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Abstract
The question of how many elements of a real stable matrix must be positive

is investigated. It is shown that any real stable matrix of order greater than
1 has at least two positive entries. Furthermore, for every stable spectrum of
cardinality greater than 1 there exists a real matrix with that spectrum with
exactly two positive elements, where all other elements of the matrix can be
chosen to be negative.
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1 Introduction

For a square complex matrix A let σ(A) be the spectrum of A, that is, the set of
eigenvalues of A listed with their multiplicities. Recall that a (multi) set of complex
numbers is called (positive) stable if all the elements of the set have positive real
parts, and that a square complex matrix A is called stable if σ(A) is stable. In this
paper we investigate the question of how many elements of a real stable matrix must
be positive.

It is easy to show that a stable real matrix A has either positive diagonal elements
or it at least one positive diagonal element and one positive off-diagonal element.
We then show that for any stable set ζ of n complex numbers, n > 1, such that ζ
is symmetric with respect to the real axis, there exists a real stable n× n matrix A
with exactly two positive entries such that σ(A) = ζ.
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The stable n × n matrix with exactly two positive entries, whose existence is
proven in Section 2, has (n − 1)2 zeros in it. In Section 3 we prove that for any
stable set ζ of n complex numbers, n > 1, such that ζ is symmetric with respect to
the real axis, there exists a real stable n×n matrix A with two positive entries and
all other entries negative such that σ(A) = ζ.

In Section 4 we suggest some alternative approaches to obtain the results of
Section 2.

2 Positive entries of stable matrices

Our aim in this Section is to show that for any stable set ζ of n complex numbers,
n > 1, consisting of real numbers and conjugate pairs, there exists a real stable
n× n matrix A with exactly two positive entries such that σ(A) = ζ. We shall first
show that every real stable matrix of order greater than 1 has at least two positive
elements. In fact we show more than that, that is, that for a stable real matrix A
either all diagonal elements of A are positive or A must have at least one positive
entry on the main diagonal and one off the main diagonal.

Notation 2.1 For a set ζ = {ζ1, . . . , ζn} of complex numbers we denote by
s1(ζ), . . . , sn(ζ) the elementary symmetric functions of ζ, that is,

sk(ζ) =
∑

1≤i1<...<ik≤n

ζi1 · . . . · ζik , k = 1, . . . , n.

Also, we let s0(ζ) = 1 and sk(ζ) = 0 whenever k > n or k < 0.

Lemma 2.2 Let ζ = {ζ1, . . . , ζn} ⊂ C have positive elementary symmetric
functions. Then ζ contains no nonpositive real numbers.

Proof. Note that ζ has positive elementary symmetric functions if and only
if the polynomial p(x) =

∏n
i=1(x + ζi) has positive coefficients. It follows that p(x)

cannot have nonnegative roots, implying that none of the ζi’s is a nonpositive real
number. 2

Notation 2.3 For F = R,C, the fields of real and complex numbers respectively,
we denote by Mn(F) the algebra of n×n matrices with entries in F. For A = (aij)n

1 ∈
Mn(F) we denote by trA the trace of A, that is, the sum

∑n
i=1 aii.

Proposition 2.4 Let A = (aij)n
1 ∈ Mn(R), and assume that σ(A) has positive

elementary functions. Then either all the diagonal elements of A are positive or A
has at least one positive diagonal element and one positive off-diagonal element.

Proof. As is well known, the trace of A is equal to s1(σ(A)), and so we
have

∑n
i=1 aii > 0, and it follows that at least one diagonal element of A is positive.

Assume that that all off-diagonal elements of A are nonpositive. Such a real matrix
is called a Z-matrix. Since the elementary symmetric functions of σ(A) are positive,
it follows by Lemma 2.2 that A has no nonpositive real eigenvalues. Since a Z-
matrix has no nonpositive real eigenvalues if and only if all its principal minors are
positive, e.g. [1, Theorem (6.2.3), page 134], it follows that all the diagonal elements
of A are positive. 2

2



Notation 2.5 For a set ζ = {ζ1, . . . , ζn} of complex numbers we denote by ζ
be the set {ζ1, . . . , ζn}.

Note that ζ = ζ if and only if all elementary symmetric functions of ζ are real.

The following result is well known, and we provide a proof for the sake of com-
pleteness.

Proposition 2.6 Let ζ be a stable set of complex numbers such that ζ = ζ.
Then ζ has positive elementary symmetric functions.

Proof. We prove our claim by induction on the cardinality n of ζ. For
n = 1, 2 the result is trivial. Assume that the result holds for n ≤ m where m ≥ 2,
and let n = m + 1. Assume first that ζ contains a positive number λ. Note that
the set ζ ′ = ζ \ {λ} is stable and ζ ′ = ζ ′. By the inductive assumption we have
sk(ζ ′) > 0, k = 1, . . . , n− 1, and it follows that

sk(ζ) = sk(ζ ′) + λsk−1(ζ ′) > 0, k = 1, . . . , n.

If ζ does not contain a positive number then it contains a conjugate pair {λ, λ},
where Re(λ) > 0. Note that the set ζ ′ = ζ \ {λ, λ} is stable and ζ ′ = ζ ′. By the
inductive assumption we have sk(ζ ′) > 0, k = 1, . . . , n− 2, and it follows that

sk(ζ) = sk(ζ ′) + 2Re(λ)sk−1(ζ ′) > 0 + |λ|2sk−2(ζ ′) > 0, k = 1, . . . , n.

proving our claim. 2

It is easy to show that the converse of Proposition 2.6 holds when the cardinality
of ζ is less than or equal to 2. However, the converse does not hold for larger sets, as
is demonstrated by the nonstable set ζ = { 3 , −1+3i , −1−3i }, whose elementary
symmetric functions are positive.

As a corollary of Propositions 2.4 and 2.6 we obtain

Corollary 2.7 Let A be a stable real square matrix. Then either all the diagonal
elements of A are positive or A has at least one positive diagonal element and one
positive off-diagonal element.

In order to prove the existence of a real stable n× n matrix A with exactly two
positive entries, we introduce:

Notation 2.8 Let n be a positive integer. For a set ζ of n complex numbers
we denote by C1(ζ), C2(ζ) and C3(ζ) the matrices

C1(ζ) =




0 0 0 . . . 0 0 0 (−1)n−1sn(ζ)
1 0 0 . . . 0 0 0 (−1)n−2sn−1(ζ)
0 1 0 . . . 0 0 0 (−1)n−3sn−2(ζ)
...

...
...

...
...
...

...
...

...
...

0 0 0 . . . 0 1 0 −s2(ζ)
0 0 0 . . . 0 0 1 s1(ζ)




,
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C2(ζ) =




0 0 0 . . . 0 0 0 sn(ζ)
−1 0 0 . . . 0 0 0 sn−1(ζ)
0 −1 0 . . . 0 0 0 sn−2(ζ)
...

...
...

...
...
...

...
...

...
...

0 0 0 . . . 0 −1 0 s2(ζ)
0 0 0 . . . 0 0 −1 s1(ζ)




,

C3(ζ) =




0 0 0 . . . 0 0 0 −sn(ζ)
−1 0 0 . . . 0 0 0 −sn−1(ζ)
0 −1 0 . . . 0 0 0 −sn−2(ζ)
...

...
...

...
...
...

...
...

...
...

0 0 0 . . . 0 −1 0 −s2(ζ)
0 0 0 . . . 0 0 1 s1(ζ)




.

Recall that A ∈ Mn(C) is called nonderogatory if for every eigenvalue λ of A
the Jordan canonical form of A has exactly one Jordan block corresponding to λ.
Equivalently, the minimal polynomial of A is equal to the characteristic polynomial
of A.

Lemma 2.9 Let n be a positive integer, n > 1, and let ζ = {ζ1, . . . , ζn} ⊂ C.
Then the matrices C1(ζ), C2(ζ) and C3(ζ) are diagonally similar, are nonderogatory
and share the spectrum ζ.

Proof. The matrix C1(ζ) is the companion matrix of the polynomial q(x) =∏n
i=1(x− ζi). Hence σ(C1(ζ)) = ζ and C1(ζ) is nonderogatory. Clearly

C2(ζ) = D1C1(ζ)D1, where D1 = diag((−1)1, (−1)2, . . . , (−1)n),

and
C2(ζ) = D2C2(ζ)D2, where D2 = diag(1, 1, . . . , 1,−1).

Our claim follows. 2

In view of Lemma 2.9, the claim of Proposition 2.6 on C3(ζ) yields the following
main result of this section.

Theorem 2.10 Let ζ be a set of n complex numbers, n > 1, such that ζ = ζ. If ζ
has positive elementary symmetric functions then there exists a matrix A ∈ Mn(R)
such that σ(A) = ζ and A has one positive diagonal entry and one positive off-
diagonal entry, while all other entries of A are nonpositive. In particular, every
nonderogatory stable matrix A ∈ Mn(R) is similar to a real n× n matrix which has
exactly two positive entries.

3 Eliminating the zero entries

The proof of Theorem 2.10 uses the matrix C3(ζ) which has (n − 1)2 zero entries.
The aim of this section is to strengthen Theorem 2.10 by replacing C3(ζ) with a real
matrix A, having exactly two positive entries, all other entries being negative and
σ(A) = ζ.
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We start with a weaker result, which one gets easily using perturbation tech-
niques. Let A ∈ Mn(R) and let ‖ · ‖ : Mn(R) → [0,∞) be the l2 operator norm.
Since the eigenvalues of a A depend continuously on the entries of the A, it follows
that if σ(A) has positive elementary symmetric functions, then for ε > 0 sufficiently
small, every matrix Ã ∈ Mn(R) with ‖Ã − A‖ < ε has a spectrum σ(Ã) with posi-
tive elementary symmetric functions. Also, if A is stable then for ε > 0 sufficiently
small, every matrix Ã ∈ Mn(R) with ‖Ã−A‖ < ε is stable. Consequently, it follows
immediately from Theorem 2.10 that

Corollary 3.1 For a positive integer n > 1 there exists a matrix A ∈ Mn(R)
such that σ(A) has positive elementary symmetric functions and A has one positive
diagonal entry and one positive off-diagonal entry, while all other entries of A are
negative. Furthermore, the matrix A can be chosen to be stable.

In the rest of this sectio we prove that one can find such a matrix A with any
prescribed stable spectrum.

Lemma 3.2 Let ζ be a set of n complex numbers, n > 1, such that ζ = ζ,
and assume that ζ has positive elementary symmetric functions. Suppose that there
exists X ∈ Mn(R) such that

(C3(ζ))ij = 0 =⇒ (C3(ζ)X −XC3(ζ))ij < 0, i, j = 1, . . . , n.

Then there exist A ∈ Mn(R) similar to C3(ζ) such that ann, an,n−1 > 0 and all other
entries of A are negative.

Proof. Assume the existence of such a matrix X. Define the matrix T (t) =
I−tX, t ∈ R. Let r = ||X||−1. Using the Neumann series expansion, e.g. [2, page
7], for |t| < r we have T (t)−1 =

∑∞
i=0 tiXi. The matrix A(t) = T (t)C3(ζ)T (t)−1

thus satisfies

A(t) = C3(ζ) + t(C3(ζ)X −XC3(ζ)) + O(t2).

Therefore, there exists ε ∈ (0, r) such that for t ∈ (0, ε) the matrix A(t) has positive
entries in the (n, n − 1) and (n, n) positions, while all other entries of A(t) are
negative. 2

The following lemma is well known, and we provide a proof for the sake of
completeness.

Lemma 3.3 Let A,B ∈ Mn(F) where F is R or C. The following are equivalent.
(i) The system AX −XA = B is solvable over F.
(ii) For every matrix E ∈ Mn(F) that commutes with A we have trBE = 0.

Proof. (i)=⇒(ii). Let E ∈ Mn(F) commute with A. Then

trBE = tr(AX −XA)E = trAXE − trXEA = trXEA− trXEA = 0.

(i)=⇒(ii). Consider the linear operator L : Mn(F) → Mn(F) defined by L(X) =
AX − XA. Its kernel consists of all matrices in Mn(F) commuting with A. By
the previous implication, the image of L is contained in the subspace V of Mn(F)
consisting of all matrices B such that trBE = 0 whenever E ∈ kernel(L). Since
clearly dim(V ) = n2− dim(kernel(L)) = dim(image(L)), it follows that image(L) =
V . 2
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Theorem 3.4 Let ζ be a set of n complex numbers, n > 1. Let bij, i = 1, . . . , n,
j = 1, . . . , n−1 be given complex numbers, and let C = Ck(ζ) for some k ∈ {1, 2, 3}.
Then there exists unique bin ∈ C, i = 1, . . . , n, such that for the matrix B = (bij)n

1 ∈
Mn(C) the system CX −XC = B is solvable. Furthermore, if ζ = ζ and bij is real
for i = 1, . . . , n, j = 1, . . . , n− 1, then the matrix B is real, and the solution X can
be chosen to be real.

Proof. Since C2(ζ) and C3(ζ) are diagonally similar to C1(ζ), where the
corresponding diagonal matrices are real, it is enough to prove the theorem for
C = C1(ζ). So, let C = C1(ζ) and consider the system

CX −XC = B. (3.1)

As is well known, e.g. [3, Corollary 1, page 222], since C = C1(ζ) is nonderogatory,
every matrix that commutes with C is a polynomial in C. Therefore, it follows from
Lemma 3.3 that the system (3.1) is solvable if and only if

trBCk = 0, k = 0, . . . , n− 1. (3.2)

Denote vk = bn+1−k,n, k = 1, . . . , n. Note that (3.2) is a system of n equations
in the variables v1, . . . , vn. Furthermore, it is easy to verify that the first nonzero
element in the nth row of Ck is located at the position (n, n− k) and its value is 1.
It follows that if we write (3.2) as Ev = f , where E ∈ Mn(C) and v = (v1, . . . , n)T ,
then E is a lower triangular matrix with 1’s along the main diagonal. It follows that
the matrix B is uniquely determined by (3.2).

If ζ = ζ and bij is real for i = 1, . . . , n, j = 1, . . . , n− 1 then C = C1(ζ) is real and
hence the system (3.2) has real coefficients, and the uniquely determined B is real.
It follows that the system (3.1) is real, and so it has a real solution X. 2

If we choose the numbers bij , i = 1, . . . , n, j = 1, . . . , n−1, to be negative, then
Lemma 3.2 and Theorem 3.4 yield

Corollary 3.5 Let ζ be a set of n complex numbers, n > 1, and assume that
the elementary symmetric functions of ζ are positive. Then there exists a matrix
A ∈ Mn(R) with σ(A) = ζ such that A has one positive diagonal element, one
positive off-diagonal element and all other entries of A are negative. In particular,
the above holds for stable sets ζ such that ζ = ζ.

4 Other types of companion matrices

Another way to prove some of the results of Section 2 is to parameterize the com-
panion matrices in Notation 2.8. Consider

C =




0 0 0 · · · 0 0 0 γ0

β0 0 0 · · · 0 0 0 γ1

0 β1 0 · · · 0 0 0 γ2

· · · · · · · · ·
0 0 0 · · · 0 βn−3 0 γn−2

0 0 0 · · · 0 0 βn−2 γn−1



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From looking at the directed graph of C is

1 2 3 nn-1n-2

one can immediately see that there is exactly one simple cycle of length k for 1 ≤
k ≤ n, that is, (n, . . . , n + 1 − k). Therefore, the only nonzero principal minors of
C are those whose rows and columns are indexed by {k, . . . , n}, k = 1, . . . , n, and
their respective values are (−1)n−kγk−1βk−1 · · ·βn−2 for k < n and γn−1 for k = n.
It follows that the characteristic polynomial χC(x) of C is

χC(x) = xn − γn−1x
n−1 − γn−2βn−2x

n−2 − γn−3βn−3βn−2x
n−3 − . . .

. . .− γ1β1β2 · · ·βn−2x− γ0β0β1 · · ·βn−2.
(4.1)

Using this explicit formula, one can prove directly the claim contained in Lemma
2.9 that the matrices C1(ζ), C2(ζ) and C3(ζ) share the spectrum ζ.

There are other possibilities to generate companion matrices. For example, con-
sider the matrix

L =




γn−1 0 0 · · · 0 0 0 βn−2

βn−3 0 0 · · · 0 0 0 0
0 βn−4 0 · · · 0 0 0 0

· · · · · · · · ·
0 0 0 · · · 0 β0 0 0

γn−2 γn−3 γn−4 · · · γ2 γ1 γ0 0




.

The directed graph of L is

1 2 3 nn-1n-2

Again it is clear that there is exactly one simple cycle of length k for any 1 ≤ k ≤ n,
that is, (1) for k = 1 and (n, k − 1, . . . , 1) for 1 < k ≤ n. Therefore, the only
nonzero 1 × 1 principal minor of L is l11 = γn−1, and for 1 < k ≤ n the only
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nonzero k × k principal minor of L is the one whose rows and columns are indexed
by {1, . . . , k − 1, n}, and its value is (−1)n−kγk−1βk−1 · · ·βn−2. It follows that the
characteristic polynomial χL(x) of L is identical to χC(x). Note that there is no
permutation matrix P with P T CP = L or P T CT P = L.

Now, take the following specific choice of the parameters β and γ

L1 =




−pn−1 0 0 · · · 0 0 0 1
1 0 0 · · · 0 0 0 0

1 0 · · · 0 0 0 0
· · · · · · · · ·

0 0 0 · · · 0 1 0 0
−pn−2 −pn−3 −pn−4 · · · −p2 −p1 −p0 0




.

By (4.1), the characteristic polynomial computes to

χL1(x) =
n∑

ν=0

pνx
ν ,

where pn = 1.

So L1 is another kind of companion matrix. Note that L1 is almost lower triangu-
lar, with only one nonzero element above the main diagonal and one on the main
diagonal.

Another specific choice of the parameters β and γ can be used to produce another
direct proof of Theorem 2.10. For a set ζ of complex numbers with ζ = ζ and positive

elementary symmetric functions, the polynomial q(x) =
n∏

i=1
(x − ζi) =

n∑
i=0

qix
i has

coefficients qi, 0 ≤ i ≤ n of alternating signs, where qn = 1. By (4.1), the polynomial
q(x) is the characteristic polynomial of the matrix




−qn−1 0 0 · · · 0 0 0 1
−1 0 0 · · · 0 0 0 0
0 −1 0 · · · 0 0 0 0

· · · · · · · · ·
0 0 0 · · · 0 −1 0 0

−qn−2 qn−3 −qn−4 · · · (−1)n−3q2 (−1)n−2q1 (−1)n−1q0 0




.

which has exactly two positive entries, that is, −qn−1 on the diagonal and 1 in the
right upper corner.

References

[1] A. Berman and R.J. Plemmons, Nonnegative Matrices in Mathematical
Sciences, Academic Press, New York, 1979.

[2] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169, Springer,
1996.

[3] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.

8


