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Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)
> ∈ Fn,

matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l ,

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m,n, l)

or decomposable tensor x⊗ y⊗ z

rank T minimal r :

T =
∑r

i=1 xi ⊗ yi ⊗ zi ,

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .
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Notations

Cm×n×l := Cm ⊗ Cn ⊗ Cl consists of T = [ti,j,k ]
m,n,l
i=j=k=1

Vr (m,n, l) ⊂ Cm×n×l the closure of 3-mode tensors of rank r at most

PVr (m,n, l) = Secr (Pm−1 × Pm−1 × Pl−1).

Ir (m,n, l) ⊂ C[Cm×n×l ] the ideal defining Vr (m,n, l).

T3(T ) ⊂ Cm×n subspace spanned by l frontal sections
[ti,j,k ]

m,l
i=j=1, k = 1, . . . , l .

Similarly T1(T ) ⊂ Cn×l , T2(T ) ⊂ Cm×l

Sn(C) - symmetric n × n matrices
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A short history of the salmon conjecture

At the IMA workshop in March 2007, Elizabeth Allman offered an
Alaskan speciality: smoked Copper river salmon for determining the
generators of I4(4,4,4).

V4(4,4,4) appears as a basic bloc in molecular phylogenetics [3], in
which DNA sequences are used to infer evolutionary trees describing
the descent of species from a common ancestor. C4 comes from 4
nucleotides A;C; G; T. 3-mode tensor comes from an ancestor splitting
two species, since all internal nodes of an evolutionary tree are of
degree 3.
In Pachter-Sturmfels book [2, Conjecture 3.24] states I4(4,4,4) is
generated by polynomials of degree 5 and 9. The degree 5 are coming
from Strassen’s commutative conditions [3, 1], degree 9 from
Strassen’s result: V4(3,3,3) is a hypersurface of degree 9.
In view of degree 6 polynomials in I4(4,4,4) found by Landsberg and
Manivel [5] Sturmfels revised the Salmon conjecture:
I4(4,4,4) is generated by polynomials of degree 5,6,9 [4, §2].
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Tensors of rank m in Cm×m×l

Strassen’s commutative conditions

T ∈ Cm×m×l , rank T = m, W = span(T1,3, . . . ,Tl,3) ∈ Cm×m

spanned by u1v>1 , . . . ,umv>m.

generic case: ∃P,Q ∈ GL(m,C) PWQ
subspace of commuting of diagonal matrices.
If W contains invertible Z then
(PXQ)(PZQ)−1(PYQ) = (PYQ)(PZQ)−1(PXQ)⇒
X (adjZ )Y = Y (adjZ )X
for all X ,Y ∈W
equations of degree 5 for m = 4

similarly Cr (X ) ˜Cm−r (Z )Cr (Y ) = Cr (Y ) ˜Cm−r (Z )Cr (X )
equations of degree m + r for r = 1, . . . , bm

2 c.

For m = 4, r = 2 polynomials of degree 6 but no new info.
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Strassen and Manivel-Landsberg conditions

Strassen 1983 V4(3,3,3) is a hypersurface of degree 9

1
det Z

det (X (adj Z )Y − Y (adj Z )X ) = 0

X ,Y ,Z are three sections of T = [ti,j,k ] ∈ C3×3×3

Landsberg-Manivel 2004: I4(3,3,4) contains polynomials of degree 6.
Study the action of GL(3,C)×GL(3,C)×GL(4,C) on C[C3×3×4]
use Schur duality and symbolic computations to conclude existence of
polynomials of degree 6.

Bates and Oeding[4] constructed explicitly using symbolic
computations 10 polynomials of degree 6 in I4(3,3,4).
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Symmetrization conditions for Vm+1(m,m, l) [1]

For a generic T = [xi,j,k ] ∈ Cm×m×l , Xk = [ti,j,k ]mm
i=j=1 of rank m + 1

T3(T ) ∈ Cm×m generated by u1v>1 , . . . ,um+1v>m+1,
any m vectors out of u1, . . . ,um+1 or v1, . . . ,vm+1 linearly independent

∃P,Q ∈ GL(m,C)⇒ Puiv>i Q> = eie>i for i = 1, . . . ,m
and Pum+1v>m+1Q> = ww>.

∃L,R ∈ GL(m,C) such that LT3(T ),T3(T )R ∈ Sn(C) (Symcon)
LXi − (LXi)

> = 0, i = 1, . . . , l (Lsymcon): ( l(m(m−1)
2 ) linear equation in

entries of L
XiR − (XiR)> = 0, i = 1, . . . , l (Rsymcon): ( l(m(m−1)

2 ) linear equation in
entries of R
and LR> = R>L = 1

n tr(LR>)In - (LRcond)
Existence of nonzero L,R: entries of T satisfy polynomial equations of
degree m2

(LRcond) yield polynomial equations of degree 2(m2 − 1) when
l(m(m−1)

2 ≥ m2.
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Characterization of V4(3,3,4)

Generic subspace W ⊂ Sm(C),dim W = m(m−1)
2 + 1 intersects variety

of symmetric matrices of rank 1 at least at m(m−1)
2 + 1 lin. ind. mat.

Each T ∈ C3×3×4 symmetric in the first two indices is in V4(3,3,4)

Thm[1]: V4(3,3,4) characterized by (Lsymcon) - (Rsymcon) and
(LRcond) degrees 9,16

Outline of proof: 1) assume only (Lsymcon) - (Rsymcon).
R,L ∈ GL(3,C) for generic T hence T ∈ V4(3,3,4)

Rest of proof: analyze cases where L,R are nonzero singular
All cases except the following are fine
A.I.3[1]: R,L are rank one matrices

(LRcond) (degree 16) yield LR> = R>L = 0⇒ T ∈ V4(3,3,4)
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Friedland-Gross simplification [2]

Assume A.I.3 and either LR> 6= 0 or R>L 6= 0.

Change bases to get L = e3e>3 and R ∈ {e2e>2 ,e2e>3 ,e3e>2 ,e3e>3 }
In first 3 cases for R T ∈ V4(3,3,4)

R = e3e>3 ⇒ Xk =

 x1,1,k x1,2,k 0
x2,1,k x2,2,k 0

0 0 x3,3,k

 , k = 1,2,3,4,

It is shown in [1] that most T in V5(3,3,4) \ V4(3,3,4)
10 polynomials [4] are x3,3,kx3,3,l f (X ) = 0,1 ≤ k ≤ l ≤ 4

f (X ) := det


x1,1,1 x1,2,1 x2,1,1 x2,2,1
x1,1,2 x1,2,2 x2,1,2 x2,2,2
x1,1,3 x1,2,3 x2,1,3 x2,2,3
x1,1,4 x1,2,4 x2,1,4 x2,2,4


So T ∈ V4(3,3,4) since for X ∈ C2×2×4: rank X ≤ 4
and rank X ≤ 3 if dim T3(X ) ≤ 3.
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From V4(3,3,4) to V4(4,4,4)

Manivel-Landsberg[1]: Cor. 5.6: Let T ∈ C4×4×4 satisfies Strassen’s
commutative conditions of degree 5. Then either T ∈ V4(4,4,4) or
there exists p ∈ {1,2,3},u,v ∈ C4 \ {0} such that
u>Tp(T ) = 0>,Tp(T )v = 0.
I.e. after change of bases and permuting the factors of C4 T ∈ C3×3×4

Prf. is wrong as Prop. 5.4 wrong.

7 pages of [1] devoted to proof of Corollary 5.6.

[1] characterizes subspace U ⊂ Cm×m where most of the matrices are
of rank m − 1 and satisfy Strassen’s commutative condition.
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