let 'V be an n dimensional vector space over R. Let Q : VXV — R
be a quadratic form. Let A € S(n,R) the representation matriz of Q with respect to a basis
E in'V. Let V. be the extension of V over C. Then there exists a unique hermitian form
Q. : Vex V. — C such that Q.|vxv = Q and Q.. is presented by A with respect to the basis
FE inV,.

See Problem 4.3

Normalization 4.32 Let V is a finite dimensional IPS over F. Let @ : V xV — F be
either a quadratic form for F = R or a hermitian form for F = C. Then a representation
matriz A of Q is chosen with respect to an orthonormal basis E.

The following proposition is straightforward (see Problem 4.4).

Proposition 4.33 Let V is an n-dimensional IPS over F. Let Q : VXV — F be either
a quadratic form for F = R or a hermitian form for F = C. Then there exists a unique
T € S(V) such that Q(x,y) =< Tx,y > for any x,y € V. In any orthonormal basis of
V Q and T represented by the same matriz A. In particular the characteristic polynomial
p(A) of T is called the characteristic polynomial of Q. Q has only real Toots:

M(Q) = ... =2 A(Q),

which are called the eigenvalues of Q). Furthermore there exists an orthonormal basis F' =
{f1,.., .} in 'V such that D = diag(A(Q), ..., \n(Q)) is the representation matriz of Q in
F.

Vice versa, for any T € S(V) and any subspace U C 'V the form Q(T,U) defined by

Q(T,U)(x,y) =<Tx,y > forx,yeU
is either a quadratic form for F =R or a hermitian form for F = C.

In the rest of the book we use the following normalization unless stated otherwise.

Normalization 4.34 Let V is an n-dimensional IPS over F. Assume that T € S(V).
Then arrange the eigenvalues of T counted with their multiplicities in the decreasing order

)\1(T) Z Z An(T)'

Same normalization applies to real symmetric matrices and complex hermitian matrices.

Problems

(4.1)
Prove Proposition 4.28.

(4.2)
Prove Proposition 4.30.

(4.3)
Prove Proposition 4.31.

(4.4)

Prove Proposition 4.33.

34



4.5 Max-min characterizations

Theorem 4.35 (Convoy Principle [12]) Let'V be an n-dimensional IPS. Let Gr(m, V)
be the space of all m-dimensional subspaces in U of dimension m € [0,n] N Zy. Let
T € S(V). Then

M(T)= max  min M: (4.1)
UcGr(k,V) 0#xeU (X, X)

Gﬁl}g}\(}) A(Q(T,U)), k=1,..,n,
where the quadratic form Q(T,U) is defined in Proposition 4.33. For k € [1,n]| NN let
U be an invariant subspace of T spanned by eigenvectors ei,...,ep corresponding to the
eigenvalues A1 (T), .., \g(T). Then M\g(T) = M\(Q(T,U)). Let U € Gr(k, V) and assume
that \p(T) = \e(Q(T,U)). Then U contains and eigenvector of T corresponding to A (T).
In particular

B (Tx,x) B . (Tx,x)
AT = Oglxaexv (x,x) ’ An(T) = odxeV (x,x) (4.2)
Moreover for any x # 0
A(T) = <€<X;< ’§> = Tx =\ (T)x,
_ (Tx,x) _
An(T) = ) Tx = A\, (T)x,

The quotient <<7;x)’:;>, 0 # x € V is called Rayleigh quotient. The characterization (4.2)

is called convoy principle.
Proof. Choose an orthonormal basis E = {eq,...,e,} such that

Te; = Ai(T)ei, (ei,€;) =bij 1,5 =1,...,n. (4.3)

Then
(Tx,%) _ 3 Mi(D)if?
(x,%) Dicy lzil?
The above equality yields straightforward (4.2) and the equality cases in these characteri-

zations. Let U € Gr(k, V). Then the minimal characterization of A;(Q(T,U)) yields the
equality

, x= inei # b0. (4.4)
i=1

o (Tx,x)
M(Q(T,U)) =
k(Q( ) )) quénxlgU <X,X>
Next there exists b0 # x € U such that (x,e;) =0 for i = 1,....k — 1. (For k = 1 this
condition is void.) Hence
(Tx,x) _ 2 M)l

xx) Sl = M) = Al 2 QT U))

for any U € Gr(k, U). (4.5)

Let

)\1(T) =..= Anl T) > )\(T n1+1(T) =..= )‘nz(T) > >
A1 +1(T) = . =2 (D) =2(T), no=0<n1 <..<n,=n. (4.6)

Assume that nj_1 < k < n;. Suppose that \y(Q(T,U)) = Ax(T). Then for the x of the
above form ‘LX) — ), (T). Hence x = S wie;. Thus Tx = A\ (T)x.

(x,%)
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Let Uy = span(eq, ...,eg). Let 0 # x = Zle z;e; € Ug. Then

(Tx,%) 3 Ml
{x, ) S |zl

Hence M\ (Q(T, Uy)) = A\ (7). O

2 M(T) = A(Q(T, U)) = AR(T).

It can be shown that for & > 1 and A\ (T) > A (T) there exist U € Gr(k, V) such that
A:(T) = M\ (T,U) and U is not an invariant subspace of T, in particular U does not contain
all ey, ..., e, satisfying (4.3). (See Problem 4.10.)

Corollary 4.36 Let the assumptions of Theorem 4.35 hold. Let 1 < /¢ < n. Then

Me(T) = Me(Q(T, W) and M\p(T) = wené?é,v) M(Q(T,W)), k=1,..,°¢ (4.7)

Proof. For k < ¢ apply Theorem 4.35 to A\ (Q(T, W)) to deduce that A\ (Q(T, W)) <
Ai(T). Let U, = span(ey, ...,e¢). Then

M(Q(T,Up)) = M\ (T), k=1,..,¢

Corollary 4.37 (Cauchy Interlacing Theorem) Let A € H,, and let B € H,,_1 be the
principal submatriz of A obtained by deleting the row and the column i € [1,n] of A. Denote
by My > X >...>2 X, and vy > vy > ... > v, 1 the eigenvalues of A and B respectively.
Then

M2V > A2 21 2 Ay,

Be. Ny > vy > N1 fori=1,...,n—1.

Proof. Let U; := span(ey,...,€;_1,€;41,...,€,). Then the restriction of the quadratic
form x*Ax to U gives rise to the quadratic form induced by B. Corollary 4.36 yields the
inequality A; > v; for i = 1,...,n — 1. Consider now —A and its principal submatrix
—B. Their eigenvalues arranged in a decreasing order are —\,, > —A,_1 > ... > —)\; and
—VUp—1 > —Vp—9 > ... > —uj respectively. The above arguments yield —A,_;41 > —vp—;
fori=1,...,n — 1, which are equivalent to v; > A\;; for j =1,...,n - 1. ]

Definition 4.38 For T € S(V) denote by t+(T),00(T),t—(T) the number of positive,

negative and zero eigenvalues among A\ (T) > ... > A\ (T). The triple o(T) := (14(T), to(T), t—(T))

is called the inertia of T.

Let B>0,B>0,B<0,B<O0ifw(T)+:¢-(T)=0,:_(T) =0, 14(T) =0 and
14 (T) 4+ 1o(T) = 0 respectively.

For B e H,, «(B) := (¢t+(B),t0(B),t—(B)) is the inertia of B, where 1 (B), to(B),t—(B)
is the number of positive, negative and zero eigenvalues of B respectively.

Proposition 4.39 Let U € Gr(k, V).

1. Assume that \(Q(T,U)) > 0, i.e. Q(T,U) > 0. Then k < v, (T).
2. Assume that \y(Q(T,U)) >0, i.e. Q(T,U) >0. Then k < 14 (T) + 1o(T).
3. Assume that \(Q(T,U)) <0, i.e. Q(T,U) < 0. Then k < ¢_(T).
4. Assume that \(Q(T,U)) <0, i.e. Q(T,U) <0. Then k < 1_(T) + 1o(T).



5. Sylvester Law of Inertia: Let B € H, or B € S,(R) and assume that A =
PBP* or A = PBPT for some P € GL(n,C) or P € GL(n,R) respectively. Then
t(A) = «(B). Furthermore, if A,B € H,, or A,B € S,,(R) have the same inertia then
there exists P € GL(n,C) or P € GL(n,R) such that A = PBP* or A = PBP'
respectively.

Proof. 1. Corollary 4.36 yields that A (T) > Ax(Q(T,U)) > 0, hence k < 14 (T).

The proofs of 2,3,/ are similar.

5. Assume that A = PBP*. Note that if x*Bx >0 or x*Bx >0 or forall0 #x € U
then y*Ay > 0 y*Ay > 0 for all y € P*U respectively. Hence ¢4 (B) < ¢4(A) and
t+(B) 4 t9(B) < 14(A) + 1o(A). Since P is invertible P71 = Q and B = QAQ*. Hence we
deduce as above that ¢4 (A) < ¢4 (B) and ¢4 (A) 4+ 19(A) < t4(B)+1o(B). Thus t(A) = «(B)
and vo(A) = 1o(B). Since ¢4 (A) + to(A) + - (A) = 14 (B) + 1o(B) + t—(B) = n we deduce
that (—(A) = _(B), i.e. t(A) = (B).

Assume now that ¢(B) = t(A). Observe that B = QAQ*, where @ is unitary and A =

diag(A1, ..., n). Let f(z) = ﬁ if x #0and f(0) =1. Set R =diag(f(A1),...,f(An)) €
Sp(R). Then C = R*AR = RAR is a diagonal matrix with ¢4 (B) 1's, ¢o(B) zeros and

t—(B) —1’s on the main diagonal. So (QR)*B(QR) = C. Similarly C = (Q'R')*A(Q'R/).
Hence A = PBP*.
a

Theorem 4.40 Let V be an n-dimensional IPS and T € S(V). Then

. (Tx,x)
min max
WeGr(k—1,V) 0£zeWL (X, X)

Ae(T) = . k=1,..n.

See Problem 4.11 for the proof of the theorem and the following corollary.

Corollary 4.41 Let V be an n-dimensional IPS and T € S(V). Let k, £ € [1,n — 1] be
integers satisfying k < €, k+ ¢ >n. Then

Mt t—n(T) < M (Q(T,W)) < A\ (T), for any W € Gr(£, V).

Definition 4.42 Let 'V be an n-dimensional IPS. Fiz an integer k € [1,n]. Then Fj, =
{f1,....fx} is called an orthonormal k-frame if (f;,f;) = 0;; for i,j = 1,...,k. Denote by
Fr(k, V) the set of all orthonormal k-frames in V.

Note that each Fj, € Fr(k, V) induces U = spanFjy, € Gr(k, V). Vice versa, any U €
Gr(k, V) induces the set Fr(k, U) of orthonormal k-frames which span U.

Theorem 4.43 (Ky Fan [3]) Let V be an n-dimensional IPS and T € S(V). Then
for any integer k € [1,n]

k k
Z ( ) {fl,...,f%aé}]g‘r(k,V) Z< >

i=1 i=1

Furthermore
k

k
D oN(T) =) (T.£)
=1

=1

for some k-orthonormal frame Fy, = {f1, ..., £} if and only if spanFy, is spanned by ey, ..., ex
satisifying (4.3).
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Proof. Define

k
— Z \(Q(T,U)) for U € Gr(k, V),

k
try T := Z Xi(T)
i=1

Let Fy, = {f1,....fi} € Fr(k, V). Set U = spanF},. Then in view of Corollary 4.36

k

k
> (Tfi,£;) = tr Q(T,U) Z

i=1

Let E) := {ey,...,er} where ey, ...,e, are given by (4.3). Clearly try T = tr Q(T,spanE}).
This shows the maximal characterization of try 7.
Let U € Gr(k, V) and assume that try T = tr Q(T, U). Hence \(T) = \;(Q(T,U)) for
it =1,....;k. Then there exists G, = {g1,...,8k} € Fr(k,U)) such that
T
min Ix%) = N(Q(T,U)) = N(T), i =1,.... k.

O#x€Espan(g1,...,8: } <X’ X>

Use Theorem 4.35 to deduce that T'g; = \;(T)g; for i = 1,..., k. O

Theorem 4.44 (J. Neumann) Let A, B € H,,. Denote by \1(A) > ... > M\ (A), M\ (B) >
.. > A\ (B) the eigenvalues of A and B respectively. Then

AL(A) A (B) + Ao(A)An_1(B) + ... + An(A)A1(B) < tr(AB) Zn: (4.9)

Equalities hold if and only if there is an orthonormal basis g1, ...,8n of C™ such that

1. For the equality case in the upper bound Ag; = \;(A)g;, Bg; = M\i(B)g; for i =
1,...,n.

2. For the equality case in the lower bound Ag; = A\, (A)g:, Bg; = A—it1(B)g; for
1=1,...,n

Proof. Note that for any invertible matrix U one has tr(AB) = tr(UABU ') =
tr(UAU Y (UBU™Y)), since tr(AB) is the sum of the eigenvalues of AB. Choose U uni-
tary such that UAU 1 = UAU* = A := diag(Al(A) s n(A). Let C =UBU~! = UBU*.
Then C' = (cij)f;—; € Hy and Ai(C) = N(B) for i = 1,...,n. Clearly tr(AC) =
S Ni(A)ei =30 Ni(A)(ef Ce;), where ; = (61, . . ., 6m)T,i =1,...,nis the standard
basis in C". Observe next that

n n—1
Z)\Z(A)e;rCeZ = Z()\Z( l+1 Ze Ce] + )\ Ze Cel
i=1 i=1

Since Ai(A) = Ai+1(A) > 0 Ky Fan inequality yields that (Ai(A) — Xit1(A)) 225, €] TCe; <
(ANi(A) — Nit1(4) Z; 1A(C) for i = 1,...,n — 1. Combine all these inequalities with
the equality >.© e/ Ce; = trC = Y  N(C). to deduce the inequality tr(AC) <
S  Ai(A)Xi(C). This gives the upper inequality in (4.9).

Equality case is slightly more delicate to analyze. If A\;(A) > ... > A\, (A) then Ce; =
Ai(C)e; fori=1,...,nif tr(AC) = 321, Ai(A)N(O).
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To obtain the lower bound note that tr(A(—B)) < >"7 ; \i(A)\;(—=B). Use the identity
Ai(—B) = =Ap—i+1(B) for i = 1,...,n to deduce the lower bound. Equality case as for the
upper bound. O

Definition 4.45 Let
RY = {x = (21, ot )T ERY oy >y > >3, )

For x = (z1,....2,)T € R" let X = (Ty1,...,Tn)T € RY_ be the unique rearrangement of the
coordinates of x in a decreasing order. That is there exists a permutation m on {1,...,n}
such that T; = xr;), i = 1,...,n. Let x = (1, 020) T,y = (W1, -, Yn) " € R™. Then x is
weakly magjorized by y (y weakly majorizes x), which is denoted by x <y, if

k k
Sz <> g, k=1,..n
i=1 i=1
X is majorized by y (y majorizes x), which is denoted by x <y, ifx <y and > ., x; =
D Vi

A remarkable inequality is attached to the notion of majorization [6], see also Problem ??
part (c).

Theorem 4.46 Let X = (X1,..,X,)| <Y = (Y1,syn)T. Let ¢ : [Gn,71] — R be a
continuous convex function. Then

Z P(x;) < Z é(yi)-

Corollary 4.47 Let 'V be an n-dimensional IPS. Let T € S(V). Denote A\(T) :=
M (T); s A(T)T €RY . Let F, = {f1,..£} € Fr(n, V). Then (Tf, 1), ., (T, £)) T <
MT). Let ¢ : [An(T), A\ (T)] — R be a continuous convex function. Then

Z P(Xi(T)) = max > o(Th, 1)),

{£1....£, }EFT(n, V) <

See Problem 4.12

Definition 4.48 A set D C R™ is called convez if for any x,y € D and any t € [0,1]
the linear combination tx + (1 — t)y is in the set D.

Let D C R"™ be a conver set and f : D — R be a function on D. Then f is called a convex
function on D if for any x,y € D and any t € [0,1] f(tx+ (1 —t)y) <tf(x)+ (1 —1t)f(y)-

Problems

1. Let k,n be positive integers and assume that k < n. Let fr : S,(R) — R be the
following function: fi(A) = Zle Ai(A) for any A € S,,(R). Show that fj is convex
on S, (R). (See above for the definition of convexity.) What happens for k = n?

(4.10)
Let V be 3 dimensional IPS and 7' € Hom(V) be self-adjoint. Assume that

)\1(T> > )\Q(T) > )\3(T>7 Te;, = )\i(T)ei, 1=1,2,3.
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Let W = span(eq, e3).
(a) Show that for each ¢t € [A3(T), \1(T)] there exists a unique W(t) € Gr(1, W) such that
M (Q(T, W (1)) = t.
(b) Let ¢t € [Aa(T'), A1(T)]. Let U(t) = span(W(t),ez) € Gr(2,V). Show that A\(T) =
A2(Q(T, U(1)).

(4.11)
(a) Let the assumptions of Theorem 4.40 hold. Let W € Gr(k — 1, V). Show that there
exists b0 # x € W+ such that (x,e;) = 0 for k + 1,...,n, where eq, ..., e, satisfy (4.3).
Conclude that \; (Q(T, W+)) > %‘T’;) > (7).
(b) Let U, = span(ey, ..., e¢). Show that A\ (Q(T,U})) = A\py1(T) for £=1,...,n — 1.
(¢) Prove Theorem 4.40.

(d) Prove Corollary 4.41. (Hint: Choose U € Gr(k, W) such that U C WNspan(ex4¢—n+1, ---

Then Ajyo—n(T) < M(Q(T, U)) < Me(Q(T, W)).)
(4.12)

Prove Corollary 4.47.

(4.13)
Let B = (b;;)} € H,,. Show that B > 0 if and only if det(b;;)§ > 0 for k =1,...,n.

4.6 Positive definite operators and matrices

Definition 4.49 Let V be a finite dimensional IPS over F = C,R. Let S,T € S(V).
Then T > S, (T > S) if (IT'x,x) > (Sx,x), ((T'x,x) > (Sx,x)) for all0 #x € V. T
is called positive (nonnegative) definite if T > 0 (T > 0), where 0 is the zero operator in
Hom(V).

Let P,Q be either quadratic forms if F = R or hermitian forms if F = C. Then Q >
P, (Q > P) if Q(x,x) > P(x,x), (Q(x,x) > P(x,x)) for all 0 # x € V. Q s called
positive (nonnegative) definite if @ > 0 (Q > 0), where 0 is the zero operator in Hom(V).

For A, Be€H, B> A (B>A)ifx*Bx >x"Ax (x*Bx > x*Ax) for all 0 # x € C".
B € H,, is called is called positive (nonnegative) definite if B > 0 (B > 0).

Use (4.1) to deduce.

Corollary 4.50 Let V be n-dimensional IPS. Let T € S(V). Then T > 0 (T > 0) if
and only if A\p(T) > 0 (A, (T) > 0). Let S € S(V) and assume that T > S (T > S). Then

Proposition 4.51 Let V be a finite dimensional IPS. Assume that T € S(V). Then
T > 0 if and only if there exists S € S(V) such that T = S%. Furthermore T > 0 if and
only if S is invertible. For 0 < T € S(V) there ezists a unique 0 < S € S(V) such that
T = S%. This S is called the square oot of T and is denoted by T=.

Proof. Assume first that T > 0. Let eq,...,e, be an orthonormal basis consisting of
eigenvectors of T as in (4.3). Since \;(T) > 0, ¢ = 1,...,n we can define P € Hom(V) as
follows

Pei = Al(T)e“ 1= 1, ey N

Clearly P is self-adjoint nonnegative and T = P2.

Suppose now that T' = S? for some S € S(V). Then T € S(V) and (Tx,x) = (Sx, 5x) >
0. Hence T > 0. Clearly (Tx,x) =0 <= Sx =0. Hence T > 0 < S € GL(V).
Suppose that S > 0. Then \;(S) = \/A\(T), i = 1,...,n. Furthermore each eigenvector of S
is an eigenvector of T'. It is straightforward to show that S = P, where P is defined above. O
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Corollary 4.52 Let B € H,, (S(n,R)). Then B > 0 if and only there exists A €
H, (S(n,R)) such that B = A%. Furthermore B > 0 if and only if A is invertible. For
B > 0 there exists a unique A > 0 such that B = A%2. This A is denoted by B3,

Theorem 4.53 Let V be an IPS over F = C,R. Let x1,...,X, € V. Then the grammian

matrizc G(X1,...,Xy,) = ((X;,%,))} is a hermitian nonnegative definite matriz. (If F = R
then G(X1,...,Xyn) is real symmetric nonnegative definite.) G(X1,...,xn) > 0 if and only
X1, ..., Xy, are linearly independent. Furthermore for any integer k € [1,n — 1]

det G(x1,...,%xp) < det G(x1, ..., X)) det G(Xg41, ..., Xp)- (4.1)

Equality holds if and only if either det G(x1, ...,x;) det G(Xp41, ..., xn >=0 or (x;,%x;) =0
fori=1...,kand j=k+1,...n.

Proof. Clearly G(xy,...,x,) € H,,. If V is an IPS over R then G(x1,...,x,) € S(n,R).
Let a = (ay,...,a,) " € F". Then

n n
a*G(xy,...,X,)a = <Z a;X;, Zajxj> > 0.
i=1 j=1

Equality holds if and only if > | a;x; = 0. Hence G(x1,...,x,) > 0 and G(x1,...,x,,) > 0
if and only if xy,...,x, are linearly independent. In particular det G(xy,...,x,) > 0 and
det G(x1,...,x,,) > 0 if and only if X, ...,x,, are linearly independent.

We now prove the inequality (4.1). Assume first that the right-hand side of (4.1) is zero.
Then either xi,...,X; Or Xg11,...,X, are linearly dependent. Hence x,...,x, are linearly
dependent and det G = 0.

Assume now that the right-hand side of (4.1) is positive. Hence x1, ..., X; and Xg1, ..., Xp,
are linearly independent. If x1,...,x, are linearly dependent then det G = 0 and strict in-
equality holds in (4.1). Tt is left to show the inequality (4.1) and the equality case when
X1,...,X, are linearly independent. Perform the Gram-Schmidt algorithm on x,...,x,
as given in (4.1). Let S; = span(xi,....x;) for j = 1,...,n. Corollary 4.1 yields that
span(ey,...,€,_1) = Sp_1. Hence y, = x, — Z?;l bjx; for some by,....,b, € F. Let
G’ be the matrix obtained from G(xi,...,X,) by subtracting from the n-th row b; times
j-th row. Thus the last row of G’ is ({yn,X1)s s (¥n,%Xn)) = (0,...,0,[lyn|[?). Clearly
det G(x1,...,x,) = det G’. Expand det G’ by the last row to deduce

det G(x4, ..., Xp) = det G(Xi, oy Xpn_1) ||yn||? = ... =

n

det G(xi, .. xx) ] llwill® = (4.2)

i=k+1

detG(XZ‘,...,Xk) H diSt(Xi7Si,1)27 k=n-— 1,...,1.
i=k+1

Perform the Gram-Schmidt process on X1, ..., X, to obtain the orthogonal set of vectors
Vki1, - Yn such that

S = span(Xg41, ..., X;j) = SPA(Yit1s -, Yj)s dist(xj,gj,l) =y,

for j = k+1,...,n, where Sp = {b0}. Use (4.2) to deduce that det G(Xpp1,...,Xn) =
H;’l:kJrl I|7;]1%. As S;—1 C Sj_1 for j > k it follows that

lly;]] = dist(x;,5;_1) < dist(xj,S;_1) = ||9;ll, 5=k +1,...,n.

This shows (4.1). Assume now equality holds in (4.1). Then ||y;|| = ||y;|| for j =
k+1,...,n. Since qu CSj—1andy; —x; € S'j,l C S;—1 it follows that dist(x;,5;-1) =
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dist(y;,5;-1) = ||y;||- Hence ||§;|| = dist(y;,S;j_1). Part (h) of Problem 4.5 yields that ¥,
is orthogonal on S;_;. In particular each y; is orthogonal to Sy for j =k +1,...,n. Hence
xj L Spforj=k+1,..,n, ie <xj,x; >=0for j >k andi < k. Clearly, if the last
condition holds then det G(x1, ..., X, ) = det G(X1, ..., Xx) det G(Xk11, ..., Xp)- O

det G(x1, ..., X;) has the following geometric meaning. Consider a parallelepiped IT in 'V
spanned by xi, ..., X, starting from the origin b0. That is IT is a convex hull spanned by the
vectors b0 and ), ¢ x; for all nonempty subsets S C {1,...,n}. Then \/det G(xy,...,X,)
is the n-volume of II. The inequality (4.1) and equalities (4.2) are ”obvious” from this
geometrical point of view.

Corollary 4.54 Let 0 < B = (b;;)7 € H,,. Then
det B < det(b;;)} det(bij),y, fork=1,..,n— 1.

For a fixed k equality holds if and only if either the right-hand side of the above inequality
is zero or by; =0 fori=1,...,kand j=k+1,...,n.

Proof. From Corollary 4.52 it follows that B = X2 for some X € H,,. Let xy, ..., x,, € C"
be the n-columns of X7 = (x1,...,X,). Let < x,y >= y*x. Since X € H,, we deduce that
B = G(X1,y...yXp)- O

Theorem 4.55 Let V be an n-dimensional IPS. Let T € S. TFAE:
(a) T > 0.
(b) Let g1, ...,gn be a basis of V. Then det((T'g;, g;))5 =, >0, k=1,...,n.

Proof. (a) = (b). According to Proposition 4.51 T = S? for some S € S(V) N GL(V).

Then (T'g;, g;) = (Sgi, Sg;). Hence det((T'g;, g;))F,—, = det G(Sgy, ..., Sgk). Since S is
invertible and g, ..., g linearly independent it follows that Sg, ..., Sgr are linearly inde-
pendent. Theorem 4.1 implies that det G(Sgy,...,Sgk) >0 for k =1,...,n.
(b) = (a). The proof is by induction on n. For n = 1 (a) is obvious. Assume that (a)
holds for n = m — 1. Let U := span(gi,...,gn—1) and @ := Q(T,U). Then there exists
P € S(U) such that (Px,y) = Q(x,y) = (I'x,y) for any x,y € U. By induction P > 0.
Corollary 4.36 yields that A,—1(T) > A,—1(P) > 0. Hence T has at least n — 1 positive
cigenvalues. Let ey, ..., e, be given by (4.3). Then det((Te;, e;));";—; = [[;=1 \i(T) > 0. Let
A = (apq)? € GL(n,C) be the transformation matrix from the basis g1, ..., g, to e1, ..., ey,
ie.

n
g = Zamep, i1=1,..,n.
p=1
It is straightforward to show that

(Tgi,gj))1 = AT((Tep,eq»A =

(4.3)
det((Tgi, ;)7 = det((Tei, e;))7| det A = |det AP* [T Xi(T).
i=1
Since det((T'g;, g;))7 > 0 and \(T) > ... > A\p—1(T') > 0 it follows that A\, (T") > 0. O

Corollary 4.56 Let B = (b;)? € H,,. Then B > 0 if and only if det(b;;)¥ > 0 for
k=1,...,n.

The following result is straightforward (see Problem 4.5:
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Proposition 4.57 Let V be a finite dimensional IPS over F = R,C with the inner
product {-,-). Assume that T € S(V). Then T > 0 if and only if (x,y) := (Tx,y) is
an inner product on V. Vice versa any inner product (-,-) : V.x V. — R is of the form
(x,y) = (Tx,y) for a unique self-adjoint positive definite operator T € Hom(V).

Example 4.58 Each 0 < B € H,, induces and inner product on C": (x,y) = y*Bx.
Each 0 < B € S(n,R) induces and inner product on R": (x,y) =y’ Bx. Furthermore any
inner product on C"™ or R™ is of the above form. In particular, the standard inner products
on C" and R™ are induced by the identity matrixz I.

Definition 4.59 Let V be a finite dimensional IPS with the inner product (-,-). Let
S € Hom(V). Then S is called symmetrizable if there exists an inner product (-,-) on 'V
such that S is self-adjoint with respect to (-,-).

Definition 4.60 Let A € C"*" and assume that \1,..., A\, are the eigenvalues of A
counted with their multiplicities, i.e. det(zI — A) =[]\, (z — X\;). Let 14 (A),10(A),—(A)
be the number of the eigenvalues of A satisfying ®X; > 0,RA; = 0,RN\; < 0 respec-
tively. (Here Rz stands for the real part of the complex number z € C.) Then ((A) =
(t4(A),10(A),t—(A)) is called the inertia of A.

Note that for A € H,, the inertia of A coincides with the inertia defined in Definition
4.38. Furthermore A is stable if and only if ¢« (A) = n, i.e. 14(A) = 1o(A) = 0.

Theorem 4.61 Let A € C"*"™ and B € H,,. Then C := A*B+ BA € H,. IfC >0
then A, B are nonsingular and (A) = «(B). In particular, 19(A) =0, i.e. A does not have
etgenvalues on the imaginary axis.

Let A € C™*™. If A is stable then for any given C € H,, the linear system A*B+BA = C,
in unknown matriz B € H,,, has a unique solution B.

Moreover any A € C"*™ is stable if an only if the system A*B + BA = I has a unique
solution B € H,, which is negative definite, i.e. B < 0. (Lyapunov criteria of stability.)

Proof. As B is hermitian (A*B + BA)* = B*A+ A*B* = BA+ A*B, ie. Cis
hermitian. Suppose that Bx = 0. Then x*B = 0" and x*Cx = x*40T + 0T Ax = 0. If
C > 0 we deduce that x = 0, i.e. B is nonsingular. Hence B? > 0. Suppose next that Ax =
Ax, and A is purely imaginary, i.e. A = —\. Then x*A* = (Ax)* = (Ax)* = Ax* = —\x*.
Hence

x*Cx = x*A*Bx + x*BAx = —\x*Bx + Ax*Bx = 0.

If C > 0 we deduce that x = 0, i.e. to(A) = 0. Let t € [0, 1] and consider A(t) = (1—t) A+t B.
Then C(t) := A(t)*B+ BA(t) = (1—t)C +2tB2%. If C > 0 then C(¢) > 0 for each t € [0, 1].
Thus ig(A(t)) = 0 for all ¢ € [0,1]. The eigenvalues of A(t) are continuous functions of
t € [0,1]. Since ig(A(t) = 0 it follows that iy (A(t)) and i_(A(t)) are constant integers, i.e.
they do not depend on t. Hence t(A(t)) = ¢(A(0)) = t(A) = t(A(1)) = «(B).

Assume now that A € C"*™ stable. Fix any C' € H,, and consider the equation

A*B+BA=C, C=X++vV-1Y, X €S,(R),Y € AS(n,R). (4.4)

2 n(n+1)
2

This is a system of n? real valued equations in n? real unknowns: the entries of

X and the @ entries of Y. We claim that this system has a unique solution. To
show that it is enough to show that for C' = 0 the system (4.4) has a unique solution
B = 0. Assume to the contrary that the system A*B + BA* = 0 has a nontrivial solution
0 # B € H,. Then B = U diag(D,0)U* where D € S,,(R) is a diagonal invertible matrix
and 0 € S;,_,,(R) and m € [1,n]. Let E = UAU*. Then E*diag(D,0) + diag(D,0)E = 0.
Ey1 En
E2 Eg
E12 = E21 = O, ie. B = diag(Eu,Egg), and E’le = —DE11. So Eikl = —DEllDil. The

Write E as a block matrix } Then the matrix equation for E implies that

43



eigenvalues —DFEj; D~1 are the negative eigenvalues of E11, while the eigenvalues of E}; are
the conjugate of the eigenvalues of Fy1. Hence each eigenvalue of E7; is minus a conjugate
of another eigenvalue of E;. This is impossible if A is stable, since all the eigenvalues of A,
and hence of Fq; have negative real parts. Hence B = 0, and the system (4.4) has a unique
solution B = H,, for any C € H,,.

Let A € C**™. Assume first that the system (4.4) for C = I,, has a unique solution
B € H,,. The first part of the theorem shows that A, B are nonsingular and ¢(A) = «(B).
If B < 0 we deduce that ¢_(A) =n, i.e. A is stable.

Suppose now that A is stable, i.e. t_(A) = n. The second part of the theorem implies
that the system (4.4) has a unique solution B € H,, for C = I,,. The first part of the
theorem implies that ¢(B) = ¢(A). Hence B < 0. O

Problems
(4.5)

Show Proposition 4.57.

4.7 Singular Value Decomposition

Let U,V, be finite dimensional IPS over F = R, C, with the inner products (-, ")u, (,")v
respectively. Let uy, ..., u,, and vy, ..., v, be bases in U and V respectively. Let T : V — U

be a linear operator. In these bases T is represented by a matrix A € F"*". Let T* : U* =
U—-V*=V. Then T*T : V — V and TT* : U — U are selfadjoint operators. As

(T*Tv,viv = (Tv,Tv)y >0, (TT'u,u)y = (T"u, T u)y >0

it follows that T*T > 0,TT* > 0. Let

T*TCZ‘ = )\i(T*T)CZ‘, <Ci, Ck>V = §ika ’i, k= 1, ., n, (41)
M(T*T) > ... > M\, (T*T) > 0,
TT*dJ = )\j(TT*)dJ, <dj7dl>U = 5_7'[, ],l = 1, ey M, (42)

A(TT*) > .. > Ao (TT) > 0,

Proposition 4.62 Let U, V, be finite dimensional IPS over F = R,C. Let T : V —
U. Then rank T = rank T* = rank T*T = rank TT* = r. Furthermore the selfadjoint
nonnegative definite operators T*T and TT* have exactly r positive eigenvalues, and

X(T*T) = X\(TT*) >0, i=1,..rank T (4.3)

Moreover for i € [1,7] Tc; and T*d; are eigenvectors of TT* and T*T corresponding to
the eigenvalue \i(TT*) = \y(T*T) respectively. Furthermore if cy,...,c, satisfy (4.1) then
d; .= Hgizl\’z =1,...,r satisfy (4.2) for i =1,...,r. Similar result holds for di, ..., d,.

Proof. Clearly Tx =0 <— (Tx,Tx) =0 <= T*Tx =0. Hence
rank T*T = rank T' = rank T = rank TT" = r.
Thus T*T and TT* have exactly r positive eigenvalues. Let ¢ € [1,7]. Then T*T¢; # 0.
Hence Tc; # 0. (4.1) yields that TT*(Tc;) = A\(T*T)(T¢c;). Similarly T*T(T*d;) =
Ai(TT*)(T*d;) # 0. Hence (4.3) holds. Assume that cy,...,c, satisfy (4.1). Let dy,...,d,
be defined as above. By the definition ||d;|| = 1,i =1, ...,7. Let 1 <4 < j <r. Then
0= (ci,¢;) = M(T*T){ci, ¢5) = (T*Tei,¢5) = (Tey, Tey) = (dy,d;) = 0.

Hence &1, e d, is an orthonormal system. O
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Let

0i(T) =/ N(T*T) fori=1,..r, o;(T)=0fori>r,
(4.4)
o) (1) i= (01(T), (1) €RY, peN.

Then o;(T) = 0;(T*),i = 1,...,min(m,n) are called the singular values of T" and T* re-
spectively. Note that the singular values are arranged in a decreasing order. The positive
singular values are called principal singular values of 7" and T™ respectively. Note that

||[Tci||? = (Tci, Te;) = (T*Tci, c;) = \(T*T) = 07 =
||TC1|| = 0y, 1= 1, N,

IT*d,||* = (T*d;, T*d;) = (TT*d;,d;) = \(TT*) = 05 =
||TdJ|| = Uj, ] = 1,...,m.

Let cq,...c, be an orthonormal basis of V satisfying (4.1). Choose an orthonormal ba-
sis dy,...,d,, as follows. Set d; := :Z—c,z = 1,...,7. Then complete the orthonormal
set {dy,...,d,} to an orthonormal basis of U. Since span(dy, ...,d,) is spanned by all
eigenvectors of T'T™* corresponding to nonzero eigenvalues of TT* it follows that ker T* =
span(d;41, .., d;,). Hence (4.2) holds. In these orthonormal bases of U and V the operators
T and T™ represented quite simply:

Tc;=o0;d;, i=1,....,n, whered; =0 for i > m,
(4.5)
T*d; =ojcj, j=1,..,m, wherec; =0forj > n.
Let
¥ = (sij)i 521, sij = 0fori # j, sy = oy fori = 1, ..., min(m.n). (4.6)

In the case m # n we call ¥ a quasi diagonal matrix with the diagonal o1, ..., Owmin(m,n)-
Then in the bases [dy, ...,d;,] and [e1,...,¢,] T and T* represented by the matrices 3 and
YT respectively.

Corollary 4.63 Let [uy,..., U], [V1,...,Vs] be orthonormal bases in the vector spaces
U,V over F = R, C respectively. Then T and T* are presented by the matrices A € Fm*"
and A* € F™*™ respectively. Let U € U(m) and V € U(n) be the unitary matrices rep-
resenting the change of base [dy, ..., d,] to [u1,...,u,] and [c1,...,c,] to [V1,...,v,] respec-
tively. (If F =R then U and V are orthogonal matrices.) Then

A=UXV* € F™" U e U(m), Ve Un). (4.7)

Proof. By the definition Tv; = 331" a;ju;. Let U = (uip)i—y, V = (vjq)} 4=1- Then

n n m n m m
TCq = E ’quTVj = E Vjq E AU = E Vjq E Q5 E uipdp~
j=1 j=1 i=1 j=1 i=1 p=1

Use the first equality of (4.5) to deduce that U*AV = ¥. O

Definition 4.64 (4.7) is called the singular value decomposition (SVD) of A.

Proposition 4.65 Let F = R, C and denote by Ry x(F) C F™*™ the set of all matrices
of rank k € [1,min(m,n)] at most. Then A € Rynx(F) if and only if A can be expressed
as a sum of at most k matrices of rank 1. Furthermore R i (F) is a variety in M, (F)
given by the polynomial conditions: Each (k+ 1) x (k4 1) minor of A is equal to zero.
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For the proof see Problem 4.20
Theorem 4.66 For F =R, C and A = (a;5) € F™*" the following conditions hold:

|A||F := Vir A*A = Vir AA* =

rank A
Z oi(A)2. (4.8)

[|All2 == max [|Ax||2 = 01(A). (4.9)
x€F™,||x]|2=1
i A— Blly = A k=1,.. kA-1. 4.1
e I |2 = ort1(A), ;- TALL (4.10)

0i(A) = 0i((iy5,)pt g=1) = Tit(m—m")+(n—nr)(A);
(4.11)
m €[l,m], n €[l,n], 1 <iy < ... <ipy <m, 1<j; < ... < jpr <.

Proof. The proof of (4.21) is left a Problem 4.21. We now show the equality in (4.9).
View A as an operator A : R® — R™. From the definition of ||A||2 it follows

2 XA Ax . 9
JAIE = a2 < (474) = 1 (47,

which proves (4.9).
We now prove (4.10). In the SVD decomposition of A (4.7) assume that U = (uy, ..., U
and V = (vq,...,vp). Then (4.7) is equivalent to the following representation of A:

r
A= Zoiuivf, ug,..,u, €ER™, vy, v, €R", uju; =vv; =65, 4,5 =1,...,7, (412)
=1
where r = rank A. Let B = Zle 0;u; Vi € Ry k- Then in view of (4.9)

)
1A= Blla =Y oiuvi|l2 = oxs1.
k+1

Let B € Ron,k. To show (4.10) it is enough to show that ||A — B||2 > ok41. Let
W:={xeR": Bx=0}
Then codim W < k. Furthermore
||A— B3> max (A-B)x|]*= max x*A*"Ax > \11(A*A) = 074,

||XH2=1»X€W|| [1x[l2=1,xeW
where the last inequality follows from the min-max characterization of Agy1(A*A).
Let C' = (aij,); gy Then C*C is an a principal submatrix of A*A of dimension n'. The
interlacing inequalities between the eigenvalues of A*A and C*C yields (4.11) for m’ = m.
Let D = (aj,j, )y .21 Then DD* is a principle submatrix of CC*. Use the interlacing

p,g=1*
properties of the eigenvalues of CC* and DD* to deduce (4.11). O

Corollary 4.67 Let U and 'V be finite dimensional IPS over F =R, C. LetT :V — U
be a linear operator. Then

IT||p := Vtr T*T = Vtr TT* = (4.13)
[IT|]2:= max |[|Tx]||2 = 01(4). (4.14)
x€EV,||x|[2=1
i T - = T), k=1,..,rankT —1. 4.1
QeL(V,Irjn)l,?ank ng” Qll2 = o2(T), o Al (4.15)
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Theorem 4.68 Let F =R, C and assume that A € M, (F). Define

H(A) = [ J ] € Hyo (E). (4.16)

Then

)\Z(H(A)) = O'Z'(A), )\m+n+17i(H(A)) = —O'i(A), 1= ]., ...,rank A7
(4.17)
Nj(H(A)) =0, j=rank A+1,...,n+m — rank A.

View A as an operator A : F" — F™. Choose orthonormal bases [dy, ...,d,,] and [cq, ..., ¢,]
in F™ and F™ respectively and in Proposition 4.62 respectively. Then

0 Alld]_ d; 0 Al[d ] d;
R R b R B | R R e
1=1,...,rank A, (4.18)
ker H(A) = span((d;,,0)", ..., (d},,0)*,(0,¢c;y1)*,...,(0,¢;,)"), r = rank A.

Proof. It is straightforward to show the equalities (4.18). Since all the eigenvectors
appearing in (4.18) are linearly independent we deduce (4.17). O

Theorem 4.69 Let A,B € C™*"™, and assume that 01(A) > g2(A) > ... > 0,01(B) >
o2(B) > ... > 0, where 0;(A) = 0 and 0;(B) = 0 for i > rank A and j > rank B
respectively. Then

- Zal 0i(B) S Rtr AB* =Rtr A"B < Y 0i(A)oi(B). (4.19)
1=1

Equality holds if the A and B have common left and the right eigenvectors x1,...,Xy, and
Vi,---,Yn corresponding to o1(A),... and o1(B), ..., respectively.

Proof. Note that tr AB* = tr B*A and Rtr AB* = Rtr(AB*)* = Rtr BA*. Ob-
serve next that tr H(A)H(B) = 2R tr AB*. Combine Theorems 4.68 and 4.44 to deduce the
theorem. O

Corollary 4.70 For A€ C™*" mingeg,, . . ||A— Bl = > it 1 0i(A)>.
Proof. Let B € C™*". Then
||A—=B||% = tr(A—B)(A*—B*) = ||A||%+]||B||2—2R tr AB* = Zaz 210,(B)*-2Rtr AB*

Assume now that B € R, 5. Then rank B < k and denote by z; > ...z, > 0 the
nonzero singular values of B. Use Theorem 4.69 to deduce that

n k
1A - B|\F>|\A||F+Zx —2201 vi= Y oA+ (wi— 0i(A))’
=1 i=k+1 =1
> Y oi(A)?
i=k+1

Let A =3"", 0;(A)u;v] is the singular decomposition of A. Choose B = Zle oi(A)yu; vy €

R,k to see that [|[A — Bl[% =27, 0i(A)>. O

Define by RY} (= RU NRY. Then D C R}  is called a strong Schur set if for any
x,y € R} ,x Xy we have the implicationy € D = x € D.
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Theorem 4.71 Letp € N and D C ]Rp\ NRY be a regular convex strong Schur domain.
Fiz m,n € N and let 0, (D) := {A € F™*" : 04,)(A) € D}. Let h: D — R be a convex
and strongly Schur’s order preserving on D. Let f: o, :— R be given as h oo, . Then f
is a convex function.

See Problem 77.

Corollary 4.72 Let F = R,C, m,n,p € N, g € [1,00) and wi > wg > ... > w, > 0.
Then the following function

P
FrE SR, f(A) = (Y wioi(A)1)s, AeFmXT
=1

is a convex function.
See Problem 4.22

Theorem 4.73 Let U be IPS over C. Let T : U — U be a linear operator. Then
o(T) <||T||2. Furthermore equality holds if and only if the following conditions hold.
(a) T and T* have a common eigenvector X such that Tx = \x, T*x = Ax and |\| = p(T).
(b) Let Ty be the restriction of T to the invariant subspace V := span(x)*. Then ||T1||2 <

p(T).

Proof. Let Tx = Ax where ||x|| = 1 and p(T) = |A|. Recall ||T||a = o1(T), where
o1(T)? = A\ (T*T) is the maximal eigenvalue of the self-adjoint operator T*T. The max-
imum characterization of A\;(T*T) yields that |A\]? = (T'x,Tx) = (T*Tx,x) < \(T*T) =
T3 Hence p(T) < |IT>.

Assume now that p(T) = ||T||]2. p(T) = 0 then ||T||z2 = 0 = T = 0, and theorem
holds trivially n this case. Assume that p(T) > 0. Hence the eigenvector x; := x is also
the eigenvector of T*T corresponding to A1 (T*T) = |A|>. Hence |\|*x = T*Tx = T*()\x),
which implies that T*x = Ax. Let U = span(x)* be the orthogonal complement of span(x).
Since T'span(x) = span(x) it follows that 7*U C U. Similarly, since T*span(x) = span(x)
TU C U. Thus V = span(x) @ U and span(x), U are invariant subspaces of T and T*.
Hence span(x), U are invariant subspaces of T*T and TT*. Let T; be the restriction of T to
U. Then T T is the restriction of T*T. Therefore ||T1|3 = A\ (Ty *T1) > M\ (T*T) = ||T]3.
This establishes the second part of theorem, labeled (a) and (b).

The above result imply that the conditions (a) and (b) of the theorem yield the equality
o(T) = |IT> 0

Corollary 4.74 Let U be an n-dimensional IPS over C. Let T : U — U be a linear
operator. Denote by (N(T)| = (|[A1(T)], ..., [Mu(T)|) " the absolute eigenvalues of T, (counting
with their multiplicities), arranged in a decreasing order. Then |N(T)| = (o1(T),...,cn(T)) T
if and only if T is a normal operator.

Problems
(4.20)
Prove Proposition 4.65. (Use SVD to prove the nontrivial part of the Proposition.)
(4.21)
Prove the equalities in (4.8).
(4.22)

a. Prove Corollary 4.72

b. Recall the definition of a norm on a vector space over F = R, C. Show that the function
f defined in Corollary 4.72 is a norm. For p = min(m,n) and w; = ... = w, = 1 this norm
is called the ¢ — Schatten norm.

48



1. Let A € S,,(R) and assume the A = QTAQ, where Q@ € O(n,R) and A = diag(ay, ..., ay)
is a diagonal matrix, where |a1]| > ... > |ay| > 0.

(a) Find the SVD of A.

(b) Show that o1(A) = max(A1(A4), [A\(A)]), where A1 (A) > ... > A\, (A) are the n
eigenvalues of A arranged in a decreasing order.

2. Let k,m,n be a positive integers such that k¥ < min(m,n). Show that the function
f:R™*™:[0,00) given by f(A) = Zle 0;(A) is a convex function on R™*".
4.8 Moore-Penrose generalized inverse
Let A € C™*™. Then (4.12) is called the reduced SVD of A. It can be written as

A=UZX, V' r=rank A, %, :=diag(o1(A4),...,0.(A4)) € S, (R),
(4.23)
U-=[u,...,u,] €eC™" V., =[vq,...,v,.] eCY" U, =V:V,. =1I,,.

Recall that

AA*LIZ‘ = ai(A)Qui,A*Avi = O'i(A)QVi,Vi = ﬁA*ui, u; = ﬁAV“’L = 17 e, T
Then
Al =V, B U e Cm (4.24)

is the Moore-Penrose generalized inverse of A. If A € R™*™ then we assume that U € R™*"
and V € R™"*" ie. U,V are real values matrices over the real numbers R.

Theorem 4.75 Let A € C™*"™ matriz. Then the Moore-Penrose generalized inverse
At € C"*™ satisfies the following properties.

1. rank A = rank AT,
2. ATAAT = AT, AATA = A, A*AAT = ATAA* = A*.

3. AYA and AAY are Hermitian nonnegative definite idempotent matrices, i.e. (ATA)? =
AYA and (AAT)? = AAT, having the same rank as A.

4. The least square solution of Ax = b, i.e. the solution of the system A*Ax = A*Db,
has a solution y = A'b. This solution has the minimal norm ||y||, for all possible
solutions of A*Ax = A*b.

5. If rank A = n then AT = (A*A)"YA*. In particular, if A € C"*™ is invertible then
At = A1,

Proposition 4.76 Let E € C™*™ G € C™*". Then rank EG < min(rank F,rank G).
If l = m and E is invertible then rank EG = rank G. If m = n and G is invertible then
rank EG = rank G.

Proof. Let eq,...,e,, € Cl,g1,...,8, € C™ be the columns of E and G respec-
tively. Then rank £ = dimspan(es,...,e;). Observe that EG = [Eg,..., Eg,] € C*".
Clearly Eg; is a linear combination of the columns of E. Hence Eg; € span(ey,...,€;).
Therefore span(Eg, ..., Eg,) C span(eq,...,e;), which implies that rank FG < rank E.
Note that (EG)T = GTET. Hence rank EG = rank (EG)T < rank GT = rank G. Thus
rank EG < min(rank F,rank G). Suppose E is invertible. Then rank EG < rank G =
rank E~!(EG) < rank EG. Hence rank EG = rank G. Similarly rank EG = rank E if G is
invertible. O

Proof of Theorem 4.75.
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1. Proposition 4.76 yields that rank At = rank VTZr_lUT* < rank ZT_lUT* < rank Er_l =
r = rank A. Since ¥, = V,* ATU, Proposition 4.76 yields that rank AT > rank -1 =r.
Hence rank A = rank Af.

2. AAY = (U2, V) (V,S71UF) = U, 2, 571U = U U Hence AATA = (U, U}) (U2, V) =
U.XV* = A. Hence A*AAT = (V,2,.U)(U,U}) = A*. Similarly ATA = V,.V* and
ATAAT = AT ATAA* = A~

3. Since AAT = U,U* we deduce that (AA")* = (U.U*)* = (U})*U; = AAT, i.e. AATis
Hermitian. Next (AA")2 = (U, U})? = (U U})(U,U}) = (UU;) = AAT, i.e. AAT is
idempotent. Hence AAT is nonnegative definite. As AAT = U,.I.U}, the arguments of
part 1 yield that rank AAT = r. Similar arguments apply to ATA = V,.V*.

4. Since A*AAT = A* it follows that A*A(ATb) = A*b, i.e. y = A'b is a least square
solution. It is left to show that if A*Ax = A*b then ||x|| > ||A'b]|| and equality holds
if and only if x = Afb.

We now consider the system A*Ax = A*b. To analyze this system we use the full
form of SVD given in (4.7). It is equivalent to (VXTU*)(ULV*)x = VXTU*b. Mul-
tiplying by V* we obtain the system X7 %(V*x) = XT(U*b). Let z = (21,...,2,)T =

V*x, ¢ = (c1,...,¢cm)T := U*b. Note that z*z = x*VVx = x*x, i.e. ||z|| = ||x]|.
After these substitutions the least square system in zp,...,z, variables is given in
the form o;(A)%2z; = o;(A)e; for i = 1,...,n. Since 0;(A) = 0 for i > r we ob-
tain that z; = ﬁq for « = 1,...,r while z,41,...,2, are free variables. Thus
z]|> =1, ﬁ + >0 11 |zi|?. Hence the least square solution with the minimal
length ||z|| is the solution with z; = 0 for ¢ = r 4+ 1,...,n. This solution corresponds
the x = A'b.

5. Since rank A*A = rank A = n it follows that A*A is an invertible matrix. Hence the
least square solution is unique and is given by x = (A*A)~*A*b. Thus for each b
(A*A)~1A*b = A'b, hence AT = (A*A)~1A*.

If A is an n X n matrix and is invertible it follows that (A*A)~1A* = A=1(A*)"1A* =
AL ]

Problems

1. P € C"*" is called a projection if P? = P. Show that P is a projection if and only if
the following two conditions are satisfied:
e Each eigenvalue of P is either 0 or 1.
e P is a diagonable matrix.
2. P € R™" is called an orthogonal projection if P is a projection and a symmetric
matrix. Let V. C R"™ be the subspace spanned by the columns of P. Show that for

any a € R"b € V |la— b|| > ||]a — Pal| and equality holds if and only if b = Pa.
That is, Pa is the orthogonal projection of a on the column space of P.

3. Let A € R™*™ and assume that the SVD of A is given by (4.7), where U € O(m,R),V €
O(n,R).

(a) What is the SVD of AT?
(b) Show that (A7) = (ANT.
(c) Suppose that B € R™*™, Is it true that (BA)t = ATB? Justify!
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4.9 Rank-constrained matrix approximations

Let A € C™*™ and assume that A = UaX4V; be the SVD of A given in (4.7). Let
Ug =[u; ug ...upy),Va = [v1 v2 ...v,] be the representations of U,V in terms of their
m,n columns respectively. Then

rank A rank A
PA,L = Z 111'1,12< S mem, PA,R = Z ViV: S (Cnxn’ (425)

i=1 i=1

are the orthogonal projections on the range of A and A* respectively. Denote by Ay :=
Zle oi(A)u v € C™*" for k = 1,...,rank A. For k > rank A we define A := A (=
Arank a)- For 1 < k < rank A, the matrix Ay is uniquely defined if and only if o (A) >
Uk+1(A)~

Theorem 4.77 Let A € C™*" B € C™*P C € C?*" be given. Then X = BT(PB7LAPC,R);€C'T
is a solution to the minimal problem

min ||A — BXC||F, (4.26)
XeR(p,q,k)

having the minimal || X ||p. This solution is unique if and only if either k > rank Pp 1 APc R
or1 S k < rank PB,LAPC,R and Uk(PB,LAPC,R) > O'k—l-l(PB,LAPC,R)'

Proof. Recall that the Frobenius norm is invariant under the multiplication from the left
and the right by the corresponding unitary matrices. Hence ||A—BXC||r = ||[A1—X5Y Zc||,
where A := U5AVg, X := V4 XUq. Clearly, X and X have the same rank and the same
FrobNenius norm. Thus it is enough to consider the minimal problem min, RER(poa,k) ||14~1 —
YpXXc||r. Let s = rank B,t = rank B. Clearly if B or C is a zero matrix, then X = 0
is the solution to the minimal problem (4.26). In this case either Pg  or Pc g are zero
matrices, and the theorem holds trivially in this case.

It is left to consider the case 1 < s,1 < t. Define By := diag(o1(B),...,05(B)) €
%5, 0y = diag(a1(C),...,0,(C)) € C**. Partition A and X to 2 x 2 block matrices
A= [Ay]7 =, and X = [Xi;]7 j=1, where Aj1, X1; € C***. (For certain values of s and t,
we may have to partition A or X to less than 2 x 2 block matrices.) Observe next that
Z:=YpY¥c = [Zz‘j]?,j:p where Z11 = B1Y1:1C1 and all other blocks Z;; are zero matrices.
Hence

1A= Z||% = [|[An = Zullz+ > AyllE = A0 — (Awellz+ Y 1Ayl
2<itj<d 2<it <4

Thus X = [Xij]?,j:p where X1 = Bl_l(All)kal and X;; = 0 for all (¢,7) # (1,1)
is a solution miny ¢cr, 01 ||[A — £pX¥¢||r with the minimal Frobenius form. This
solution is unique if and only if the solution Z3; = (A11)r is the unique solution to
ming,, er(st,k) |41 — Z11||r. This happens if either & > rank A;; or 1 <k < rank A;; and

o1(A11) > opp1(Aqr). A straightforward calculation shows that X = ZE(PEB,LAPZC,RMETC-
This shows that X = BT(Pp APc r)xCT is a solution of (4.26) with the minimal Frobe-
nius norm. This solution is unique if and only if either £ > rank Pg APc g or 1 < k <
rank PB,LAPC,R and Jk(PB,LAPC,R) > O—kJrl(PB’LAPC’R). O

4.10 Generalized Singular Value Decomposition

See [4] for more details on this section.

Proposition 4.78 Let 0 < M € S,,,(R),0 < N € S,(R) be positive definite symmetric
matrices. Let (X, y)n = yI M?x, (u,v)y = vIN?u, for x,y € R™ u,v € RY, be inner
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products in R™ R"™ respectively. Let A € R™*"™ and view A as a linear operator A : R™ —

R™ x — Ax. Denote by A : R™ — R™ the adjoint operator with respect to the inner
products {-,-)pr, (-,-)n. That is (Au,y)ar = (u, A°y)y. Then A° = N—2AT M2,

Proof. Clearly (Au,y)y =y M?Au, (u, A%y) Ny = (A%)T N?u. Hence (A°)TN?% =
M?A. Take the transpose of this identity and divide by N~2 from the left to deduce
A¢ = N2AT M2, O

Theorem 4.79 Let the assumptions of Proposition 4.78 hold. Then the generalized
singular value decomposition (GSVD) of A is

A=UxVT % = diag(oy,...,) ER™ ", 01 > ...0, >0, 0; =0 fori >r:=rank A,(4.27)
U € GL(m,R),V € GL(n,R),UT M?U = I,,, VIN72V = I,,..

Proof. Identify R™ and R™, with the inner products (-, -} 5, (-, -) asr, with IPS V, U respec-
tively. Identify A, A® with the linear operators T: V — VT : U — V respectively. Apply
Proposition 4.62. Then vq,...,v, and uy,...,u,, are orthonormal sets of eigenvectors of

2 2.

A°A and AAC respectively, corresponding to the eigenvalues 0%, ...,02 and 0%,...,02,:

N72ATM?Av; = o?v;, V;‘-FNQVZ' =05, ,,j=1,...,n,V = N2[vi ... v,
ANT?ATM?a; = 07wy, u) MPa; =65, i,j=1,...,m,U =[u1 ... uy), (4.28)

?
1
P = —

u Av;,, i=1,...,7r =rank A.

(2
To justify the decomposition A = UXVT, choose a vector v € R™ and write it up
as v.= > vv;. Then Av = >  Av,. Since o; = 0 for i > r it follows that
Av;, = 0. Also Av; = o;u; for i = 1,...,r. Hence Av = Z:Zl v;o;u;. Compare that
with USVTv; = US[v; ... v,,]T N2v;, which us equal to o;u; if i < r and 0 if i > 7. Hence
A=UxVT. O

Corollary 4.80 Let the assumptions and the notations of Theorem 4.79 hold. Then for
ke[l,r]

k

Ap =UpSh V! =) oiuvi N?, U, e R™F, V, e RV, (4.29)
=1

Yy = diag(oy,...,00), Ul M?Uy = VIN 2V} = I, Uy, = [uy,...,ug), Vi = N?[vy,...,v}]

is the best rank k-approximation to A in the Frobenius and the operator norms with respect
to the inner products (-, ), (-, )Ny on R™ R™ respectively.

Theorem 4.81 Let A € R™*" and B € R™"™. Then there exists a generalized (com-
mon) singular value decomposition of A and B, named GSVD, of the form

A=U3.(AVE, B=W,2.(B)V/T,
Y. (A) = diag(o1(A),...,0.(4)), X.(B)=diag(o1(B),...,0.(B)),
0i(A)? +0y(B)? =1, fori=1,...,r, r:=rank [AT BT] (4.30)
U, =wrw, =VIN2V, =I,.
Let V. C R™ be the subspace spanned by the columns of AT and BT. Then 0 < N € S, (R) is
any positive definite matriz such that NV =V and N?|V = AT A+ BT B|V. Furthermore,
the GSVD of A and B is obtained as follows. Let P:= AT A+ BT B. Thenrank P = r. Let

P:=Q,2Qr, QTQ, =1,,Q, == [a1 ... q,],Q, := diag(v/M,..., V),  (4.31)
Pqi:)\iqi,q?qi:5ij,i,j:1,...,n,)\12...2)\T>0:)\T+1:...:)\n,
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be the spectral decomposition of P. Define
Ca:=0'QTATAQ,Q, COp:=0'Q'B"BQ, Q' € R™".

Then Cy + Cp = I,. Let Cyp = RY,(A)?RT,R € R™" RTR = I, be the spectral de-
composition of Ca. Then Cp = RX,.(B)2RT is the spectral decomposition of Cp. Fur-
thermore V. = @Q,.Q.R. The nonzero orthonormal columns of U, and W, correspond-
ing to positive singular values 0;(A) and o;(B) are uniquely determined by the equalities
U:Sn(A) = AQ. Q'R and W, X,.(B) = BQ,Q'R. Other columns of U, and W,. is any
set of orthonormal vectors in R™ and R! respectively, which are orthogonal to the previously
determined columns of U, and W, respectively.

Proof. We first prove the identities (4.30). Assume that Q,Q 'R = [vi,...,v,].
Clearly, range P = span(qy,...,q,) = span(vy,...,v,), and range (A7), range (BT) C
range P. Hence ker P = span(uy,...,u,)* C ker A, ker P C ker B.

Let U, = [u; ... u,] € R™*". From the equality U,X,(A) = AQ,Q 'R we deduce that
Av; = o;u; for i = 1,.... The equality %, (A)UIU, %, (4) = (AQ. Q2 'R)T(AQ,.Q'R) =
¥,.(A)? implies that the columns of U,. corresponding to positive o;(A) form an orthonormal
system. Since V = Q,,.R we obtain VT Q,Q 'R = I,.. Hence U,%,.(A)VTv; = o;(A)u;
fori=1,...,r. Therefore A = U,%,.(A)V,T. Similarly B = W,.3,.(A)V,T.

From the definitions of P,Q,,Ca,Cp it follows that Cy + Cp = I.. Hence ¥;(A4)? +
%,.(B)? = I,.. Other claims of the theorem follow straightforward. O

We now discuss a numerical example in [4] which shows the sensitivity of GSVD of two
matrices. We first generate at random two matrices Ag € R8*7 and By € R*7, where
rank Ag = rank By = 2 and rank [A} B = 3. These is done as follows. Choose at random
x1,X2 € R® y1,y2 €R?,21,29,23 € R”. Then Ay = Xlle + XQZZT,BO = ylle + ygzg. The
first three singular values of Ay, By are given as follows.

27455.5092631633888, 17374.6830503566089, 3.14050409246786192 x 10~ 12,

29977.5429571960522, 19134.3838220483449, 3.52429226420727071 x 10~ 12,
i.e. the ranks of Ay and By are 2 within the double digit precision. The four first singular
values of Py = AT Ao + BI B are
1.32179857269680762 x 10°, 6.04366385186753988 x 10%,
3.94297368116438210 x 108, 1.34609524647135614 x 10~ ".
Again rank Py = 3 within double digit precision. The 3 generalized singular values of Ag
and By given by Theorem 4.81 are:
b1 =1, ¢o = 0.6814262563, 3 = 3.777588180 x 1077,
P =0, ¥y = 0.7318867789, 3 = 1.

So Ag and By have one ”common” generalized right singular vector vo with the corre-
sponding singular value ¢2, 12, which are relatively close numbers. The right singular vector
vy is present only in Ay and the right singular vector vs is present only in By.

We next perturb Ag, By by letting A = Ag+X, B = By+Y, where X € R®*7 Y € R?*7,

The entries of X and Y were chosen each at random. The 7 singular values of X and Y are
given as follows:

(27490, 17450, 233, 130, 119, 70.0, 18.2), (29884, 19183, 250, 187, 137, 102, 19.7).

Note that || X|| ~ 0.01||4o]|, ||Y|] ~ 0.01]|By||. Form the matrices A := Ay + X, B :=
By + Y. These matrices have the full ranks with corresponding singular values rounded off
to three significant digits at least:

(27490, 17450, 233,130, 119, 70.0, 18.2), (29884, 19183, 250, 187, 137, 102, 19.7).
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We now replace A, B by Aj, By of rank two using the first two singular values and the
corresponding singular vectors in the SVD decompositions of A, B. Then two nonzero
singular values of Ay, By are (27490, 17450), (29883, 19183), rounded to five significant digits.
The singular values of the corresponding Py = AT A, + BT B, are up to 3 significant digits:

(1.32 x 10%,6.07 x 10%,3.96 x 10%,1.31 x 10*,0.068,9.88 x 1073,6.76 x 1073).  (4.32)

Assume that 7 = 3, i.e. P has three significant singular values. We now apply our Theorem
4.81. The three generalized singular values of Ay, By are

(1.000000000, .6814704276, 0.7582758358 x 107%),  (0.,.7318456506, 1.0).

These result match the generalized singular values of Ao, By at least up to four significant
digits. Let V Ul, W1 be the matrix V', the first two columns of U, the last two columns of
W, which are computed for Ay, B;. Then

|V V]

TR 0.0061, ||Uy — Uy ~ 0.0093, ||[W; — W3] ~ 0.0098.

Finally we discuss the critical issue of choosing correctly the number of significant singu-
lar values of noised matrices A, B and the corresponding matrix P = AT A4 BT B. Assume
that the numerical rank of P; is 4. That is in Theorem 4.81 assume that » = 4. Then the
four generalized singular values of A, By up to six significant digits are (1, 1,0,0), (0,0, 1, 1)!

5 Tensors

5.1 Introduction

The common notion of tensors in mathematics is associated with differential geometry,
covariant and contravariant derivatives, Christofel symbols and Einstein theory of general
relativity. In engineering and other mundane applications as biology, psychology, the rele-
vant notions in mathematics are related to multilinear algebra. Of course the notions in the
two mentioned fields are related.

5.2 Tensor product of two vector spaces

Given two vector spaces U,V over F = R, C one first defines one defines the U ® V as a
linear span of all vectors of the form u ® v, where u € U,v € V satisfying the following
natural properties:

e a(u®v)=(au)®@v=u® (av) for all a € F.

o (a1uy + asug) ® v =a1(u; ® v) + az(ua ® v) for all aq,as € F. (Linearity in the first
variable.)

u® (a1vi +asva) = a1 (u®vy) +ax(u®vs) for all aj,as € F. (Linearity in the second

variable.)
e If uy,...,u,, and vy,...v, are bases in U and V respectively, then u; ® v;,7 =
1,...,m,j=1,...,nis a basisin U® V.

The element u® v is called decomposable tensor, or decomposable element (vector), or rank
one tensor.
It is not difficult to show that U ® V always exists.

Example 1. Let U be the space of all polynomials in variable = of degree less than
m: p(x) = Z;T;Bl a;z* with coefficients in F. Let V be the space of all polynomials in
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variable y of degree less than n: ¢(y) = 27:_01 bjz? with coefficients in F. Then U ® V is
identified with the vector space of all polynomials in two variables z,y of the form f(x,y) =
Zﬁgi’g_l cijz'y’ with the coefficients in F. The decomposable elements are p(z)q(y),p €
U,qge V.

The tensor products of this kind is the basic tool for solving PDE (partial differential

equations), using separation of variables, i.e. Fourier series.

Example 2. Let U =F",V = F" then U ® V is identified with the space of m x n
matrices F*". The decomposable tensor u® v is identified with uv”. Note uv” is indeed
rank one matrix.

Assume now that in addition U,V are IPS with the inner products (-, )y, (-, -)v. Then
there exists a unique inner product (-, -)ugv which satisfies the property

(u®Vv,xQ®y)uev = (u,x)u(v,y)v for all u,x € U and v,y € V.

This follows from the fact that if uy,...,u,, and vy, ..., v,, are orthonormal bases in U and
V respectively, then u; ® vj,i =1,...,m,j = 1,...,n is an orthonormal basis in U® V.
In Example 1, if one has the standard inner product in F" and F™ then these inner
product induce the following inner product in F™*": (A, B) = tr AB*. If A = uv! B =
xyT then trAB* = (x*u)(y*v).
Any 7 € U® V can be viewed as a linear transformation 7y v : U — V and 7v u as
follows. Assume for simplicity that U,V are IPS over R. Then

(u®v)u,v : U— Vis given by x — (x,u)uv,
(u@v)y,u:V — Uisgiven by y — (y,v)vu.

Since any 7 € U ® V is a linear combination of rank one tensors, equivalently is linear
combination of rank one matrices, the above definitions extend to any 7 € U ® V. Thus if
A €™ =F" @F" then Apm pnu = ATu, Apn pmv = Av.

For 7 € U ® V rank y7 := rank 7v,y and rank v7 := rank 7y v. The rank of 7,
denoted by rank 7, is the minimal decomposition of 7 to a sum of rank one nonzero tensors:

k .
T=>,_,0;®V;, where u;,v; #0 fori=1,... k.

Proposition 5.1 Let 7 € U® V. Then rank 7 = rank y v7 = rank v uyr.

Proof. Let 7 = Zle u; ® v;. Then 7(v) = Zfﬂ(V,vi)vui € span(uy,...,u;). Hence
Range 7v u C span(uy, ..., u;). Therefore
rank 7v y = dimRange 7v u < dimspan(uy,...,ux) < k.
(It is possible that uy,...,ux are linearly dependent.) Since 7 is represented by a matrix

A we know that rank 7y v = rank AT = rank A = rank Tv,u. Also rank 7 is the minimal
number k that A is represented as rank one matrices. The singular value decomposition of
A yields that one can represent A as sum of rank A of rank one matrices. a

Let T; : U; — V,; be linear operators. Then they induce a linear operator on T} ® T5 :
U;9U3; — V1®Vsy such that (T1®T2)(u1®u2) = (T1u1)®(T2u2) for all u; € Uy, uy € Us.
We will see in the next section that 77 ® T is a special 4 tensor, i.e. T1 T, € U1 Q VI ®
Us; ® Vs

If furthermore P; : V; — W,;,i = 1,2 then we have the following composition (P; ®
P)(Th @ Tz) = (P1Th) ® (P2T3). This equality follows from

(P1 X PQ)((Tl ®T2)(111 (2] 112)) = (Pl X PQ)(Tllll ®T2112) = (P1T1u1) X (P2T2u2).
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Since each linear operator 7; : U; — V,;,i = 1,2 is represented by a matrix, one
can reduce the definition of T} ® T5 to the notion of tensor product of two matrices A €
Frxm B e F™2x"2 This tensor product is called the Kronecker product.

Let A = [a;;]]""" € F™>™ . Then A ® B € F™™2*mn2 jg the following block matrix:

ij=1
auB a12B alnlB
ang aggB agnlB
A®B:= . (5.1)
m,1B Gm,2B o Gmyn, B
Let us try to understand the logic of this notation. Let x = [z1,...,2,,]T € F™ =
FrxXl = [yy, ..., yn,]|T € F"2 = F"2X1 Then we view x®y as a column vector of dimension

n1ny given by the above formula. So the coordinates of x ® y are x;y; where the double
indices are arranged in the lexicographic order, (the order of a dictionary):

(1,1),(1,2),...,(1,n9),(2,1),...,(2,n1),...,(n1,1),...,(n1,n2).

The entries of A® B are a;jby = c(i k) (). S0 we view (i, k) as the row index of A® B and
(4,1) as the column index of A ® B. Then

niy,mn2 ni na
(A B)x@Y)iw = Y. carnGotive = (> aiz;) (> buy) = (AX)i(By)x.
gil=1 Jj=1 =1

As should be according to our notation. Thus as in operator case
(A; ® B)(A2 @ By) = (A1 B)) ® (A9 By) if A; € F™iX™i B ¢ Frixli =12,

Note that I, ® I, = I,,,. Moreover if A and B are diagonal matrices then A ® B is a
diagonal matrix. If A and B are upper or lower triangular then A ® B is upper or lower
triangular respectively. So if A € GL(n,F), B € GL(n,F) then (A® B)™! = A=l @ B~%.
Also (A®B)T = AT®BT. So if A, B are symmetric then A® B is symmetric. If A and B are
orthogonal matrices then A ® B is orthogonal. The following results follows straightforward
from the above properties.

Proposition 5.2 . The following facts hold

1. Let A; € Rmi*mi for i = 1,2. Assume that A; = U;%;V.E,U; € O(my,R),V; €
O(n;, R) is the standard SVD decomposition for i = 1,2. Then A; @ As = (U1 ®
U2) (21 0%)(ViIE@ VL) is a singular decomposition of A1® A, except that the diagonal
entries of X1 ® Xo are not arranged in a decreasing order. In particular all the nonzero
singular values of A1 ® Ay are of the form o;(A1)o;(Az), where i = 1,... rank 4,
and j=1,...,rank Ay. Hence rank A; ® As = rank A; rank As.

2. Let Ay € F™ > | =1,2. Assume that det(zI,, — Ax) = [[1*,(z = Aig) fork=1,2.
Then dCt(ZIn1n2 —A1® AQ) e HZ;ZQI (Z — /\1,1)\]‘72).

3. Assume that A; € S,,,(R) and A; = QiAinT is the spectral decomposition of A;, i.e.
Q; is orthogonal and A; is diagonal, for i = 1,2. Then A1 @ As = (Q1 ® Q2)(A1 ®
A2)(QF ® QF) is the spectral decomposition of A1 ® Ay € Sy n, (R).

In the next section we will show that the singular decomposition of A; ® A, is a minimal
decomposition of the 4 tensor A; ® As. In the rest of the section we discuss the symmetric
and skew symmetric tensor products of U ® U.

Definition: Let U be a vector space of dimension m over F = R, C. Denote U®? :=
U®U. The subspace Sym?U ¢ U®2, called a 2-symmetric power of U, is spanned by tensors
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of the form sym?(u,v) :=u®v+v®u for all u,v € U. sym?(u,v) = sym?(v, u) is called
a 2-symmetric product of u and v, or simply a symmetric product Any vector 7 € Sym?U
is a called a 2-symmetric tensor, or simply a symmetric tensor. The subspace /\2 U Cc U%2,
called 2-ezterior power of U, is spanned by all tensors of the form uAv := u® v —v®u, for
all u,v € U. uAv =—v Auis called the wedge product of u and v. Any vector 7 € /\2 U
is a called a 2-skew symmetric tensor, or simply a skew symmetric tensor.

Since 2u® v = sym?(u, v) + uAv it follows that U®2 = Sym?(U) @& A U. That is, any
tensor 7 € U®? can be decomposed uniquely to a sum 7 = 7, + 7, where 7,,7, € U®? are
symmetric and skew symmetric tensors respectively.

In terms of matrices, we identify U with F™, U®? with F™*™, ie. the algebra of
m x m matrices. Then Sym?U is identified with S,,(F) C F™*™  the space of m x m
symmetric matrices: AT = A, and /\2 U is identified with AS(m,TF), the space of m x m
skew symmetric matrices: A7 = —A. Note that any matrix A € F™*™ is of the form
A= 1A+ AT)+ 1(A— A7), which is the unique decomposition to a sum of symmetric
and skew symmetric matrices.

Proposition 5.3 Let U be a finite dimensional space over F = R,C. LetT : U — U
be any linear operator. Then Sym>U and /\2 U are invariant subspaces of T®? =T QT :
U®2 - U®2,

Proof. Observe that T®%sym?(u, v) = sym?(Tu,Tv) and T®?uAv = (Tu) A (Tv).
O

It can be shown that Sym?U and /\2 U are the only invariant subspaces of T®? for all
choices of linear transformations 7' : U — U.

5.3 Tensor product of many vector spaces

Let U; be vector spaces of dimension m; for ¢ = 1,...,k over F = R,C. Then U :=
®f:1Ui =U; ® Uy ® ... ® Uy is the tensor product space of Uq,..., Uy of dimension
mims ... mg. U is spanned by the decomposable tensors ®f:1ui =u; QU ®...®uy, called
also rank one tensors, where u; € U; for i = 1,...,k. As in the case of k¥ = 2 we have the
basic identity:

a(u;Rua®...Qug) = (au])QU2®. . .QUE = 11 ®(aU)®...QuE = ... = 1RULR. ..Q(auy).

Also the above decomposable tensor is multilinear in each variable. The definition and
the existence of k-tensor products can be done recursively as follows. For k =2 U; ® 2
is defined in the previous section. Then define recursively ®F_,U; as (2*2!U;) @ Uy, for
k=3,....

®§:1ui_ﬁj, ij=1,...,m;,j=1,...,k is a basis of ®F , U; (5.2)
ifuy;,..., Wy, isabasisof U; fori=1,...,k.

Assume now that in addition U; is IPS with the inner product (-, )y, for i = 1,...,k.
Then there exists a unique inner product (-, ~>®;;_1U which satisfies the property

k
k k '
(@i, @ Vi)gr_ U, = H(ui,vi>Ui for all u;,v; € U, i =1,... k.
i=1
In particular, if uy ;,..., Wy, ; is an orthonormal basis in U;, for¢ =1, ..., k, then ®§:1uij e
where i; = 1,...,mj and j =1,...,k is an orthonormal basis in ®f:1Ui.
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Then any 7 € ®¥_, U can be represented as

T = Z tiy iy ®F_y g, . (5.3)
i;€[l,m;],j=1,....k
The above decomposition is called the TUCKER model. Then T = (t;,. ., ); 200 is
called the core tensor. If uy,,..., Uy, ; is an orthonormal basis in Uy, for ¢ = 1,...,k,
then the TUCKER model is referred is as Higher-Order Singular Value Decomposition, or
HOSVD. The core tensor 7 is called is called diagonal if ¢;,,,..;, = 0 whenever the equality
i1 = ... =1 s not satisfied.

We now discuss the change in the core tensor when we replace the base [uy, ..., Uy, ;]
in U; to the base [vi,,...,Vm,s] in U, for i« = 1,..., k. We fist recall the change in
the coordinates of the vector u € U when we change the basis [uy,...,u,,] to the basis
[Vi,...,Vvy] in U. Let u =", z;u;. Then x := [z1,...,2,]7 is the coordinate vector
of u in the basis [uy,...,u,]. It is convenient to represent u = [uy,...,uy,]x. Suppose
that [v1,..., vy, is another basis in U. Then Q = [g;;]{";_; € F™*™ is called the transition
matriz from the base [uy,...,u,,] to the base [vy,...,vy,] if

m
[U,...,um] =[Vi,...,vp]Q, <= u; = quivj, ji=1,...,m.
j=1
So Q™1 is the transition matrix from the base [v1, ..., vy, to [ug, ..., uy], ie [vi,...,v;] =
[u,...,u,]Qt. Hence
u=[ug,...,u|x=[vy,...,v,](@x), ie. y = @x coordinate vector of u in [vy,...Vv,] basis

Thus if Q; = [Qij,l]??jﬂ € F™*™ ig the transition matrix from the base [uy g, ..., Wm,.]
to the base [vy1,..., vV, 1] for I =1,...,k then the core tensor 7' = (#}, . ) corresponding
to the new basis ®§:1vij ,j is given by the formula:

mi,...,Mg k

e = Z (qulil,l)ti1~uik7 denoted as 7/ =7 X Q1 X Q2 X ... X Qg.  (5.4)

i1yig=1 =1

Any tensor can be decomposed to a sum of rank one tensors:

R
T= Z@leum, where w;; € U fori=1,...,51l=1,... k. (5.5)
i=1

This decomposition is called CANDECOMP-PARAFAC decomposition. This decomposi-
tion is not unique. For example, we can obtain CANDECOMP-PARAFAC decomposition
from Tucker decomposition by replacing the nonzero term ¢;,. ;, ®?:1 Wi s tiy i 2 0 with
(tiy. i 0,) @ W, ® ... @y,

The value of the minimal R is called the tensor rank of 7, and is denoted by rank 7.
That is, rank 7 is the minimal number of rank one tensors in the decomposition of 7 to a
sum of rank one tensors. In general, it is a difficult problem to determine the exact value
of rank 7 for 7 € ®%_,U; and k > 3.

Any 7 € ®*_, U can be viewed as a linear transformation

Top 0 ot Sl Ui = @ Uy 1<iy<...<ip<k1<i)<..<iy <k, (5.6)
where the two sets of nonempty indices {i1,...,%,}, {4, ...,y } are complementary, i.e. 1 <
p.p <k,p+p =1land {i1,...,. 5, }N{dl, ... iy} =0,{ir,..., 5, UL}, ... ,ip} = {1,.. . k}.
The above transformation is obtained by contracting the indices i1,...,i,. Assume for sim-
plicity that U, is IPS over R for ¢ = 1,..., k. Then for decomposable tensor transformation
(5.6) is given as
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P
(®f=1u,;)(®f:1 X Viz) = (H<Vil’uil>Uil) ®§;1 ®ui’(, (5.7)
=1
For example for k = 3 (u; ® ug ® usz)(vy) = <u2,v2>U2)u1 ® ug, where u; € Ug,us, vy €
Us,uz € Usand p=1,i; =2,p' =2, =1,i4, = 3.
Then

rank 7

®f:1Uil 7®?;1U7,; = dlm Range

T®§):1Uiz’®§i1Ui; ' (58)
It is easy to compute the above ranks, as this rank is the rank of the corresponding matrix
representing this linear transformation. As in the case of matrices it is straightforward to
show that

:=rank 7

rank 7 / .
®f:1Uz'2 ’®§):1Uil

®f:1UiL*®§i1U¢; (59)

In view of the above equalities, for k = 3, i.e. U; ® Uy ® Us we have three different ranks:
rank y, 7 := rank Ty,gu,,u,, rank y, 7 1= rank Ty, gu,,U,, rank y, 7 := rank Ty, @uU,,Us-

Thus rank v, 7 can be viewed as the dimension of the subspace of U; obtained by all possible
contractions of 7 with respect to Ug, Us.
In general, let

rank ;7 = rank Ty, g..@U,_,0U.11®..0UU;» 1 = 1,..., k. (5.10)

Let 7 € ®f:1U,» be fixed. Choose a basis of U; such that uy;,..., Urank ;7 i & basis in
Range mu,@...9U,_18U;11®...0U,,U;- Then we obtain a more precise version of the TUCKER
decomposition:

T= > tivein ©F_p wy, . (5.11)

ij€[1l,rank ;7],5=1,....,k

The following lower bound on rank 7 can be computed easily:

Proposition 5.4 Let U; be a vector space of dimension m; fori =1,... k > 2. Let

7 € ®%_,U;. Then for any set of complementary indices {i1,..., iy}, {il,. .. sl }
rank 7 > rank T®§,:1Uil 7®f;1Ui;'
Proof. Let 7 be of the form (5.5). Then
rank T®f:1Ui,,®f;1Ui; = dim Range T®f:1Uil»®f;1U¢; = dimspan(®;_; g 1, .., ®]_ uy ;) < j.
O

Proposition 5.5 Let U; be a vector space of dimension m; fori =1,...,k > 2. Let

7€ ®k U Then
mi...m
rank 7 < ! b

maXie[1,k] M

Proof. The proof is by induction on k. For k = 2, recall that any 7 € U; ® U,

can be represented by A € F™1*™2_ Hence rank 7 = rank A < min(mq,ms) = )

Assume that the proposition holds of £ =n > 2 and let kK = n+ 1. By permuting the factor

Uj,..., Uy, one can assume that m, <m; fori =1,...,n—1. Let uy ,..., Uy, » be a ba-
sis of U,,. It is straightforward to show that 7 € ®}_; U, is of the form 7 = Z;n:"l Tp @ Up p,

for unique 7, € ®Z’:_11UZ-. Decompose each 7; to a minimal sum of rank one tensors in
1 . . . . s
®r—1 U;. Now use the induction hypothesis for each 7; to obtain a decomposition of 7 as a

sum of at most —=1=™k__ rank one tensors. O
max;e[1,k] Mi
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5.4 Examples and results for 3-tensors

Let us start with the simplest case U; = Uy = Uz = R2,C2. Let e; = [1,0]7,e; = [0, 1]7 be
the standard basis in R? or C2. Then 7 = Z?:j:k:l tijre; ®e; ey, and T = (t”;c)ijjii
Let Ty := [tija]} j—; for k = 1,2. Any B = [b;]7,_, € F? we identify with the tensor
21'23:1 bije; ® e;. Using this identification we view 7 =T1 ® e; + T ® es.

Example 1: Assume that

t111 = t112 = 1, t221 = t222 = 2, 211 = t121 = t212 = 122 = 0. (5.12)
To find Ry = rank u,gu,,u,, we construct a matrix A4; := [apq,l]i’;:l € R?*%, where
p=1i=12and q = (j,k),j,k = 1,2 and apq,1 = tij5. Then A {(1) (1) (2) g}and

Ry =rank A; = 2. Next Ay := [ap%g}i:é:l € R?** where p=1i=1,2 and q = (j, k), 5,k =
1,2 and apq2 = tjik. Then Ay = A; and Ry = rank Ay = 2. Next Az := [apq,g]f,ﬁ:l € R2*4
1 0 0 2

1002}
and R3 = rank A3 = 1. Hence Proposition 5.4 yields that rank 7 > 2. We claim that

rank 7 = 2 as a tensor over real or complex numbers. Observe that

where p=1i=1,2 and ¢ = (j,k),j,k = 1,2 and apq,3 = tjz. Then Az := [

ﬂ:R:[OQ

1 0
:| =eRe;t+2eaRe; = 17 = (el®e1+2e2®92)®91+(e1®91+2e2®92)®92.

Hence
T = (e1®e1 +2€2®€2)®(61—|—€2) =e;e; ®(el—|—e2)+(2e2)®eg®(e1 +92).

Thus rank 7 < 2 and we finally deduce that rank 7 = 2.

Example 2: Assume that

to11 = ti21 = t1i2 = 1,  t111 = toog = t120 = t212 = 12921. (5.13)

Let Ay, Ao, A3 be the matrices defined as in Example 1. Then A1 = Ay = Az := [ (1) (1) (1) 8 } .
Hence Ry = Ry = R3 = 2 and rank 7 > 2. Observe next that

1 0

0 0

0 1
T1=[1 O]Ee1®e2+e2®el, Tzz[

] =e1®e=>7=T1®e; + 17 ®es.

Hence t=e1 ®Rers®Re; +ea®e; Qe +e1 ®ep ®ey. Thus 2 <rank 7 < 3. We will show
that rank 7 = 3, using the results that follow.

Proposition 5.6 Let uy,..., Wy, be a basis of U; fori=1,2,3 over F =R,C. Let
7€ U ®U;®Us, and assume that 7= ;"2 tpu, 1 @ujo@ugs, i =1,...,my,j =

i=j=k=1
1,....,ma,k = 1,...,mg. Let T := [tijk]zljl:’TQ e Frxmz2 for bk = 1,...,ms, i.e. T; =
my,ma2 _ ms .
Zm“:l tijki1 ® wjo and T = sumy > Ty @ uy 3. Assume that a basis [uy3,..., U, 3] of
Us is changed to a basis [V1 3, ..., Vi3], where W13, ..., Ums 3] = [V1,3,.-., Ving 3]@3, Qs =

[qpq,g]gfgzl € GL(ms,F). Thent =Y ;2 T} vy 3, where T} = [t;jk]zljlif? = Zle a3y In
particular, T' = (t;;,);"} \23"" is the core tensor corresponding to T in the basis u; 1 @U;2®
vis fori=1,...,my,7 =2,...,me,k =3,...,m3. Furthermore, R3 = rank y,gu,,us7T =
rank u, U,eu,T = dimspan(Ty,...,T,,), where each T}, is viewed as a vector in Fm1>*mz,
In particular, one choose a basis [V13,...,Vm, 3] in Uz such that the matrices Ty, ..., T,
are linearly independent. Furthermore, if ms > Rg3 then we can assume that T) = 0 for

k> Rs.
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Assume that [v1 3, ..., Vi, 3] in Us was chosen as above. Let [vi1,...,Vimy 1], [V1,2, -5 Ving,2]
be two bases in Uy, Uy respectively, where [U11, ..., Wmy 1] = [V11,- -5 Ving ,1]@1, [U1,2, -+, Uy 2] =
[VLQ, e ,szvg]QQ and Ql = [qp%ﬂ;f;:l S GL(ml,F),Qg = [qpq,g]g?szl S GL(mQ,F) Let
T = Zzzl,}gi{zl,ms i’jkvi,l QVj2®Vjs, Tk = [ijk}%l:’qm € Fri®ma fOT k= 1,...,ms. Then
Ty, = QlTéQQT fork=1,... ms3. Furthermore, if one chooses the bases in Uy, Us such that
Range Tu,ouU,,u; = span(vii,...,Vg,.1) and Range 7u,gu,,u, = span(viga,...,Ve,2),
then each Ty, is a block diagonal matriz Tj, = diag(Tk, 0), where Ty = [fijk}f}’jz € FRixE2
for k = 1,...,m3. Recalling that T} = 0 for k > Rz we get the representation T =

R1,R2,R3 }
Digket tijkVii ® V2 ® Vi3,

The proof of this proposition is straightforward and is left to the reader.

By interchanging the factors U, Uy, Uz in the tensor product U; ® Uy ® Ug it will be
convenient to assume that m, > my > mg3 > 1. Also the above proposition implies that for
7 # 0 we may assume that m; = Ry > mo = Ry > m3 = Rs.

Proposition 5.7 Let 7 € Uy ® Uy ® Us. If R3 =1 then rank 7 = Ry = Ry.

Proof. We may assume that ms = 1. In that case 7 = 171 ® v; 3. Hence rank 7 =
rank 77 = Ry = R». O

Thus we need consider the case mqy = Ry > mo = Ry > ms3 = R3 > 2. We now consider
the generic case, i.e. where T4, ..., Ty € F™X™2 are generic. That is each T; # 0 is chosen
at random, where HTTiHF has a uniform distribution on the matrices of norm one. It is well

known that a generic matrix T € F™*"™2 has rank meo, since my > ms.

Theorem 5.8 Let 7 = Z?J"kil tijr € C"RC"® C2? where n > 2. Denote Ty =
[tij1lfj=1, T = [tijell ;=1 € C"*". Suppose that there evists a linear combination T =
aTy + b1y € GL(n,C), i.e. T is invertible. Then n <rank 7 < 2n — 1. In particular, for a
generic tensor rank T = n.

Proof. Recall that by changing a basis in C?, we may assume that T} = aTy + b1, =
T. Suppose first that 75 = 0. Then rank 7 = rank 7" = n. Hence we have always the
inequality rank 7 > n.

Assume now that R3 = 2. Choose first Q1 = T~ ! and Q5 = I,,. Then Ty = 1I,,. Thus, for
simplicity of notation we may assume to start with that 77 = I,,. Let X\ be an eigenvalue T5.
Then change the basis in C? such that T} = I,, and Ty = To — AT} = T — \I,,. So det T4 = 0.
Hence r =rank 75 <n—1. So SVD of Tb = }_;_, u; ® (0;(T2)w;). Now [, = > 1" e; ®e;.
Hence r=3"" e, ®@e1®@e; +y ;. u; ® (0;(T2)0;) ® es. Hence rank 7 < 2n — 1.

We now consider the generic case. In that case T} is generic, so rank T} = n is invertible.
Choose Q1 = T7',Q2 = I,,Q3 = I,. Then T = In,Tg = TflTQ. Ty is generic. Hence
it is diagonable. So Tj = X diag(A1, ..., \,) X ! for some invertible X. Now we again
change a basis in U; = Uy = R” by letting Q; = X~ 1,Q2 = X7. The new matrices
Ty =X "'[,X =1,,Ty = X 'T5X = diag(\1, ..., \,). In this basis

T:T1®e1 +Tg®eg:Zei®ei®e1+2)\iei®ei®e2:Zei®ei®(e1+)\ie2).
i=1

i=1 i=1

Hence the rank of generic tensor 7 € C" ® C" ® C? is n. O

I believe that for any 7 € C" ® C* ® C? rank 7 < 2n — 1. The case rank 7 = 2n — 1
would correspond to Ty = I,, and T a nilpotent matrix with one Jordan block.
The analysis of the proof of the above theorem yields.
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Corollary 5.9 Let T = Z?j",f:l tij € F" @F" @F? where n > 2 and F = R,C. Denote
Ty = [tipl} =1, T2 = [tijo]}j=1 € F"*". Suppose that there exists a linear combination
T = aTy + bTs € GL(n,F), i.e. T is invertible. Then rank 7 = n, if and only if the matriz

T=Y(—bTy + aTy) is diagonable over F.

This result shows that it is possible that for 7 € R® x R™ x R? rank g7 > n, while
rank ¢c7 = n. For simplicity choose n =2, 7 =T) ® e; + Th @ ey, Ty = I, Ty = —T # 0.
Then T, has two complex conjugate eigenvalues. Hence T5 is not diagonable over R. The
above Corollary yields that rank g > 2. However, since T5 is normal T5 is diagonable over
C. Hence the above Corollary yields that rank ¢7 = 2.

Proof of the claim in Example 2 Observe that T} is invertible T’ 1_1 = T;. Consider

_ 0 0

7' = S = 10

not diagonable. The above Corollary shows that rank g7, rank ¢7 > 2. Hence rank g7 =
rank ¢7 = 3. This shows that Theorem 5.8 is sharp for n = 2.

Note that the Jordan canonical form of S is ST. Hence S is
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