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§0. Introduction

Let X be a compact metric space and Γ ⊂ X ×X be a closed set. Set

X∞ =
∞∏
1

Xi, Xi = X, i = 1, ...,

Γ∞ = {(xi)∞1 , (xi, xi+1) ∈ Γ, i = 1, 2, ...}.

Then X∞, Γ∞ are compact metric spaces in the Tychonoff topology. Let σ : X∞ → X∞ be
the shift map. Clearly, σ : Γ∞ → Γ∞. The dynamics of σ

∣∣
Γ∞ is the the dynamics induced

by the graph Γ. Let h(Γ) = h(σ
∣∣
Γ∞) be the entropy of σ restricted to Γ∞. Assume

that X is a finite set set. Then σ
∣∣
Γ

is a subshift of a finite type which is a well studied
subject, e.g. [8]. In this paper I study the case where X is a compact analytic space of
complex dimension n and Γ ⊂ X×X is a graph of a dominating algebraic function. That is,
Γ ⊂ X×X is a closed irreducible complex subspace of dimension n such that the projection
of Γ on the its first and the second component is X. I am mainly concerned with upper
estimates of h(Γ). Following Gromov [6] and Friedland [3] I show h(Γ) ≤ lov(Γ). Here
lov(Γ) is the volume growth of the projections of Γ∞ on the first k coordinates, k = 2, ...,.
In the case that X is Kähler and Γ is the graph of a holomorphic map F : X ×X I prove
rigorously that h(F ) = h(Γ(F )) = logρ(F ) where ρ(F ) is the spectral radius of the induced
action of F on the homology groups of X. (A sketchy proof is given in [3].) Next I consider
finite algebraic maps, i.e. where Γ, X are projective varieties and the projections of Γ on
the first and the second factor is finite to one map. I show that Γ induces a linear operator

1



on the analytic homology of X, i.e. the homology groups generated by analytic cycles. Let
ρa(Γ) be the spectral radius of this linear operator. I then show that lov(Γ) ≤ logρa(Γ).
I conjecture that as in the Kähler case h(Γ) = lov(Γ) = logρa(Γ). In the last section I
discuss the case where the projections of Γ on the first and the second coordinates are
branched nonfinite to one covering. One still has the inequality h(Γ) ≤ lov(Γ) ≤ logρa(Γ).
By iterating this inequality one can improve the upper bound on h(Γ) as in the case of
rational maps F : X → X discussed in [2].

§1. Volumes of certain graphs

Let X be a compact metric space with a metric d : X × X → R+. Then X∞ is a
compact metric space with respect to the metric:

δ((xi)∞1 , (yi)∞1 ) = max
1≤i

d(xi, yi)
2i−1

, (xi)∞1 , (yi)∞1 ∈ X∞.

Let πm : X∞ → Xm =
∏m

1 Xi be the projection on the first m components. Recall that
the shift map σ : X∞ → X∞ is a continuous map given by σ((xi)∞1 ) = (xi)∞2 . Assume
that Γ ⊂ X × X is an arbitrary closed set. It then follows that Γ∞ is a compact set
such that σ : Γ∞ → Γ∞. In what follows I exclude the noninteresting case Γ∞ = ∅. Let
h(Γ) = h(σ, Γ∞) be the entropy of σ

∣∣Γ. Assume that F : X → X is a continuous map.
Set Γ(F ) = {(x, y) : y = F (x), x ∈ X} to be the graph of F . It then follows that h(F )-the
entropy of is equal to h(Γ(F )) [2].

Assume that X is a compact quasi Riemannian manifold. That is, there exists an
open finite cover U = ∪p

1Ui, Ui ⊂ X, i = 1, ..., p, such that the following conditions hold.
Each Ui is a Riemannian manifold which induces a metric di(·, ·) : Ui × Ui → R+. Ui is
locally complete with respect to di. On Ui ∩ Uj the metrics di, dj are equivalent. That is,

dj(x, y) ≤ Ajidi(x, y), di(x, y) ≤ Aijdj(x, y),∀x, y ∈ Ui ∩ Uj , 0 < Aij , Aji.

Thus X is a compact Riemannian manifold if p = 1. For I = {i1, ..., ik}, 1 ≤ i1 < i2 < · · · <
ik ≤ p let UI = ∩j∈IUj . Assume that x, y ∈ X. Set I(x, y) = {j : 1 ≤ j ≤ p, x, y ∈ Uj}.
Let I(x) = I(x, x). If I(x, y) is nonempty define

d(x, y) = min
j∈I(x,y)

dj(x, y).

A straightforward argument shows that our assumptions yield that the above metric can
be extended to X ×X. Note that

d(x, y) ≤ di(x, y) ≤ Ad(x, y), x, y ∈ Ui, A = max
1≤i 6=j≤p

Aij .

Let Y ⊂ X. Then, for ∅ 6= I ⊂ {1, ..., p}, set YI = {y : y ∈ Y, I(y) = I}. Note that YI may
be empty. Observe that

YI ∩ YJ = ∅ for I 6= J, Y = ∪∅6=I⊂{1,...,p}YI .
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It then follows that the sets ∅ 6= YI , ∅ 6= I ⊂ {1, ..., p}, forms a partition of Y . Consider
a nonempty set YI . For i ∈ I let dimi(YI) be the Hausdorff dimension of YI with respect
to the Riemannian metric on Ui. As on UI all the Riemannian metrics are equivalent we
have that dimi(YI) = t, i ∈ I. Thus, dim(YI) = t is the Hausdorff dimension of YI . Let
d ≥ dim(YI). For d > dim(YI) let vold(YI) = 0. For d = dim(YI) denote by vol

(i)
d (YI) the

d-volume of YI with respect to the Riemannian metric on Ui. Set

vold(YI) = mini∈Ivol
(i)
d (YI).

Define dim(Y ) = maxYI 6=∅dim(YI). Assume that d = dim(Y ). Then the volume of Y is
given by

vol(Y ) =
∑

YI 6=∅
vold(YI).

Consider the space Xk. Clearly, Xk is a quasi Riemannian manifold with an open induced
by the product Up = U × · · ·×U . Each element of the open cover Uj1 × · · ·×Ujk

, 1 ≤ ji ≤
p, i = 1, ..., k, is a Riemannian manifold endowed with the Riemannian product metric.
Let Bk(a, r) ⊂ Xk be an open ball of radius r centered at a with respect to the induced
metric on Xk by X:

Bk(a, r) = {x, x = (xi)k
1 , a = (ai)k

1 ∈ Xk,

k∑
1

d(xi, ai)2 < r2.}

In what follows I assume that Γ ⊂ X×X is a closed set with an integer Hausdorff dimension
n > 0. Let vol(Γk) ≤ ∞ be the n dimensional volume of Γk. I shall assume:

vol(Γk) < ∞, k = 2, ..., .

This assumption imply that Γk has Hausdorff dimension n for k = 2, ...,. Set

lov(Γ) = lim sup
k→∞

log vol(Γk)
k

,

Densε(Γk) = inf
a∈Γk

vol(Γk ∩Bk(a, ε)),

lodnε(Γ) = lim inf
k→∞

log Densε(Γk)
k

,

lodn(Γ) = lim
ε→0

lodnε(Γ).

Lemma 1.1 Let X be a compact quasi Riemannian manifold, Γ ⊂ X ×X a closed set of
integer Hausdorff dimension n satisfying vol(Γk) < ∞, k = 2, ...,. Then

h(Γ) ≤ lov(Γ)− lodn(Γ).
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Proof. Let
δj(ξ, η) = max

0≤l≤j−1
δ(σ◦l(ξ), σ◦l(η)) =

max
1≤i

d(xi, yi)
2(i−j)+

, ξ = (xi)∞1 , η = (yi)∞1 ∈ X∞, j = 1, ... .

Here, a+ = max(a, 0), a ∈ R. Fix ε > 0. Let L(k, ε, Γ∞) be the maximal size of (k, ε)
separated set in Γ∞. That is for any finite set E ⊂ Γ∞ with the property ξ, η ∈ E, ξ 6=
η ⇒ δk(ξ, η) > ε we have the inequality Card(E) ≤ L(k, ε, Γ∞). Furthermore, the equality
sign holds for at least one such a set E. The standard definition of h(σ,Γ) is [8, Ch.7]:

h(σ,Γ) = lim
ε→0

lim sup
k→∞

log L(k, ε, Γ∞)
k

.

Let E(k, ε, Γ∞) be a (k, ε) separated set of cardinality L(k, ε,Γ∞). It then follows that

max
1≤i≤k+K(ε)

d(xi, yi) > ε, ξ = (xi)∞1 6= η = (yi)∞1 ∈ E(k, ε, Γ∞), K(ε) = dlog2D − log2εe.

Here D is the diameter of X. In particular the L(k, ε, Γ∞) balls

Bk+K(ε)(πk+K(ε)(ξ),
ε

2
), ξ ∈ E(k, ε,Γ∞)

are disjoint. Hence:

vol(Γk+K(ε)) ≥ L(k, ε,Γ∞)Dens ε
2
(Γk+K(ε)).

Take the logarithm of this inequality, divide by k + K(ε), take limsup of the both sides of
this inequality and let ε tend to zero to deduce the lemma. ¦

For a compact Riemannian manifold this lemma is due to Gromov [Gro]. Our proof
is the proof given in [3].

Let M be a complex Kähler manifold with corresponding (1, 1) form ω induced by the
Hermitian metric dρ2. Assume that X ⊂ M be an irreducible analytic variety of dimension
d. If X is smooth then X is Kähler whose (1, 1) form ω′ and the corresponding Hermitian
metric dρ′2 are the restriction of ω and dρ2 respectively. Let Sing(X) be the set of singular
points of X. Then X\Sing(X) is Kähler with (1, 1) form ω′ and dρ′2 its Hermitian metric.
Since Sing(X) is a proper subvariety of X it folows that for all purposes needed here X
behaves as Riemannian manifold. First note that the induced metric d : X × X → R+

by the metric dρ2 in M is the metric induced by dρ′2 in X\Sing(X) obtained by the
completion of this metric to X. Consider next the following stratification of X

X0 = X, Xi = Sing(Xi−1), i = 1, ..., k,Xk 6= ∅, Sing(Xk) = ∅, X = ∪k
0Xi\Sing(Xi).

Thus, each Xi\Sing(Xi) is Kähler and has the corresponding (1, 1) form ωi and the Her-
mitian metric dρ2

i which are the restrictions of ω and dρ2 respectively to Xi\Sing(Xi).
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By the abuse of notation I consider ωi and dρ2
i as the restrictions of ω′ and dρ′2. The

following lemma is needed in the sequel.

Lemma 1.2. Let M be a Kähler manifold, X ⊂ M be an irreducible analytic subvariety.
Then, for any positive integer n, n ≤ dim(X) there exists a constant C(n,X) so that the
following condition is satisfied. Let Γ ⊂ X ×X be an irreducible analytic subvariety such
that Γ = Γ2, Γk, k = 3, ..., have all complex dimension n . Then

vol(Γk ∩Bk(a, ε)) ≥ C(n,X)ε2n, k = 2, ..., .

Proof. Assume first that X is smooth. Clearly, Γk is an irreducible analytic subvariety of
(complex) dimension n. According to [1, Sec. 5.4.19] the above inequality holds. If X is
not smooth we trivially have that Γk ⊂ Mk and the above inequality still holds. ¦

Let X,O be a compact analytic space. Consult with [4] for the properties of complex
spaces and with [5] for the properties of complex manifolds and projective varieties needed
here. Then one has a finite cover U = ∪p

1Ui of X such that each (Ui,Oi),Oi = O
∣∣Ui is

isomorphic to the model complex space (Ũi, Õi) which is the sheaf of holomorphic functions
over a complex variety Ui ⊂ Cni . (This definition of a complex space is Serre’s definition
which is not the most general definition, i.e. [4, p’13].) For simplicity of notation I will
suppress the reference to the sheaf of a complex space and no ambiguity will arise. I shall
assume that X is irreducible, i.e. X\Sing(X) is connected. As explained above one can
view each Ũi ⊂ Cni as a Riemannian manifold. It then follows that one can view X as
a quasi Riemannian manifold. (To see that consider a cover Û = ∪p

1Ûi, Closure(Ûi) ⊂
Ui, i = 1, ..., p.) Hence, it is possible to aplly all the results obtained so far. Recall that
Y ⊂ X is a complex subspace of X if Ỹi - the isomorphic image of Y ∩ Ui in Ũi is an
analytic subvariety of Ũi. Let Γ ⊂ X ×X be a complex irreducible subspace of dimension
n. Define the quantities

vol(Γk), lov(Γ), Densε(Γk), lodnε(Γ), lodn(Γ)

as above. Combine Lemma 1.1 and Lemma 1.2 to deduce

Theorem 1.3. Let X be a compact complex irreducible space. Assume that Γ ⊂ X ×X
is a compact complex irreducible subspace. Then lodn(Γ) ≥ 0. Hence h(Γ) ≤ lov(Γ).

In the case X is Kähler the above theorem is due to Gromov [6]. Assume that the
assumptions of Theorem 1.3 hold. Suppose furthermore that

dim(Γ) = dim(X), π1(Γ) = π2(Γ) = X.

Then I view Γ ⊂ X × X as a graph of an algebraic function. Indeed, the projections
πi : Γ → X, i = 1, 2, are branched covers of degree di, i = 1, 2. That is, there exists a
complex subspace Yi ⊂ X such that πi : X\π−1

i (Yi) → X\Yi is di covering for i = 1, 2.
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§2. Entropy of holomorphic selfmaps of a compact Kähler manifold

Let X be a compact Kähler manifold and let ω be the corresponding closed (1, 1) form
of X. Denote by

H∗(X,F) =
2n∑
0

⊕Hi(X,F),H∗(X,F) =
2n∑
0

⊕Hi(X,F)

be the total homology and cohomology groups of X over a field F = Z,Q,R. Let [X] the
fundamental class of X, i.e. the generator of the one dimensional free group H2n(X,Z).
Assume that F : X → X is a holomorphic map. Then

F∗ : H∗(X,F) → H∗(X,F), F ∗ : H∗(X,F) → H∗(X,F)

be the linear operators induced by F . I assume that

F∗ = Id : H0(X,F) → H0(X,R).

Let ρ(F ) be the spectral radius of F∗(F ∗) for F = R. The above assumptions yield that
ρ(F ) ≥ 1. Set φm = (F ◦m)∗ω, m = 0, 1, ..., to be the the pull back of ω by the F ◦m.

Theorem 2.1. Let X be a compact Kähler manifold of complex dimension n and assume
that F : X → X is a holomorphic map. Then

lov(Γ(F )) = lim sup
j→∞

log|(∑i=j−1
i=0 φi)n([X])|

j
. (2.2)

Moreover
lov(Γ(F )) = h(F ) = logρ(F ).

Proof. Let ωk be the induced (1, 1) form on Xk. Set Γ = Γ(F ). Then

Γk = {(x, F (x), ..., F ◦(k−1)(x)) : x ∈ X}.

Denote by θk the restriction of ωk to Γk. Hence, in terms of the variable x, the restriction
of θk to the j − th coordinate of Γk is φj−1 - the pull back of ω = φ0 by F ◦j−1. Thus

θk(x) =
k−1∑

j=0

φj(x), x ∈ X, k = 0, 1, ..., . (2.3)

So vol(Γk) = 1
n!θ

n
k ([X]). We now prove the inequality lov(F ) ≤ logρ(F ). Clearly

θn
k ([X]) ≤ kn max

0≤m1≤m2≤···≤mn<k
|φm1φm2 · · ·φmn [X]|.
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Let ‖ · ‖j be a norm on Hj(X,R) and denote ‖F ∗‖j the induced norm of the operator
F ∗ : Hj(X,R) → Hj(X,R) for j = 1, ..., 2n. It then follows

‖φmj
· · ·φmn

‖2(n−j+1) = ‖(F ∗)mj (φ0 · · ·φmn−mj
)‖2(n−j+1) ≤

‖(F ∗)mj‖2(n−j+1)‖φ0 · · ·φmn−mj
‖2(n−j+1),mj ≤ mp, p = j + 1, ..., n.

Clearly, there exists a constant Kj depending only on the norms ‖ · ‖i, i = 2, 2(j − 1), 2j
so that

‖xy‖2j ≤ Kj‖x‖2‖y‖2(j−1), x ∈ H2(X,R), y ∈ H2(j−1)(X,R)

for j = 2, ..., n. The above inequalites yield

|φm1 · · ·φmn [X]| ≤ K

n∏

i=1

‖(F ∗)mi−mi−1‖2(n−i+1), m0 = 0 ≤ m1 ≤ · · · ≤ mn < k

for some fixed K. Let ρi(F ) be the spectral radius of F ∗ : Hi(X,R) → Hi(X,R) for
i = 0, ..., 2n. Note that ρ(F ) = max0≤i≤2n ρi(F ). Observe next the that for any ε > 0
there exists κ(ε) so that

‖(F ∗)m‖i ≤ κ(ε)(ρ(F ) + ε)m,m = 0, 1, ..., i = 1, ..., 2n.

Combine all the above inequalities with (2.2) to get the inequality lov(Γ(F )) ≤ log(ρ(F )+
ε). As ε > 0 was arbitrary small we deduce that lov(Γ(F )) ≤ logρ(F ). Combine this
inequality with Theorem 1.3 to deduce that h(F ) ≤ lov(Γ(F )) ≤ logρ(F ). Yomdin’s
inequality h(F ) ≥ logρ(F ) [9] yields the equality h(F ) = lov(Γ(F ) = logρ(F ). ¦.

A sketchy proof of Theorem 2.1 was given in [3]. Assume that X ⊂ M is an irreducible
complex subvariety of dimension n in a compact Kähler manifold M . Let F : X → X be
a continuous map so that the graph Γ(F ) ⊂ X × X is an irreducible complex variety of
dimension n. Let ρ(F ) be the spectral radius of F ∗ : H∗(X,R) → H∗(X,R). We then
can apply all the arguments of Theorem 2.1 except Yomdin’s theorem. Hence, we deduce

Theorem 2.4. Let M be a Kähler manifold and X ⊂ M be a complex irreducible variety.
Assume that F : X → X be a continuous map such that Γ(F ) ⊂ X × X is a complex
subvariety. Then

h(F ) ≤ lov(Γ(F )) ≤ logρ(F ).

In [3] I proved the above theorem in the case that X is a projective variety and F is a
continuous rational map. If in addition F is a regular rational map then h(F ) = logρ(F ).
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§3. Upper bounds on the entropy of finite algebraic maps

Let CPN be the N dimenisonal complex projective space and Γ ⊂ CPN ×CPN be
an irreducible subvariety. Denote by π′i(Γ

∞) the projection of Γ∞ on the i−th component.
Clearly, π′i(Γ

∞) ⊃ π′i+1(Γ
∞), i = 2, ...,. Hence, π′i(Γ

∞) = X, i = k, k+1, ..., for some k ≥ 1.
Here X is an irreducible subvariety of CPN . Let Γ1 = Γ∩X ×X. It then follows that Γ1

is an irreducible subvariety and

h(Γ) = h(σ
∣∣
Γ∞) = h(σ

∣∣
Γ∞1

) = h(Γ1).

Since I am interested in h(Γ) in what follows I assume that π1(Γ) = π2(Γ) = X and the
complex dimension of X and Γ is n. In order to use Theorem 1.3 one needs to estimate
vol(Γk). For that purpose it is convenient to view Γk as a subvariety of (CPN )k.

Let U ⊂ CPN be an irreducible variety of dimension d. Then vol(U) = deg(U) is the
number of intersection points of the zero dimensional variety U ∩Hd. Here Hj ⊂ CPN is
a hyperplane of codimension j in general position for j = 0, ..., n. Thus vol(U) = [U ] · [Hd].
As Hd is an intersection of d H1 in general position we have also the formula vol(U) =
[U ] · [H1] · · · [H1]. Let 1 ≤ k, 1 ≤ i ≤ k be given. Set

Hi,k = CPN × · · · ×CPN ×H1 ×CPN × · · ·CPN ⊂ (CPN )k

to be a codimension 1 variety with the factor H1 on the i−th component in general position.
Let U ⊂ (CPN )k be an irreducible variety of dimension d. For 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ k
let [U ] · [Hi1,k] · · · [Hid,k] be the number of points in the intersection U ∩Hi1,k∩· · ·∩Hid,k.
This number can be zero. For example, if some number j appears more than N times in
the sequence i1, ..., id then the above intersection is empty since Hi1,k ∩ · · · ∩Hid,k = ∅.

Lemma 3.1. Let U ⊂ (CPN )k be an irreducible variety of dimension d. Then

vol(U) =
∑

1≤i1≤i2≤···≤id≤k

[U ] · [Hi1,k] · · · [Hid,k].

Proof. Assume first that U = U1 ×U2 × · · ·Uk where Ui ⊂ CPN is an irreducible variety
of dimension di for i = 1, ..., k. Then vol(U) = vol(U1) · · · vol(Uk). A straightforward
computation shows that the lemma holds in this case. I claim that this simple case implies
the lemma in general. Indeed, recall that

H2j(CPN ,Z) ∼ Z, j = 0, ..., N,H2j−1(CPN ,Z) = 0, j = 1, ..., N.

Now use the standard product formula for H∗((CPN )k,Z) to deduce that any any analytic
cycle in H2d((CPN )k,Z) is a sum of cycles of the form U1 × · · ·Uk. ¦

Corollary 3.2. Let Γ ⊂ CPN × CPN an irreducible complex variety so that Γk is an
irreducible variety of dimension n ≤ N for k = 2, ...,. Then

vol(Γk) =
∑

1≤i1≤i2≤···≤in≤k

[Γk] · [Hi1,k] · · · [Hin,k].
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Theorem 3.3. Let Γ ⊂ CP1 ×CP1 be an irreducible curve whose projection on the first
and second coordinate gives CP1. Assume that in some chart C2 ⊂ CP1×CP1 the curve
Γ is given by p(x, y) = 0, (x, y) ∈ C2, where p(x, y) is an irreducible polynomial depending
explicitly on x and y. Then

h(Γ) ≤ lov(Γ) = log max(degx(p), degy(p)).

Proof. Let d1 = degy(p), d2 = degx(p). Thus, the projection of τi : Γ → CP1 on the
i− th coordinate is di branched covering for i = 1, 2. Next observe that Γk ∩Hi,k means
that we specify the i − th coordinate of Γk. Then we have d1, d2 possible choices for the
coordinate i + 1, i − 1 respectively for Γk. Continuing in this manner one deduces that
[Γk] · [Hi,k] = dk−i

1 di−1
2 . Thus,

vol(Γk) =
k∑

i=1

dk−i
1 di−1

2 .

In particular,
(max(d1, d2))k−1 < vol(Γk) ≤ k(max(d1, d2))k−1

and the equality for lov(Γ) is established. Use Theorem 1.3. to complete the proof of the
theorem. ¦

I conjecture that under the assumptions of Theorem 3.3 the equality h(Γ) = lov(Γ)
holds. I now show how to generalize Theorem 3.3 to proper graphs Γ.

Definition 3.4. Let Γ ⊂ CPN ×CPN be an irreducible variety of dimension n. Then Γ
is called proper if the following conditions hold. There exist an irreducible smooth variety
X ⊂ CPN of dimension n so that the projections τi : Γ → X on the i − th component of
CPN ×CPN is finite to one branched covering of degree di for i = 1, 2.

Note that Γ satisfying the assumptions of Theorem 3.3 is proper. Assume the as-
sumptions of Definition 3.4. I call Γ ⊂ X ×X a graph of a finite algebraic function. As
X is triangulable, e.g. [7], it follows that X is a finite CW complex. As in the previous
section I denote by H∗(X,F),H∗(X,F),F = Z,Q,R the total homology and cohomology
groups of X. Let H2j,a(X,F) ⊂ H2j(X,F), j = 0, ..., n, be the subgroup generated by all
varieties Y ⊂ X of complex dimension j. Let R+ be the semiring of nonnegative reals.
For the one of the above rings F set F+ = F ∩ R+ to be the corresponding semirings.
Let K2j,a(X,F+) be the cone generated by the subvarieties of complex dimension j with
coefficients in F+. Thus

H2j,a(X,F) = K2j,a(X,F+)−K2j,a(X,F+), j = 0, ..., n, H∗,a(X,F) =
n∑

j=0

⊕H2j,a(X,F).
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I now show that Γ induces a linear operator Γ∗ : H∗,a(X,F) → H∗,a(X,F). More precisely
Γ∗ is positive with respect to the cone K∗,a(X,F+). That is

Γ∗ : K2j,a(X,F+) → K2j,a(X,F+), j = 0, ..., n.

Let V ⊂ X be an irreducible subvariety of dimension j. Then τ2(τ−1
1 (V )) ⊂ X is a variety

whose each irreducible component is of dimension j. Set

Γ∗([V ]) = [τ2(τ−1
1 (V )].

It is straightforward to show that Γ∗ is linear. Let ρ2j,a(Γ) be the spectral radius of
Γ∗ : H2j,a(X,R) → H2j,a(X,R), j = 0, ..., n. Note that

ρ0,a(Γ) = d1, ρ2n,a(Γ) = d2.

Set ρa(Γ) = max0≤j≤n ρ2j,a(Γ). Finally I define L : H2j,a(X,F) → H2j−2,a(X,F) to be
the Lefschetz map which is induced by the hyperplane section. That is, let V ⊂ X be an
irreducible variety of dimension j. Then L([V ]) = [V ∩H1]. Note that L is positive with
respect to the cone K∗,a(X,F+).

Theorem 3.5. Let Γ ⊂ CPN ×CPN be a proper irreducible variety. Then

lov(Γ) ≤ logρa(Γ).

Proof. Assume the notations of Definition 3.4. I claim that

[Γk] · [Hi1,k] · · · [Hin,k] =

di1−1
2 dk−in

1 L(Γ∗)in−in−1 · · ·L(Γ∗)i3−i2L(Γ∗)i2−i1([X ∩H1]), 1 ≤< i1 < i2 < · · · < in ≤ k.

Indeed, the above formula without the factor di1−1
2 dk−in

1 determines the number of points
when we project this intersection on the components i1, ..., in. As all the hyperplanes are
in general positions this is exactly the number of distinct points of the above intersection
when we project it on the in − i1 + 1 consequitive components i1, i1 + 1, ..., in. When we
advance from the component in to the k − th component we pick the factor dk−in

1 . When
we decrease from the i1 − th component to the first component we pick up the factor
di1−1
2 . This proves the above formula for the distinct i1, ..., in. Similar formulas hold if

some indices coincide. As in the proof of Theorem 2.1 introduce norms on the spaces
H2j,a(X,R), j = 0, ..., n. The arguments given in the proof of Theorem 2.1 yield that for
any ε > 0 there exists κ(ε) so that

[Γk] · [Hi1,k] · · · [Hin,k] ≤ κ(ε)(ρa(Γ) + ε)k.

Hence
vol(Γk) ≤ knκ(ε)(ρa(Γ) + ε)k
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and the theorem follows. ¦

I conjecture that under the assumptions of Theorem 3.5

h(Γ) = lov(Γ) = logρa(Γ).

§4. Upper bounds on the entropy of nonfinite algebraic maps

In this section I assume that Γ ⊂ CPN×CPN is an irreducible variety of dimension n
so that there exists an irreducible variety X ⊂ CPN of dimension n such that τi : Γ → X
on the i− th component of CPN ×CPN is a branched convering of degree di for i = 1, 2. I
call Γ the graph of an algebraic function in X. Assume first that τ2 is finite to one. Then the
linear operator Γ∗ : H∗,a(X,F+) → H∗,a(X,F+) is well defined and it is straightforward
to show that Theorem 3.5 applies in this case. Assume now that τ1 is finite to one. Then
one can define Γ̃∗ : H∗,a(X,F+) → H∗,a(X,F+) by pushing from the second factor of
X ×X to the first. Let ρ̃a(Γ) be the spectral radius of Γ̃∗. It then follows that one has an
analogous inequality

lov(Γ) ≤ logρ̃a(Γ).

It is not hard to show (by pulling back) that if τ1, τ2 are finite to one then ρ̃a(Γ) = ρa(Γ).
In what follows I assume that neither τ1 nor τ2 are finite to one branched covering.

It is still possible to define Γ∗ : K2j,a(F+) → K2j,a(F+) → by pushing forward
varieties V ⊂ X in general position. More precisely, assume that there exist subvarieties
S1, S2 ⊂ X so that

τi : Γ\τ−1
i (Si) → X\Si

are di covering for i = 1, 2. Let V ⊂ X, V \S1 6= ∅ be an irreducible variety of dimension
j. I say that V is in general position with respect to S1. It then follows that V ′ =
Closure(τ2(τ−1

1 (V \S1))) is a subvariety whose each irreducible component is of dimension
j. I then let Γ∗([V ]) = [V ′]. Note that Γ∗ is a linear functional on the subcone K ′ ⊂
K2j,a(F+) generated by all V which are in general position with respect S1. V is said to
be a special irreducible variety with respect to S1 if the homology class [V ] is not contained
in the cone K ′. I let Γ∗([V ]) = 0 for all special irreducible varieties with respect to S1.
This defines Γ∗ on H∗,a(X,F). Let ρ2j,a(Γ), j = 0, ..., n, ρa(Γ) be defined as in the previous
section. For k ≥ 1 define Γk ⊂ X ×X to be the graph obtained by projecting Γk+1 on the
first and the last coordinate. (Note that Γ1 = Γ = Γ2.) Let Γ∗k : H∗,a(X,F) → H∗,a(X,F)
be defined as above. I claim that

Γ∗k ≤ (Γ∗)k, k = 2, ...,

where the inequalities are with respect to the cone K∗,a(X,R+). This follows from the
fact that Γ∗k picks up more special irreducible varieties on which Γ∗k vanishes. See more
detailed discussion on this matter in [2]. The same argument yields

Γ∗p+k ≤ Γ∗pΓ
∗
k, p, k = 1, 2, ..., . (4.1)

11



In particular
ρ(Γ∗pk) ≤ ρ(Γ∗p)

k, p, k = 1, 2, ..., . (4.2)

Apply the arguments of the proof of Theorem 3.5 to deduce.

Theorem 4.3. Let Γ ⊂ X × X, X ⊂ CPN be a graph of an algebraic function on X.
Then

vol(Γ∞) ≤ logρa(Γ).

Let σ : Γ∞ → Γ∞ be the shift map. Then σk : Γ∞ → Γ∞ splits to k copies of the
shift map applied to the graph Γ∞k . Therefore

h(σk
∣∣Γ∞) = kh(σ

∣∣Γ∞) = h(σ
∣∣Γ∞k ).

See for example [8]. Observe next that ρa(Γk) = ρ(Γ∗k). Combine (4.2) with Theorems 4.3
and 1.3 to deduce

Corollary 4.4. Let the assumptions of Theorem 4.2 hold. Then

h(Γ) ≤ lim inf
k→∞

logρa(Γk)
k

.

Actually, the inequality (4.1) yields that lim inf can be replaced by lim. I conjecture
that h(Γ) is equal to the lim inf.

I close this section with another estimate on lov(Γ). Assume that X and Γ are
contained in the following complete intersections

X ⊂ X̃ = {x : x ∈ CN+1, fi(x) = 0, i = 1, ..., N − n},Γ ⊂ Γ̃ =

{(x, y) : (x, y) ∈ CN+1, fi(x) = fi(y) = 0, i = 1, ..., N − n, gj(x, y) = 0, j = 1, ..., n}.
(4.5)

I assume that f1(x), ..., fN−n(x) are homogeneous polynomials in x and g1(x, y), ..., gn(x, y)
are bihomogeneous polynomials in (x, y). Note that if X = CPN then Γ̃ is given only
by the polynomials g1, ..., gN . Let f(x), g(x, y) be arbitrary polynomials in the variables
x, y ∈ Ck. Then

deg(f), degx(g), degy(g), deg(g) = max(degx(g), degy(g))

are the corresponding degrees the above polynomials.

Theorem 4.6. Let Γ ⊂ X × X, X ⊂ CPN be a graph of an algebraic function on X.
Assume that X, Γ are contained in the complete intersections given in (4.5). Then

lov(Γ) ≤
N−n∑

i=1

logdeg(fi) +
n∑

j=1

logdeg(gj).
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Proof. Note that Γk are contained in the complete intersection given by

fi(xp) = 0, gj(xq, xq+1), xp ∈ CN+1, p = 1, ..., k, q = 1, ..., k−1, i = 1, ..., N−n, j = 1, ..., n.

Observe next that each Hi,k is given by one linear equation. Bezout theorem yields that

[Γk] · [Hi1,k] · · · [Hin,k] ≤ ( N−n∏

i=1

deg(fi)
)k( n∏

j=1

deg(gj)
)k−1

.

Hence, vol(Γk) is at most kn times the right-hand side of the above inequality. The proof
of the theorem is completed.
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