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Basic notions

scalar a € F, vector X = (x1,...,xn)| € F”,

matrix A = [a;] € F™*",

3-tensor T = [t; ] € F™ ™,

Rank one tensor & x = Xi¥jzk, (I,j,k) = (1,1,1),...,(m,n,[)

or decomposable tensorx @y ® z

rank 7 minimal r:

T=Yi1XiQY 0z,

Border rank of 7 the minimum k s.t. 7 is a limit of 7;,j € N, rank T; = k.
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cmxnxl .= M@ C" @ C' consists of T = [t 4727, _,

Vi(m, n, 1) c C™ ™! the closure of 3-mode tensors of rank r at most
PV,(m,n,l) = Sec,(P" " x P! x PI=1).

I,(m, n, ) c C[C™ "] the ideal defining V,(m,n, /).

T3(7) C me” subspace spanned by / frontal sections
[t/,/k] i—j= 1, =1,...,1

Similarly T{(T) c C™/, To(T) c C™!

Sn(C) - symmetric n x n matrices
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A short history of the salmon conjecture

At the IMA workshop in March 2007, Elizabeth Allman offered an
Alaskan speciality: smoked Copper river salmon for determining the
generators of I4(4,4,4).
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A short history of the salmon conjecture

At the IMA workshop in March 2007, Elizabeth Allman offered an
Alaskan speciality: smoked Copper river salmon for determining the
generators of I4(4,4,4).

V4(4,4,4) appears as a basic bloc in molecular phylogenetics [3], in
which DNA sequences are used to infer evolutionary trees describing
the descent of species from a common ancestor. C* comes from 4
nucleotides A;C; G; T. 3-mode tensor comes from an ancestor splitting
two species, since all internal nodes of an evolutionary tree are of
degree 3.
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A short history of the salmon conjecture

At the IMA workshop in March 2007, Elizabeth Allman offered an
Alaskan speciality: smoked Copper river salmon for determining the
generators of I4(4,4,4).

V4(4,4,4) appears as a basic bloc in molecular phylogenetics [3], in
which DNA sequences are used to infer evolutionary trees describing
the descent of species from a common ancestor. C* comes from 4
nucleotides A;C; G; T. 3-mode tensor comes from an ancestor splitting
two species, since all internal nodes of an evolutionary tree are of
degree 3.

In Pachter-Sturmfels book [2, Conjecture 3.24] states I4(4,4,4) is
generated by polynomials of degree 5 and 9. The degree 5 are coming
from Strassen’s commutative conditions [3, 1], degree 9 from
Strassen’s result: Vy4(3, 3, 3) is a hypersurface of degree 9.
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A short history of the salmon conjecture

At the IMA workshop in March 2007, Elizabeth Allman offered an
Alaskan speciality: smoked Copper river salmon for determining the
generators of I4(4,4,4).

V4(4,4,4) appears as a basic bloc in molecular phylogenetics [3], in
which DNA sequences are used to infer evolutionary trees describing
the descent of species from a common ancestor. C* comes from 4
nucleotides A;C; G; T. 3-mode tensor comes from an ancestor splitting
two species, since all internal nodes of an evolutionary tree are of
degree 3.

In Pachter-Sturmfels book [2, Conjecture 3.24] states I4(4,4,4) is
generated by polynomials of degree 5 and 9. The degree 5 are coming
from Strassen’s commutative conditions [3, 1], degree 9 from
Strassen’s result: Vy4(3, 3, 3) is a hypersurface of degree 9.

In view of degree 6 polynomials in I4(4,4,4) found by Landsberg and
Manivel [5] Sturmfels revised the Salmon conjecture:

I4(4,4,4) is generated by polynomials of degree 5, 6,9 [4, §2].
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Tensors of rank m in CM>mx/

Strassen’s commutative conditions

T e C™<mx!rank T = m, W = span(Ty 3,..., Tj3) € C™™
spanned by usvy, ..., umvp,.
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Tensors of rank m in CM>mx/

Strassen’s commutative conditions

T e C™<mx!rank T = m, W = span(Ty 3,..., Tj3) € C™™
spanned by usvy, ..., umvp,.

generic case: 4P, Q € GL(m,C) PWQ

subspace of commuting of diagonal matrices.

If W contains invertible Z then
(PXQ)(PZQ)~'(PYQ) = (PYQ)(PZQ)~'(PXQ) =
X(adj2)Y = Y(adj2)X

forall X, Y eW

equations of degree 5 for m=4
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Tensors of rank m in CM>mx/

Strassen’s commutative conditions

T e C™<mx!rank T = m, W = span(Ty 3,..., Tj3) € C™™
spanned by usvy, ..., umvp,.

generic case: 4P, Q € GL(m,C) PWQ

subspace of commuting of diagonal matrices.

If W contains invertible Z then
(PXQ)(PZQ)~'(PYQ) = (PYQ)(PZQ)~'(PXQ) =
X(adj2)Y = Y(adj2)X

forall X, Y eW

equations of degree 5 for m=4

similarly C(X)Cm-r(Z)Cr(Y) = Cr(Y)Cm-r(Z)Cr(X)
equations of degree m+rforr=1,... [ 3].

Shmuel Friedland University of lllinois at ChicA Proof of the Set-theoretic Versionof a Salmc




Tensors of rank m in CM>mx/

Strassen’s commutative conditions

T e C™<mx!rank T = m, W = span(Ty 3,..., Tj3) € C™™
spanned by usvy, ..., umvp,.

generic case: 4P, Q € GL(m,C) PWQ

subspace of commuting of diagonal matrices.

If W contains invertible Z then
(PXQ)(PZQ)~'(PYQ) = (PYQ)(PZQ)~'(PXQ) =
X(adj2)Y = Y(adj2)X

forall X, Y eW

equations of degree 5 for m=4

similarly C(X)Cm-r(Z)Cr(Y) = Cr(Y)Cm-r(Z)Cr(X)
equations of degree m+rforr=1,... [ 3].

For m = 4, r = 2 polynomials of degree 6 but no new info.
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Strassen and Manivel-Landsberg conditions

Strassen 1983 V4(3, 3, 3) is a hypersurface of degree 9

R

o5 det (X(adj 2)Y — Y(adj 2)X) = 0

X.Y,Z are three sections of T = [t; 4] € C3*33
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Strassen and Manivel-Landsberg conditions

Strassen 1983 V4(3, 3, 3) is a hypersurface of degree 9

R

o5 det (X(adj 2)Y — Y(adj 2)X) = 0

X.Y,Z are three sections of T = [t; 4] € C3*33

Landsberg-Manivel 2004: I4(3, 3,4) contains polynomials of degree 6.
Study the action of GL(3,C) x GL(3,C) x GL(4,C) on C[C3*3*4]

use Schur duality and symbolic computations to conclude existence of
polynomials of degree 6.
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Strassen and Manivel-Landsberg conditions

Strassen 1983 V4(3, 3, 3) is a hypersurface of degree 9

1 . .
et Zdet (X(adjZ2)Y — Y(adj Z2)X) =0

X.Y,Z are three sections of T = [t; 4] € C3*33

Landsberg-Manivel 2004: I4(3, 3,4) contains polynomials of degree 6.
Study the action of GL(3,C) x GL(3,C) x GL(4,C) on C[C3*3*4]

use Schur duality and symbolic computations to conclude existence of
polynomials of degree 6.

Bates and Oeding[4] constructed explicitly using symbolic
computations 10 polynomials of degree 6 in /4(3,3,4).
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Symmetrization conditions for Vi, 1(m, m,[) [1]

For a generic T = [xi;x] € C™ ™/, Xy = [t;; «]/27_4 of rank m + 1
T5(7) € C™ ™ generated by uvy, ..., um+1v;+1,. _
any mvectors out of Uy, ..., Upyq Or Vq,...,Vyq linearly independent
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Symmetrization conditions for Vi, 1(m, m,[) [1]

For a generic T = [xi;x] € C™ ™/, Xy = [t;; «]/27_4 of rank m + 1
T3(7) € C™ ™ generated by UtV ..., Unp1V,

any mvectors out of Uy, ..., Upyq Or Vq,...,Vyq linearly independent
3P,Q€ GL(m,C) = Puyn' QT =ee/ fori=1,....m

and Puy v QT =ww'.
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Symmetrization conditions for Vi, 1(m, m,[) [1]

For a generic T = [xi;x] € C™ ™/, Xy = [t;; «]/27_4 of rank m + 1
T3(7) € C™ ™ generated by UtV ..., Unp1V,

any mvectors out of Uy, ..., Upyq Or Vq,...,Vyq linearly independent
3P,Q€ GL(m,C) = Puyn' QT =ee/ fori=1,....m

and Puy v QT =ww'.

3L, R € GL(m, C) such that LT3(7), T3(7)R € Sn(C) (Symcon)

LX;— (LX))T =0,i=1,...,/(Lsymcon): (W) linear equation in
entries of L

XiR—(X;R)T =0,i=1,....1 (Rsymcon): (™1 jinear equation in
entries of R

and LRT = RTL = 1 t(LRT)l, - (LRcond)
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Symmetrization conditions for Vi, 1(m, m,[) [1]

For a generic T = [xi;x] € C™ ™/, Xy = [t;; «]/27_4 of rank m + 1
T5(7) € C™ ™ generated by uvy, ..., um+1v;+1,. _
any mvectors out of Uy, ..., Upyq Or Vq,...,Vyq linearly independent

3P,Q€ GL(m,C) = Puyn' QT =ee/ fori=1,....m
and Puy v QT =ww'.

3L, R € GL(m, C) such that LT3(7), T3(7)R € Sn(C) (Symcon)

LX;— (LX))T =0,i=1,...,/(Lsymcon): (W) linear equation in
entries of L

XiR—(X;R)T =0,i=1,....1 (Rsymcon): (™1 jinear equation in
entries of R

and LRT = RTL = 1 «(LRT)l, - (LRcond)

Existence of nonzero L, R: entries of T satisfy polynomial equations of
degree m?

(LRcond) yield polynomial equations of degree 2(m? — 1) when
/(m(rzn—1) > m.
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Characterization of V4(3,3,4)

M + 1 intersects variety

m(’" D 41 lin. ind. mat.

Generic subspace W C Sp(C),dimW =
of symmetric matrices of rank 1 at least at
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Characterization of V4(3,3,4)

M + 1 intersects variety

m(’" D 41 lin. ind. mat.

Generic subspace W C Sp(C),dimW =
of symmetric matrices of rank 1 at least at

Each 7 € C3*3%4 symmetric in the first two indices is in V4(3,3,4)
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Characterization of V4(3,3,4)

Generic subspace W C Sp(C),dimW = ™= | 1 intersects variety
of symmetric matrices of rank 1 at least at m(m D 4 1 lin. ind. mat.

Each 7 € C3*3%4 symmetric in the first two indices is in V4(3,3,4)

Thm[1]: V4(3,3,4) characterized by (Lsymcon) - (Rsymcon) and
(LRcond) degrees 9, 16
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Characterization of V4(3,3,4)

Generic subspace W C Sp(C),dimW = ™= | 1 intersects variety
of symmetric matrices of rank 1 at least at m(m D 4 1 lin. ind. mat.

Each 7 € C3*3%4 symmetric in the first two indices is in V4(3,3,4)

Thm[1]: V4(3,3,4) characterized by (Lsymcon) - (Rsymcon) and
(LRcond) degrees 9, 16

Outline of proof: 1) assume only (Lsymcon) - (Rsymcon).
R, L € GL(3,C) for generic T hence T € V4(3,3,4)
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Characterization of V4(3,3,4)

m(m 1)

Generic subspace W C Sp(C),dimW =
of symmetric matrices of rank 1 at least at

+ 1 intersects variety
m(’" D 4 1 lin. ind. mat.

Each 7 € C3*3%4 symmetric in the first two indices is in V4(3,3,4)

Thm[1]: V4(3,3,4) characterized by (Lsymcon) - (Rsymcon) and
(LRcond) degrees 9, 16

Outline of proof: 1) assume only (Lsymcon) - (Rsymcon).
R, L € GL(3,C) for generic T hence T € V4(3,3,4)

Rest of proof: analyze cases where L, R are nonzero singular
All cases except the following are fine
A.l.3[1]: R, L are rank one matrices
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Characterization of V4(3,3,4)

m(m 1)

Generic subspace W C Sp(C),dimW =
of symmetric matrices of rank 1 at least at

+ 1 intersects variety
m(’" D 4 1 lin. ind. mat.

Each 7 € C3*3%4 symmetric in the first two indices is in V4(3,3,4)

Thm[1]: V4(3,3,4) characterized by (Lsymcon) - (Rsymcon) and
(LRcond) degrees 9, 16

Outline of proof: 1) assume only (Lsymcon) - (Rsymcon).
R, L € GL(3,C) for generic T hence T € V4(3,3,4)

Rest of proof: analyze cases where L, R are nonzero singular
All cases except the following are fine

A.l.3[1]: R, L are rank one matrices

(LRcond) (degree 16) yield LRT = RTL=0= T € V4(3,3,4)
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.
Change bases to get L = ege; and R € {eze, ,eze; ,eze, ,eze; }
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.

Change bases to get L = ege; and R € {eze, ,eze; ,eze, ,eze; }
In first 3 cases for R T € V4(3,3,4)
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.

Change bases to get L = ege; and R € {eze, ,eze; ,eze, ,eze; }
In first 3 cases for R T € V4(3,3,4)

Xi1k X2k O

Xo1k Xopk O , k=1,23,4,
0 0 X3737k

H:e3eg:>Xk:
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.

Change bases to get L = ege; and R € {eze, ,eze; ,eze, ,eze; }
In first 3 cases for R T € V4(3,3,4)

Xi1k X2k O

Xo1k Xopk O , k=1,23,4,
0 0 X3737k

It is shown in [1] that most 7 in V5(3,3,4) \ V4(3,3,4)

H:e3eg:>Xk:
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.
Change bases to get L = ege; and R € {eze, ,eze; ,eze, ,eze; }
In first 3 cases for R T € V4(3,3,4)

X1ak X2k O
R= 939; = Xk = X2 1,k X222k 0 , k = 1,2,3,4,
0 0 X3,3,

k
It is shown in [1] that most T in V5(3, 3, 4)\ V4(3,3,4)
10 polynomials [4] are X33 kX3 3,/f(X) =0,1 <
X111 X121 Xo11 X221
f(X) = det X112 X122 X212 X222
X113 X123 X213 X223
X114 X124 Xo14 Xo24
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Friedland-Gross simplification [2]

Assume A.l.3 and either LRT #0or RTL # 0.
Change bases to get L = ege; and R € {eze, ,eze; ,eze, ,eze; }
In first 3 cases for R T € V4(3,3,4)

X1ak X2k O
R= 939; = Xk = X2 1,k X222k 0 , k = 1,2,3,4,
0 0 X3,3,

k
It is shown in [1] that most 7 in V5(3, 3, 4)\ V4(3,3,4)
10 polynomials [4] are x3 3 kX3 3/f(X) =0,1 <k </<4
X111 X121 X211 Xo21
f(X) = det X112 X122 X212 X222
X113 X123 X213 X223
X114 X124 Xo14 Xo24
So T € V4(83,3,4) since for X € C2%2*4: rank X’ < 4
and rank X < 3if dimT3(X) < 3.
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From V4(3,3,4) to V4(4,4,4)

Manivel-Landsberg[1]: Cor. 5.6: Let T € C**4*4 satisfies Strassen’s
commutative conditions of degree 5. Then either T € V4(4,4,4) or
there exists p € {1,2,3},u,v € C*\ {0} such that
u'To(7)=0",Ty(T)v=0.

l.e. after change of bases and permuting the factors of C* 7 € C3x3x4
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From V4(3,3,4) to V4(4,4,4)

Manivel-Landsberg[1]: Cor. 5.6: Let T € C**4*4 satisfies Strassen’s
commutative conditions of degree 5. Then either T € V4(4,4,4) or
there exists p € {1,2,3},u,v € C*\ {0} such that
u'To(7)=0",Ty(T)v=0.

l.e. after change of bases and permuting the factors of C* 7 € C3x3x4

Prf. is wrong as Prop. 5.4 wrong.
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From V4(3,3,4) to V4(4,4,4)

Manivel-Landsberg[1]: Cor. 5.6: Let T € C**4*4 satisfies Strassen’s
commutative conditions of degree 5. Then either T € V4(4,4,4) or
there exists p € {1,2,3},u,v € C*\ {0} such that
u'To(7)=0",Ty(T)v=0.

l.e. after change of bases and permuting the factors of C* 7 € C3x3x4

Prf. is wrong as Prop. 5.4 wrong.

7 pages of [1] devoted to proof of Corollary 5.6.

Shmuel Friedland University of lllinois at ChicA Proof of the Set-theoretic Versionof a Salmc



From V4(3,3,4) to V4(4,4,4)

Manivel-Landsberg[1]: Cor. 5.6: Let T € C**4*4 satisfies Strassen’s
commutative conditions of degree 5. Then either T € V4(4,4,4) or
there exists p € {1,2,3},u,v € C*\ {0} such that

l.e. after change of bases and permuting the factors of C* 7 € C3x3x4
Prf. is wrong as Prop. 5.4 wrong.

7 pages of [1] devoted to proof of Corollary 5.6.

[1] characterizes subspace U ¢ C™*™ where most of the matrices are
of rank m — 1 and satisfy Strassen’s commutative condition.
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