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Foreword

In the past ten years, tensors again became a hot topic of research in
pure and applied mathematics. In applied mathematics it is driven by
data which has a few parameters. In pure math. it is quantum
information theory, and multilinear algebra. There are many interesting
numerical and theoretical problems that need to be resolved. Tensors
are related to matrices on one hand and on the other hand are related
to polynomial maps.

To paraphrase Max Noether:
Matrices were created by God and tensors by Devil.
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Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)
> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3
Tensor τ ∈ U1 ⊗ U2 ⊗ U3

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)
or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3
basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,
τ =

∑m1,m2,m3
i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3
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Ranks of tensors

Unfolding tensor: in direction 1:
T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:
dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3
j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =
∑m1

i=1 Ti,1ei,1 (convenient notation)
R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=
∑r

i=1 xi ⊗ yi ⊗ zi ,
(CANDEC, PARFAC)
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Basic facts

FACT I: rank T ≥ max(R1,R2,R3)
Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:
R1,R2,R3 are easily computable
It is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] let
Tk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank one
matrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)
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Generic and typical ranks

Rr (m,n, l) ⊂ Fm×n×l : all tensors of rank ≤ r

Rr (m,n, l) not closed variety for r ≥ 2

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .

generic rank is the rank of a random tensor T ∈ Cm×n×l : grank(m,n, l)

typical rank is a rank of a random tensor T ∈ Rm×n×l .

typical rank takes all the values k = grank(m,n, l), . . . ,mtrank(m,n, l)

In all the examples we know mtrank(m,n, l) ≤ grank(m,n, l) + 1
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Generic rank of Cm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices of
dimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:
fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)

grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl
(m+n+l−2)e

Conjecture grankC(m,n, l) = d mnl
(m+n+l−2)e

for 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1
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Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1
(n,n,n + 2) if n 6= 2 (mod 3),
(n − 1,n,n) if n = 0 (mod 3),
(4,m,m) if m ≥ 4,
(n,n,n) if n ≥ 4
(l ,2p,2q) if l ≤ 2p ≤ 2q and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl
(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:
wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmetic
I checked the conjecture up to m,n, l ≤ 14
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Generic rank III - the real case

For mn ≤ l mtrank(m,n, l) = grank(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)
i=1 ) = Rm×n×l

rank T = grank(m,n, l) for each T ∈ V1
rank T = ρi for each T ∈ Vi
{ρ1, . . . , ρc(m,n,l)} = {grank(m,n, l), . . . ,mtrank(m,n, l)}

mtrank(2,n, l) = grank(2,n, l) = min(l ,2n) if 2 ≤ n < l - one typical rank
mtrank(2,n,n) = grank(2,n,n) + 1 = n + 1 if 2 ≤ n - two typical ranks

For l = (m − 1)(n − 1) + 1 ∃m,n:
c(m,n, l) > 1,mtrank(m,n, l) ≥ grank(m,n, l) + 1

Examples [5]
m = n ≥ 2, l = (m − 1)(n − 1) + 1.
m = n = 4, l = 11,12
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Rank one approximations

Rm×n×l IPS: 〈A,B〉 =
∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =
√
〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of X
PX(T ) =

∑d
i=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑d
i=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :
minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λx
T × x⊗ z = λy, T × x⊗ y = λz
λ singular value, x,y, z singular vectors
How many distinct singular values are for a generic tensor?
(Related result of Cartwright-Sturmfels [1])
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`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)
>‖p := (

∑n
i=1 |xi |p)

1
p

Problem: max‖x‖p=‖y‖p=‖z‖p=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t
2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobenius
theorem?

Yes, for p ≥ 3, No, for p < 3,
Friedland-Gauber-Han [2]
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(R1,R2,R3)-rank approximation of 3-tensors

Fundamental problem in applications:
Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)
3-tensor.

Best (R1,R2,R3) approximation problem:
Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal
||PU1⊗U2⊗U3(T )||.

Relaxation method:
Optimize on U1,U2,U3 by fixing all variables except one at a time
This amounts to SVD (Singular Value Decomposition) of matrices:
Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [2]
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Fast low rank approximation I:
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Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)
Problem: How to choose good I, J?

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,
where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices of
unfolded A in the mode 1,2,3.
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Scaling of nonnegative tensors to tensors with given
row, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:
r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)
> > 0:∑

j,k ti,j,k = ri > 0,
∑

i,k ti,j,k = cj > 0,
∑

i,j ti,j,k = dk > 0∑m
i=1 ri =

∑n
j=1 cj =

∑l
k=1 dk

Find nec. and suf. conditions for scaling:
T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column and
depth sum
Solution: Convert to the minimal problem:
minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑
i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to a
solution of the scaling problem (Lagrange multipliers)
fT is convex
fT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.
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Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalities
r>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm
True for matrices too
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ρtrop(F) - maxplus eigenvalue

if F weakly irreducible then F has positive tropical eigenvector
maxi2,...,id fi,i2,...,id xi2 . . . xid = λxd−1

i , i ∈ [n],x > 0

generalization of Engel-Schneider [3], (Collatz-Wielandt)

ρtrop(F) = inf(t1,...,tn)>∈Rn maxi1,...,id e−dti1+
∑d

j=1 tij fi1,...,id

Friedland 1986: ρtrop(A) (maximal tropical eigenvalue)
is the maximum geometric average of cycle products of A ∈ Rn×n

+ .

d − 1 cycle on [m] vertices is d − 1 regular strongly connected digraph
D = ([m],A),
i.e. indegree and outdegree of each vertex is d − 1,
i.e. the digraph adjacency matrix A(D) ∈ Zm×m

+ has row and column
sum d − 1.

Friedland-Gaubert: ρtrop(F) is the maximum geometric average of
cycle products of F ∈ ((Rn)⊗d)+
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Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:
phylogenic trees and their invariants [1]:
Characterize tensors of border rank at most 4 in C4×4×4

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfy
X (adjZ )Y = Y (adjZ )X - equations of degree 5
Landsberg-Manivel showed that there is an additional set of degree 6
equations

Degree 9 symmetrization conditions for 3× 3× 4 subtensor of T

Friedland [1] one needs a equations of degree 16
Friedland-Gross [3]: 5,6,9 degrees suffice
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