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Abstract

The question of how many elements of a real stable matrix must be positive
is investigated. It is shown that any real stable matrix of order greater than
1 has at least two positive entries. Furthermore, for every stable spectrum of
cardinality greater than 1 there exists a real matrix with that spectrum with
exactly two positive elements, where all other elements of the matrix can be
chosen to be negative.
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1 Introduction

For a square complex matrix A let o(A) be the spectrum of A, that is, the set of
eigenvalues of A listed with their multiplicities. Recall that a (multi) set of complex
numbers is called (positive) stable if all the elements of the set have positive real
parts, and that a square complex matrix A is called stable if o(A) is stable. In this
paper we investigate the question of how many elements of a real stable matrix must
be positive.

It is easy to show that a stable real matrix A has either positive diagonal elements
or it at least one positive diagonal element and one positive off-diagonal element.
We then show that for any stable set { of n complex numbers, n > 1, such that ¢
is symmetric with respect to the real axis, there exists a real stable n x n matrix A
with exactly two positive entries such that o(A) = (.



The stable n x n matrix with exactly two positive entries, whose existence is
proven in Section 2, has (n — 1)? zeros in it. In Section 3 we prove that for any
stable set ¢ of n complex numbers, n > 1, such that ( is symmetric with respect to
the real axis, there exists a real stable n x n matrix A with two positive entries and
all other entries negative such that o(A) = (.

In Section 4 we suggest some alternative approaches to obtain the results of
Section 2.

2 Positive entries of stable matrices

Our aim in this Section is to show that for any stable set { of n complex numbers,
n > 1, consisting of real numbers and conjugate pairs, there exists a real stable
n X n matrix A with exactly two positive entries such that o(A) = (. We shall first
show that every real stable matrix of order greater than 1 has at least two positive
elements. In fact we show more than that, that is, that for a stable real matrix A
either all diagonal elements of A are positive or A must have at least one positive
entry on the main diagonal and one off the main diagonal.

Notation 2.1 For a set ¢ = {(1,...,(,} of complex numbers we denote by
51(€)s - .., 8r(C) the elementary symmetric functions of ¢, that is,

Sk(C): Z CZlCZ}m k:]-a"')n'

1<i)<..<ip<n

Also, we let s0(¢) = 1 and s(¢) = 0 whenever k > n or k < 0.

Lemma 2.2 Let ¢ = {(1,...,(} C C have positive elementary symmetric
functions. Then ( contains no nonpositive real numbers.

Proof. Note that ¢ has positive elementary symmetric functions if and only
if the polynomial p(x) =[], (z + () has positive coefficients. It follows that p(z)
cannot have nonnegative roots, implying that none of the (;’s is a nonpositive real
number. O

Notation 2.3 For F = R, C, the fields of real and complex numbers respectively,
we denote by M, (F) the algebra of n x n matrices with entries in F. For A = (a;;)} €
M, (F) we denote by tr A the trace of A, that is, the sum Y ;" | aj;.

Proposition 2.4 Let A = (ai;)T € My(R), and assume that o(A) has positive
elementary functions. Then either all the diagonal elements of A are positive or A
has at least one positive diagonal element and one positive off-diagonal element.

Proof. As is well known, the trace of A is equal to s;(0(A)), and so we
have Y7 | a; > 0, and it follows that at least one diagonal element of A is positive.
Assume that that all off-diagonal elements of A are nonpositive. Such a real matrix
is called a Z-matriz. Since the elementary symmetric functions of o(A) are positive,
it follows by Lemma 2.2 that A has no nonpositive real eigenvalues. Since a Z-
matrix has no nonpositive real eigenvalues if and only if all its principal minors are
positive, e.g. [1, Theorem (6.2.3), page 134], it follows that all the diagonal elements
of A are positive. O



Notation 2.5 For a set ¢ = {¢4,...,¢a} of complex numbers we denote by ¢
be the set {(y,...,(,}

Note that ¢ = ¢ if and only if all elementary symmetric functions of ¢ are real.

The following result is well known, and we provide a proof for the sake of com-
pleteness.

Proposition 2.6 Let ( be a stable set of complex numbers such that { = (.
Then ¢ has positive elementary symmetric functions.

Proof. We prove our claim by induction on the cardinality n of (. For
n = 1,2 the result is trivial. Assume that the result holds for n < m where m > 2,
and let n = m + 1. Assume first that { contains a positive number A. Note that
the set ¢’ = ¢\ {)\} is stable and ¢’ = ¢’. By the inductive assumption we have
sp(¢")>0,k=1,... ,n—1, and it follows that

s6(C) = sk(¢) + Asp_1(¢') >0, k=1,...,n.

If ¢ does not contain a positive number then it contains a conjugate pair N
where Re(\) > 0. Note that the set ¢/ = ¢\ {\, A} is stable and ¢’ = (/. By the
inductive assumption we have s;(¢') >0,k =1,... ,n — 2, and it follows that

51(0) = sk (") + 2Re(N)sp_1(¢') > 0+ |)\\28k_2(C’) >0, k=1,...,n.
proving our claim. O

It is easy to show that the converse of Proposition 2.6 holds when the cardinality
of ( is less than or equal to 2. However, the converse does not hold for larger sets, as
is demonstrated by the nonstable set ( = {3, —1+3i, —1—3i }, whose elementary
symmetric functions are positive.

As a corollary of Propositions 2.4 and 2.6 we obtain

Corollary 2.7 Let A be a stable real square matriz. Then either all the diagonal
elements of A are positive or A has at least one positive diagonal element and one
positive off-diagonal element.

In order to prove the existence of a real stable n x n matrix A with exactly two
positive entries, we introduce:

Notation 2.8 Let n be a positive integer. For a set ¢ of n complex numbers
we denote by C1((), C2(¢) and C3(¢) the matrices

000 ... 000 (=)0
100 ... 000 (=1)"2s5,_1(C)
010 ... 00 0 (=1)"3s,_

Ci(¢) = T R Y :8 ¢ ’
000 010 —s52(Q)
000 0 0 1 s1(¢



0 0 0 0 0 0 5,0
-1 0 0 0 0 0 s,-1(0)
0 -1 0 0 0 0 s,
CQ(C): . . ’ 2(§) ’
0 0 0 0 =1 0  s2(¢)
0 0 0 0 0 -1 s1(¢
0 0 0 0 0 0 —s,(0)
-1 0 0 0 0 0 —s,-1(0)
0 -1 0 0 0 0 —s,_
C3(¢) = : . S | :2(0
0 0 0 ... 0 -1 0 —s(0
0 0 0 ... 0 0 1 s

Recall that A € M,,(C) is called nonderogatory if for every eigenvalue \ of A
the Jordan canonical form of A has exactly one Jordan block corresponding to .

Equivalently, the minimal polynomial of A is equal to the characteristic polynomial
of A.

Lemma 2.9 Let n be a positive integer, n > 1, and let ¢ = {(1,...,(} € C.
Then the matrices C1(C), C2(¢) and C3(C) are diagonally similar, are nonderogatory
and share the spectrum (.

Proof. The matrix C1(({) is the companion matrix of the polynomial ¢(z) =
[Ty (z — ¢). Hence o(C1(¢)) = ¢ and C1(() is nonderogatory. Clearly

C3(¢) = D1C1(¢)Dy1, where Dy = diag((—1)*, (—1)2, (=DM,

and
CQ(C) = DQCQ(C)DQ, where DQ = diag(l, 1, ey 1, —1).

Our claim follows. O

In view of Lemma 2.9, the claim of Proposition 2.6 on C3(() yields the following
main result of this section.

Theorem 2.10 Let ( be a set of n complex numbers, n > 1, such that { = (. If¢
has positive elementary symmetric functions then there exists a matrix A € My (R)
such that 0(A) = ¢ and A has one positive diagonal entry and one positive off-
diagonal entry, while all other entries of A are nonpositive. In particular, every
nonderogatory stable matriz A € My(R) is similar to a real n X n matriz which has
exactly two positive entries.

3 Eliminating the zero entries

The proof of Theorem 2.10 uses the matrix C3(¢) which has (n — 1)? zero entries.
The aim of this section is to strengthen Theorem 2.10 by replacing C5(¢) with a real
matrix A, having exactly two positive entries, all other entries being negative and

o(A) =¢.



We start with a weaker result, which one gets easily using perturbation tech-
niques. Let A € My(R) and let || - || : Mp(R) — [0,00) be the la operator norm.
Since the eigenvalues of a A depend continuously on the entries of the A, it follows
that if o(A) has positive elementary symmetric functions, then for £ > 0 sufficiently
small, every matrix A € M,(R) with |A — A|| < ¢ has a spectrum o(A) with posi-
tive elementary symmetric functions. Also, if A is stable then for ¢ > 0 sufficiently
small, every matrix A € M, (R) with | A — A|| < ¢ is stable. Consequently, it follows
immediately from Theorem 2.10 that

Corollary 3.1 For a positive integer n > 1 there exists a matriz A € My(R)
such that o(A) has positive elementary symmetric functions and A has one positive
diagonal entry and one positive off-diagonal entry, while all other entries of A are
negative. Furthermore, the matriz A can be chosen to be stable.

In the rest of this sectio we prove that one can find such a matrix A with any
prescribed stable spectrum.

Lemma 3.2 Let ¢ be a set of n compler numbers, n > 1, such that { = (,

and assume that ¢ has positive elementary symmetric functions. Suppose that there
exists X € My (R) such that

(C3(0);; =0 = (C5(0)X — XC5(¢);; <0,  ij=1,...,n.

Then there exist A € My (R) similar to C3(¢) such that any, ann—1 > 0 and all other
entries of A are negative.

Proof. Assume the existence of such a matrix X. Define the matrix T'(t) =
I-tX, teR. Letr=|X]||~! Using the Neumann series expansion, e.g. [2, page
7), for |t| < r we have T(t)~! = 322 ¢/ X", The matrix A(t) = T(t)C5()T ()~
thus satisfies

A(t) = C5(¢) + H(C3()X — XC3(¢)) + O(t?).

Therefore, there exists ¢ € (0,r) such that for ¢ € (0, ) the matrix A(t) has positive
entries in the (n,n — 1) and (n,n) positions, while all other entries of A(t) are
negative. O

The following lemma is well known, and we provide a proof for the sake of
completeness.

Lemma 3.3 Let A, B € My (F) where F is R or C. The following are equivalent.
(i) The system AX — XA = B is solvable over F.
(ii) For every matriz E € My (F) that commutes with A we have tr BE = 0.

Proof. (i)==(ii). Let E € My(F) commute with A. Then
tr BE = tr(AX — XA)E =tr AXE —trXFA=tr XEA—-trXEA = 0.

(i)=(ii). Consider the linear operator L : M,(F) — M,(F) defined by L(X) =
AX — X A. Tts kernel consists of all matrices in M, (F) commuting with A. By
the previous implication, the image of L is contained in the subspace V' of M, (F)
consisting of all matrices B such that tr BE = 0 whenever E € kernel(L). Since
clearly dim(V') = n? — dim(kernel(L)) = dim(image(L)), it follows that image(L) =
V. O



Theorem 3.4 Let ¢ be a set of n complex numbers, n > 1. Let bjj, i =1,... ,n,
j=1,...,n—1 be given complex numbers, and let C = Ci(() for some k € {1,2,3}.

Then there exists unique by, € C, 1 =1,... ,n, such that for the matriz B = (bij)T €
M, (C) the system CX — XC = B is solvable. Furthermore, if ( = ¢ and b;; is real
fori=1,... n,j=1,... ,n—1, then the matriz B is real, and the solution X can

be chosen to be real.

Proof. Since C5(¢) and C5(() are diagonally similar to C(¢), where the
corresponding diagonal matrices are real, it is enough to prove the theorem for
C = C1(¢). So, let C' = C1(¢) and consider the system

CX - XC = B. (3.1)

As is well known, e.g. [3, Corollary 1, page 222], since C' = C1(() is nonderogatory,
every matrix that commutes with C' is a polynomial in C'. Therefore, it follows from
Lemma 3.3 that the system (3.1) is solvable if and only if

trBC* =0, k=0,...,n—1. (3.2)
Denote vy = byy1-km, £ = 1,...,n. Note that (3.2) is a system of n equations
in the variables vy, ... ,v,. Furthermore, it is easy to verify that the first nonzero

element in the nth row of C* is located at the position (n,n — k) and its value is 1.
It follows that if we write (3.2) as Ev = f, where E € M,(C) and v = (v1,... ,n)7,
then F is a lower triangular matrix with 1’s along the main diagonal. It follows that
the matrix B is uniquely determined by (3.2).

If (=Cand by isreal fori =1,... ,n,5=1,... ,n— 1 then C = C1(() is real and
hence the system (3.2) has real coefficients, and the uniquely determined B is real.
It follows that the system (3.1) is real, and so it has a real solution X. 0

If we choose the numbers b;;,i=1,... ,n,7=1,... ,n—1, to be negative, then
Lemma 3.2 and Theorem 3.4 yield

Corollary 3.5 Let ¢ be a set of n complex numbers, n > 1, and assume that
the elementary symmetric functions of ¢ are positive. Then there exists a matriz
A € Mp(R) with 0(A) = ¢ such that A has one positive diagonal element, one
positive off-diagonal element and all other entries of A are negative. In particular,
the above holds for stable sets ¢ such that ¢ = (.

4 Other types of companion matrices

Another way to prove some of the results of Section 2 is to parameterize the com-
panion matrices in Notation 2.8. Consider

0O 00 -0 0 0 7
G 0 0 0o 0 0
0O 0 O 0 fBn_s 0 Yn—2
0 0 O 0 0 [Bn—2 Y-



From looking at the directed graph of C'is

one can immediately see that there is exactly one simple cycle of length & for 1 <
k < n, that is, (n,... ,n + 1 — k). Therefore, the only nonzero principal minors of
C' are those whose rows and columns are indexed by {k,... ,n}, k=1,... ,n, and
their respective values are (—1)" " y._18y_1 -+ Bn_2 for k < n and v,_; for k = n.
It follows that the characteristic polynomial yo(z) of C' is

xo(r) = 2" — 12"t — 428222 — Y_3Bn—3B8n—27" 3 — ... (4.1)

o= mP1B2 - B2 — Y0 B0B1 - - P2

Using this explicit formula, one can prove directly the claim contained in Lemma
2.9 that the matrices C1(¢), C2(¢) and C5(¢) share the spectrum (.

There are other possibilities to generate companion matrices. For example, con-
sider the matrix

-1 0 0O - 0 0 0 Buo
ﬂn—S 0 0 to 0 0 0 0
S| 0 Buao 0 0 0 0
O 0 0 0 B 0 0
Yn—2 Yn-3 Yn-4 = Y2 M Y O

The directed graph of L is

Again it is clear that there is exactly one simple cycle of length k for any 1 < k < n,
that is, (1) for kK = 1 and (n,k —1,...,1) for 1 < k < n. Therefore, the only
nonzero 1 x 1 principal minor of L is I3 = v,-1, and for 1 < k < n the only



nonzero k X k principal minor of L is the one whose rows and columns are indexed
by {1,...,k —1,n}, and its value is (—1)" *qx_18r_1- - Bn_2. It follows that the
characteristic polynomial xr(z) of L is identical to xc(x). Note that there is no
permutation matrix P with PTCP = L or PTCTP = L.

Now, take the following specific choice of the parameters 3 and ~

—Pn—1 0 0 0 0 0 1

1 0 0 0 0 0 0

Iy = SR vt
0 0 0 e 0 1 0 0

—Pn-2 —Pn-3 —Pn-4 -+ —D2 —p1 —po O

By (4.1), the characteristic polynomial computes to

n
XL1 (QL’) = Z pl/xya
v=0

where p, = 1.

So L; is another kind of companion matrix. Note that L is almost lower triangu-
lar, with only one nonzero element above the main diagonal and one on the main
diagonal.

Another specific choice of the parameters § and v can be used to produce another
direct proof of Theorem 2.10. For a set ¢ of complex numbers with { = ¢ and positive
n n )
elementary symmetric functions, the polynomial ¢(x) = [[(x — ;) = > ¢;2* has
i=1 i=0
coefficients ¢;, 0 < i < n of alternating signs, where ¢, = 1. By (4.1), the polynomial
q(z) is the characteristic polynomial of the matrix

—~Qn-2 Qn-3 —Qn-4 - (D" 3q (=1)"2¢ (—=1)""lgp 0

which has exactly two positive entries, that is, —¢,—1 on the diagonal and 1 in the
right upper corner.
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