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The approximation problem

ν : Rn → [0,∞) a norm on Rn

C ⊂ Rn a closed subset,

Problem: approximate a given vector x ∈ Rn by a point y ∈ C:

distν(x,C) := min{ν(x− y), y ∈ C}

y? ∈ C is called a best ν-(C)approximation of x

if ν(x− y?) = distν(x,C)

‖ · ‖ the Euclidean norm on Rn, dist(x,C) = dist‖·‖(x,C).

We call a best ‖ · ‖-approximation briefly a best (C)-approximation

Main Theoretical Result: In most of applicable cases a best

approximation is unique outside a corresponding variety

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 3

/ 53



Uniqueness of ν-approxim. in semi-algebraic setting

Thm F-Stawiska:

Let C ⊂ Rn semi-algebraic, ν semi-algebraic norm, ν and ν∗

are differentiable. Then the set of all points x ∈ Rn \ C, denoted by

S(C), where ν-approximation to x in C is not unique is a

semi-algebraic set which does not contain an open set. In particular

S(C) is contained in some hypersurface H ⊂ Rn.

Def: S ⊂ Rn is semi-algebraic if it is a finite union of basic

semi-algebraic sets :

pi(x) = 0, i ∈ {1, ..., λ},qj(x) > 0, j ∈ {1, ..., λ′}

f : Rn → R semi-algebraic if G(f ) = {(x, f (x)) : x ∈ Rn} semi-algebraic

`p norms are semi-algebraic if p ≥ 1 is rational
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Numerical challenges

Most numerical methods for finding best approximation are local

Usually they will converge to a critical point or at best to a local
minimum

In many cases the number of critical points is exponential in n

How far our minimal numerical solution is from a best approximation?

Give a lower bound for best approximation

Give a fast approximation for big scale problems

We will address these problems for tensors
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Primer on tensors: I

d-mode tensor T = [ti1,...,id ] ∈ Fn1×...×nd , ij ∈ [nj ] := {1, . . . ,nj}, j ∈ [d ]

d = 1 vector: x; d = 2 matrix A = [aij ]

rank one tensor T = [xi1,1xi2,2 · · · xid ,d ] = x1 ⊗ x2 · · · ⊗ xd = ⊗d
j=1xj 6= 0

rank of tensor rank T := min{r : T =
∑r

k=1⊗d
j=1xj,k}

It is an NP-hard problem to determine rank T for d ≥ 3.

border rank brank T the minimal r s.t. T is limit of tensors of rank r

brank T < rank T for some d ≥ 3 mode tensors (Nongeneric case)

Unfolding tensor in mode k : Tk (T ) ∈ Fnk× N
nk ,N = n1 · · · nd

grouping indexes (i1, . . . , id ) into two groups ik and the rest

rank Tk (T ) ≤ brank T ≤ rank T for each k ∈ [d ]

R(r1, . . . , rd ) ⊂ Fn1×...×nd variety of all tensors rank Tk (T ) ≤ rk , k ∈ [d ]

R(1, . . . ,1) = ⊗d
j=1F

nj - Segre variety (variety of rank one tensors)
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Primer on tensors: II

Contraction of tensors T = [ti1,...,id ],X = [xik1
,...,ikl

], {k1, . . . , kl} ⊂ [d ]

T × X :=
∑

ik1
∈[nk1

,...,ikl
∈[nkl

] ti1,...,il xik1
,...,ikl

Symmetric d-mode tensor S ∈ S(Fn,d): n1 = · · · = nd = n,

entries si1,...,id are symmetric in all indexes

rank one symmetric tensor ⊗dx := x⊗ · · · ⊗ x 6= 0

symmetric rank (Waring rank) srank S := min{r , S =
∑r

k=1⊗dxk}

Conjecture (P. Comon 2009) srank S = rank S for S ∈ S(Cn,d)

Some cases proven by Comon-Golub-Lim-Mourrain 2008

For finite fields ∃S s.t. srank S not defined F-Stawiska
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Examples of approximation problems

RN := Rn1×...×nd - and C:

1. Tensors of border rank k -at most, denoted as Ck

2. C(r) := R(r1, . . . , rd )

ν(·) = ‖ · ‖ - Hilbert-Schmidt norm (other norms sometime)

n1 = · · · = nd = n, r1 = · · · = rd = r and S ∈ S(Rn,d)

Problem: Can a best approximation can be chosen symmetric?

For matrices: yes

For k = 1: yes - Banach’s theorem 1938

For some range of k : yes for some open semi-algebraic set of

S ∈ S(Rn,d) - F - Stawiska

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 8

/ 53



Best rank one approximation of 3-tensors

Rm×n×l IPS: 〈A,B〉 =
∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =
√
〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of X

PX(T ) =
∑d

i=1〈T ,Xi〉Xi , ‖PX(T )‖2 =
∑d

i=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :

minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: ‖T ‖∞ := max‖x‖=‖y‖=‖z‖=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Hillar-Lim 2013: computation of ‖T ‖∞ NP-hard

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λx

T × x⊗ z = λy, T × x⊗ y = λz

λ singular value, x,y, z singular vectors

Lim 2005
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Number of singular values of 3-tensor: I

c(m,n, l) - # distinct singular values for a generic T ∈ Cm×n×l

is coefficient of tm−1
1 tn−1

2 t l−1
3 in pol. ((t2+t3)m−tm

1 )

(t2+t3−t1)
((t1+t3)n−tn

2 )

(t1+t3−t2)
((t1+t2)l−t3)
(t1+t2−t3)

Recall xm−ym

x−y = xm−1 + xm−2y + · · ·+ xym−2 + ym−1

d1,d2,d3 c(d1,d2,d3)

2,2,2 6
2,2,n 8 n ≥ 3
2,3,3 15
2,3,n 18 n ≥ 4
2,4,4 28
2,4,n 32 n ≥ 5
2,5,5 45
2,5,n 50 n ≥ 6

2,m,m + 1 2m2

Table : Values of c(d1,d2,d3)
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Number of singular values of 3-tensor: II

d1,d2,d3 c(d1,d2,d3)

3,3,3 37
3,3,4 55
3,3,n 61 n ≥ 5
3,4,4 104
3,4,5 138
3,4,n 148 n ≥ 6
3,5,5 225
3,5,6 280
3,5,n 295 n ≥ 7

3,m,m + 2 8
3m3 − 2m2 + 7

3m

Table : Values of c(d1,d2,d3)
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Number of singular values of 3-tensor: III

d1,d2,d3 c(d1,d2,d3)

4,4,4 240
4,4,5 380
4,4,6 460
4,4,n 480 n ≥ 7
4,5,5 725
4,5,6 1030
4,5,7 1185
4,4,4 240
4,4,5 380
4,4,6 460
4,4,n 480 n ≥ 7

Table : Values of c(d1,d2,d3)
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Number of singular values of 3-tensor: IV

d1,d2,d3 c(d1,d2,d3)

4,5,5 725
4,5,6 1030
4,5,7 1185
4,4,4 240
4,4,5 380
4,4,6 460
4,4,n 480 n ≥ 7
4,5,5 725
4,5,6 1030
4,5,7 1185
4,5,7 1185
4,5,n 1220 n ≥ 8

Table : Values of c(d1,d2,d3)
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Number of singular values of 3-tensor: V

d1,d2,d3 c(d1,d2,d3)

5,5,5 1621
5,5,6 2671
5,5,7 3461
5,5,8 3811
5,5,n 3881 n ≥ 9

Table : Values of c(d1,d2,d3)

Friedland-Ottaviani 2014
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Alternating least squares

Denote Sm−1 := {x ∈ Rm, ‖x‖ = 1}, S(m,n, l) : Sm−1 × Sn−1 × Sl−1

f (x,y, z) = 〈T ,x⊗ y⊗ z〉 : S(m,n, l)→ R

Best rank one approximation to T is equivalent to

max(x,y,z)∈S(m,n,l) f (x,y, z) = f (x?,y?, z?)

Alternating least square (ALS) method starts with

(x0,y0, z0) ∈ S(m,n, l), f (x0,y0, z0) 6= 0:

xi =
T ×(yi−1⊗zi−1)
‖T ×(yi−1⊗zi−1)‖ , yi =

T ×(xi⊗zi−1)
‖T ×(xi⊗zi−1)‖ , zi = T ×(xi⊗yi )

‖T ×(xi⊗yi )‖ , for i = 1,2, . . . ,

f (xi−1,yi−1, zi−1) ≤ f (xi ,yi−1, zi−1) ≤ f (xi ,yi , zi−1) ≤ f (xi ,yi , zi)

(xi ,yi , zi) converges(?) to 1-semi-maximal critical point (x∗,y∗, z∗)

Definition: (x∗,y∗, z∗) - k -semi-maximal critical point if

it is maximal with respect to each set of k vector variables,

while other vector variables are kept fixed
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Alternating SVD method: F-Merhmann-Pajarola-Suter

Fix one vector variable in f (x,y, z) = 〈T ,x⊗ y⊗ z〉, e.g. z ∈ Sl−1

max{f (x,y, z), x ∈ Sm−1,y ∈ Sn−1} achieved at x = u(z),y = v(z)

singular vectors of bilinear form f (x,y, z) of max. singular value

(xi ,yi , zi) 7→ (x′i ,y
′
i , zi) = (u(zi),v(zi), zi) 7→

(xi+1,y′i , z
′
i) = (u′(y′i)),y′i ,w(y′i)) 7→

(xi+1,yi+1, zi+1) = (xi+1,v′(xi+1),w′(xi+1)) 7→ . . .

(xi ,yi , zi) converges(?) to 2-semi-maximal critical point (x∗,y∗, z∗)

ASVD is more expensive than ALS

Since for finding ‖A‖2 one uses (truncated) SVD

ASVD is a reasonable alternative to ALS (see simulations)
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Modified ALS and ASVD

Theoretical problem: Let (x∗,y∗, z∗) accumulation point of {(xi ,yi , zi)}

Is it 1-semi-maximal for ALS; 2-semi-maximal for ASVD? (Don’t know)

Modified ALS and ASVD: MALS and MASVD

First time 3 maximizations, in other iterations 2 maximizations:

MALS (e.g.) max(maxx f (x,yi−1, zi−1),maxy f (xi−1,y, zi−1))

MSVD (e.g.) max(maxx,y f (x,y, zi−1),maxx,z f (x,yi−1, z))

Theorem Any accumulation point of {(xi ,yi , zi)} of MALS and MASVD

is 1 or 2 semi-maximal respectively
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Simulation Setup: I

Implemenation of C++ library supporting the rank one tensor
decomposition using vmmlib, LAPACK and BLAS to test the
performance of the different best rank one approximation algorithms.
The performance was measured via the actual CPU-time (seconds)
needed to compute the approximate best rank one decomposition, by
the number of optimization calls needed, and whether a stationary
point was found. (whether a stationary point or a global maxima is
found.)
All performance tests have been carried out on a 2.8 GHz Quad-Core
Intel Xeon Macintosh computer with 16GB RAM.

The performance results are discussed for synthetic and real data sets
of third-order tensors. In particular, we worked with three different data
sets: (1) a real computer tomography (CT) data set (the so-called
MELANIX data set of OsiriX), (2) a symmetric random data set, where
all indices are symmetric, and (3) a random data set. The CT data set
has a 16bit, the random data set an 8bit value range.
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Simulation Setup: II

All our third-order tensor data sets are initially of size 512× 512× 512,
which we gradually reduced by a factor of 2, with the smallest data
sets being of size 4× 4× 4. The synthetic random data sets were
generated for every resolution and in every run; the real data set was
averaged (subsampled) for every coarser resolution.

Our simulation results are averaged over different decomposition runs
of the various algorithms. In each decomposition run, we changed the
initial guess, Additionally, we generated for each decomposition run
new random data sets. The presented timings are averages over 10
different runs of the algorithms.

All the best rank one approximation algorithms are alternating
algorithms, and based on the same convergence criterion The partial
SVD is implemented by applying a symmetric eigenvalue
decomposition (LAPACK DSYEVX) to the product AAT (BLAS
DGEMM) as suggested by the ARPACK package.
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Average CPU times for best rank one approximations
per algorithm and per data set taken over 10 different
initial random guesses medium sizes
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Average CPU times for best rank one approximations
per algorithm and per data set taken over 10 different
initial random guesses larger sizes
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Differences of the achieved Frobenius norms by ALS,
ASVD, MALS, and MASVD: CT-data
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Differences of the achieved Frobenius norms by ALS,
ASVD, MALS, and MASVD: Symmetric
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Differences of the achieved Frobenius norms by ALS,
ASVD, MALS, and MASVD: Random

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

512 256 128 64 32 16 8 4 

ab
so

lu
te

 d
iff

er
en

ce
 to

 A
LS
! ASVD 

MALS 

MASVD 

3 3 3 3 3 3 3 3

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 25

/ 53



Remarks to differences of ALS, ASVD, MALS, and
MASVD

The algorithms reach the same stationary point for the smaller and
medium data sets. However, for the larger data sets (≥ 1283) the
stationary points differ slightly. We suspect that either the same
stationary point was not achieved, or the precision requirement of the
convergence criterion was too high.

Best rank one approximation for symmetric tensors using ALS, MALS,
ASVD and MASVD show that the best rank one approximation is also
symmetric, i.e., is of the form au⊗ v⊗w, where u ≈ v ≈ w ∈ Sm−1

(Banach’s theorem.)

The results of ASVD and MASVD give a better symmetric rank one
approximation, i.e., u− v,u−w in ASVD and MASVD are smaller than
in ALS and MALS.
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Compressive sensing for sparse matrices and tensors

joint works with Qun Li, Dan Schonfeld and Edgar A. Bernal

Conventional Compressive sensing (CS) theory relies on data
representation in the form of vectors.

Many data types in various applications such as color imaging, video
sequences, and multi-sensor networks, are intrinsically represented by
higher-order tensors.

We propose Generalized Tensor Compressive Sensing (GTCS)–a
unified framework for compressive sensing of higher-order spare
tensors.

GTCS offers an efficient means for representation of multidimensional
data by providing simultaneous acquisition and compression from all
tensor modes. Its draw back is an inferior compression ratio.
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Compressive sensing of vectors: Noiseless

Σs,N is the set of all x ∈ RN with at most s nonzero coordinates

Sparse version of CS: Given x ∈ Σs,N compress it to a short vector

y = (y1, . . . , yM)>,M << N and send it to receiver

receiver gets y, possible with noise, decodes to x

Compressible version: coordinates of x have fast power law decay

Solution: y = Ax, A ∈ RM×N a specially chosen matrix, e.g. s-n. p.

Sparse noiseless recovery: x = arg min{‖z‖1,Az = y}

A has s-null property if for each Aw = 0,w 6= 0, ‖w‖1 > 2‖wS‖1
S ⊂ [N] := {1, . . . ,N}, |S| = s,

wS has zero coordinates outside S and coincides with w on S

Recovery condition M ≥ cs log(N/s), noiseless reconstruction O(N3)

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 28

/ 53



Compressive sensing of matrices I - noiseless

X = [xij ] = [x1 . . . xN1 ]> ∈ RN1×N2 is s-sparse.

Y = U1XU>2 = [y1, . . . ,yM2 ] ∈ RM1×M2 , U1 ∈ RM1×N1 ,U2 = RM2×N2

Mi ≥ cs log(Ni/s),M = M1M2 ≥ (cs)2 log(N1/s) log(N2/s)

Ui has s-null property for i = 1,2

Thm M: X is determined from noiseless Y .

Algo 1: Z = [z1 . . . zM2 ] = XU>2 ∈ RN1×M2

each zi a linear combination of columns of X hence s-sparse

Y = U1Z = [U1z1, . . . ,U1zM2 ] so yi = U1zi for i ∈ [M2]

Recover each zi to obtain Z

Cost: M2O(N3
1 ) = O((log N2)N3

1 )

Z> = U2X> = [U2x1 . . .U2xN1 ]

Recover each xi from i − th column of Z>

Cost: N1O(N3
2 ) = O(N1N3

2 ), Total cost: O(N1N3
2 + (log N2)N3

1 )
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Compressive sensing of matrices II - noiseless

Algo 2: Decompose Y =
∑r

i=1 uiv>i ,

u1, . . . ,ur , v>1 , . . . ,v
>
r span column and row spaces of Y respectively

for example a rank decomposition of Y : r = rank Y

Claim ui = U1ai ,vj = U2bj , ai ,bj are s-sparse, i , j ∈ [r ].

Find ai ,bj . Then X =
∑r

i=1 aib>i
Explanation: Each vector in column and row spaces of X is s-sparse:

Range(Y ) = U1Range(X ), Range(Y>) = U2Range(X>)

Cost: Rank decomposition: O(rM1M2) using Gauss elimination or SVD

Note: rank Y ≤ rank X ≤ s

Reconstructions of ai ,bj : O(r(N3
1 + N3

2 ))

Reconstruction of X : O(rs2)

Maximal cost: O(s max(N1,N2)3)
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Why algorithm 2 works

Claim 1: Every vector in Range X and Range X> is s-sparse.

Claim 2: Let X1 =
∑r

i=1 aib>i . Then X = X1.

Prf: Assume 0 6= X − X1 =
∑k

j=1 cjd>j , c1, . . . ,ck & d1, . . . ,dk lin. ind.

as Range X1 ⊂Range X , Range X>1 ⊂Range X>

c1, . . . ,ck ∈Range X , d1, . . . ,dk ∈Range X>

Claim: U1c1, . . .U1ck lin.ind..

Suppose 0 =
∑k

j=1 tiU1cj = U1
∑k

j=1 tjcj .

As c :=
∑k

j=1 tjcj ∈ Range X , c is s-sparse.

As U1 has null s-property c = 0⇒ t1 = . . . = tk = 0.

0 = Y − Y = U1(X − X1)U>2 =
∑k

j=1(U1cj)(d>j U>2 )⇒

U2d1 = . . . = U2dk = 0⇒ d1 = . . .dk = 0 as each di is s-sparse

So X − X1 = 0 contradiction
Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors

Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 31
/ 53



Sum.-Noiseless CS of matrices & vectors as matrices

1. Both algorithms are highly parallelizable

2. Algorithm 2 is faster by factor s min(N1,N2) at least

3. In many instances but not all algorithm 1 performs better.

4. Caveat: the compression is : M1M2 ≥ C2(log N1)(log N2).

5. Converting vector of length N to a matrix

Assuming N1 = Nα,N2 = N1−α

the cost of vector compressing is O(N3)

the cost of algorithm 1 is O((log N)N
9
5 ), α = 3

5

the cost of algorithm 2 is O(sN
3
2 ), α = 1

2 , s = O(log N)(?)

Remark 1: The cost of computing Y from s-sparse X : 2sM1M2

(Decompose X as sum of s standard rank one matrices)
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Numerical simulations

We experimentally demonstrate the performance of GTCS methods on

sparse and compressible images and video sequences.

Our benchmark algorithm is Duarte-Baraniuk 2010

named Kronecker compressive sensing (KCS)

Another method is multi-way compressed sensing

of Sidoropoulus-Kyrillidis (MWCS) 2012

Our experiments use the `1-minimization solvers of Candes-Romberg.

We set the same threshold to determine the termination of

`1-minimization in all subsequent experiments.

All simulations are executed on a desktop with

2.4 GHz Intel Core i5 CPU and 8GB RAM.

We set Mi = K
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UIC logo

(a) The original
sparse image

(b) GTCS-S recov-
ered image

(c) GTCS-P recov-
ered image

(d) KCS recovered
image

Figure : The original image and the recovered images by GTCS-S (PSNR =
22.28 dB), GTCS-P (PSNR = 23.26 dB) and KCS (PSNR = 22.28 dB) when
K = 38, using 0.35 normalized number of samples.
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PSNR and reconstruction times for UIC logo
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(b) Recovery time comparison

Figure : PSNR and reconstruction time comparison on sparse image.
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Explanation of UIC logo representation I

The original UIC black and white image is of size 64× 64 (N = 4096
pixels). Its columns are 14-sparse and rows are 18-sparse. The image
itself is 178-sparse. For each mode, the randomly constructed
Gaussian matrix U is of size K × 64. So KCS measurement matrix
U ⊗ U is of size K 2 × 4096. The total number of samples is K 2. The

normalized number of samples is K 2

N . In the matrix case, GTCS-P
coincides with MWCS and we simply conduct SVD on the compressed
image in the decomposition stage of GTCS-P. We comprehensively
examine the performance of all the above methods by varying K from
1 to 45.

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 36

/ 53



Explanation of UIC logo representation II

Figure 5(a) and 5(b) compare the peak signal to noise ratio (PSNR)
and the recovery time respectively. Both KCS and GTCS methods
achieve PSNR over 30dB when K = 39. As K increases, GTCS-S
tends to outperform KCS in terms of both accuracy and efficiency.
Although PSNR of GTCS-P is the lowest among the three methods, it
is most time efficient. Moreover, with parallelization of GTCS-P, the
recovery procedure can be further accelerated considerably. The
reconstructed images when K = 38, that is, using 0.35 normalized
number of samples, are shown in Figure 4(b)4(c)4(d). Though
GTCS-P usually recovers much noisier image, it is good at recovering
the non-zero structure of the original image.
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Cameraman simulations I

(a) Cameraman in space domain
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(b) Cameraman in DCT domain

Figure : The original cameraman image (resized to 64 × 64 pixels) in space
domain and DCT domain.
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Cameraman simulations II
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(b) Recovery time comparison

Figure : PSNR and reconstruction time comparison on compressible image.

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 39

/ 53



Cameraman simulations III

(a) GTCS-S, K = 46,
PSNR = 20.21 dB

(b) GTCS-P/MWCS, K =
46, PSNR = 21.84 dB

(c) KCS, K = 46, PSNR =
21.79 dB

(d) GTCS-S,K = 63,
PSNR = 30.88 dB

(e) GTCS-P/MWCS, K =
63, PSNR = 35.95 dB

(f) KCS, K = 63, PSNR =
33.46 dB

Figure : Reconstructed cameraman images. In this two-dimensional case,
GTCS-P is equivalent to MWCS.
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Cameraman explanations

As shown in Figure 6(a), the cameraman image is resized to 64× 64
(N = 4096 pixels). The image itself is non-sparse. However, in some
transformed domain, such as discrete cosine transformation (DCT)
domain in this case, the magnitudes of the coefficients decay by power
law in both directions (see Figure 6(b)), thus are compressible. We let
the number of measurements evenly split among the two modes.
Again, in matrix data case, MWCS concurs with GTCS-P. We
exhaustively vary K from 1 to 64.

Figure 7(a) and 7(b) compare the PSNR and the recovery time
respectively. Unlike the sparse image case, GTCS-P shows
outstanding performance in comparison with all other methods, in
terms of both accuracy and speed, followed by KCS and then GTCS-S.
The reconstructed images when K = 46, using 0.51 normalized
number of samples and when K = 63, using 0.96 normalized number
of samples are shown in Figure 8.
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Compressive sensing of tensors

M = (M1, . . . ,Md ),N = (N1, . . . ,Nd ) ∈ Nd , J = {j1, . . . , jk} ⊂ [d ]

Tensors: ⊗d
i=1R

Ni = RN1×...×Nd = RN

Contraction of A = [aij1 ,...,ijk
] ∈ ⊗jp∈JRNjp with T = [ti1,...,id ] ∈ RN :

A× T =
∑

ijp∈[Njp ],jp∈J aij1 ,...,ijk
ti1,...,id ∈ ⊗l∈[d ]\JRNl

X = [xi1,...,id ] ∈ RN, U = U1 ⊗ U2 ⊗ . . .⊗ Ud ∈ R(M1,N1,M2,N2,...,Md ,Nd )

Up = [u(p)
ip jp ] ∈ RMp×Np , p ∈ [d ], U Kronecker product of U1, . . . ,Ud .

Y = [yi1,...,id ] = X × U := X ×1 U1 ×2 U2 × . . .×d Ud ∈ RM

yi1,...,ip =
∑

jq∈[Nq ],q∈[d ] xj1,...,jd
∏

q∈[d ] uiq ,jq

Thm X is s-sparse, each Ui has s-null property

then X uniquely recovered from Y.

Algo 1: GTCS-S

Algo 2: GTCS-P
Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors

Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 42
/ 53



Algo 1- GTCS-S

Unfold Y in mode 1: Y(1) = U1W1 ∈ RM1×(M2·...·Md ),

W1 := X(1)[⊗2
k=dUk ]> ∈ RN1×(M2·...·Md )

As for matrices recover the M̃2 := M2 · · ·Md columns ofW1 using U1

Complexity: O(M̃2N3
1 ).

Now we need to recover

Y1 := X ×1 I1 ×2 U2 × . . .×d Ud ∈ RN1 ×M2 . . .×Md

Equivalently, recover N1, d − 1 mode tensors in RN2×...×Nd from

RM2×...×Md using d − 1 matrices U2, . . . ,Ud .

Complexity
∑d

i=1 Ñi−1M̃i+1N3
i

Ñ0 = M̃d+1 = 1, Ñi = N1 . . .Ni , M̃i = Mi . . .Md

d = 3: M2M3N3
1 + N1M3N3

2 + N1N2N3
3
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Algo 2- GTCS-P

Unfold X in mode k : X(k) ∈ RNk× N
Nk , N =

∏d
i=1 Ni .

As X is s-sparse rank kX := rank X(k) ≤ s.

Y(k) = UkX(k)[⊗i 6=kUi ]
> ⇒ Range Y(k) ⊂ UkRange X(k), rank Y(k) ≤ s.

X(1) =
∑R1

j=1 uiv>i , u1, . . . ,uR1 spans range of X(1) so R1 ≤ s

Each vi corresponds to Ui ∈ RN2×...Nd which is s-sparse

So (1) X =
∑R

j=1 u1,j ⊗ . . .⊗ ud ,j , R ≤ sd−1

uk ,1, . . . ,uk ,R ∈ RNk span Range X(k) and each is s-sparse

Compute decomposition Y =
∑R

j=1 w1,j ⊗ . . .⊗wd ,j , R ≤ sd−1,

wk ,1, . . . ,wk ,R ∈ RMk span Range Y(k), Compl: O(sd−1 ∏d
i=1 Mi)

Find uk ,j from wk ,j = Ukuk ,j and reconstruct X from (1)

Complexity O(dsd−1 max(N1, . . . ,Nd )3), s = O(log(max(N1, . . . ,Nd )))

Shmuel Friedland Univ. Illinois at Chicago Computational Problems in Tensors
Numerical analysis & scientific computing seminar NUY, Courant Institute, May 14, 2014 44

/ 53



Summary of complexity converting linear data

Ni = Nαi ,Mi = O(log N), αi > 0,
∑d

i=1 αi = 1, s = log N

d = 3

GTCS-S: O((log N)2N
27
19 )

GTCS-P: O((log N)2N)

GTCS-P: O((log N)d−1N
3
d ) for any d .

Warning: the roundoff error in computing parfac decomposition of

Y and then of X increases significantly with d .
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Sparse video representation

We compare the performance of GTCS and KCS on video data. Each

frame of the video sequence is preprocessed to have size 24× 24 and

we choose the first 24 frames. The video data together is represented

by a 24× 24× 24 tensor and has N = 13824 voxels in total. To obtain

a sparse tensor, we manually keep only 6× 6× 6 nonzero entries in

the center of the video tensor data and the rest are set to zero.

The video tensor is 216-sparse and its mode-i fibers are all 6-sparse

i = 1,2,3. The randomly constructed Gaussian measurement matrix

for each mode is now of size K × 24 and the total number of samples is

K 3. The normalized number of samples is K 3

N .

We vary K from 1 to 13.
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PSNR and reconstruction time of sparse video
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(a) PSNR comparison
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(b) Recovery time comparison

Figure : PSNR and reconstruction time comparison on sparse video.
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Reconstruction errors of sparse video
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(a) Reconstruction error of
GTCS-S
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(b) Reconstruction error of
GTCS-P
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(c) Reconstruction error of
KCS

Figure : Visualization of the reconstruction error in the recovered video frame
9 by GTCS-S (PSNR = 130.83 dB), GTCS-P (PSNR = 44.69 dB) and KCS
(PSNR = 106.43 dB) when K = 12, using 0.125 normalized number of
samples.
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Conclusion

Real-world signals as color imaging, video sequences and
multi-sensor networks, are generated by the interaction of multiple
factors or multimedia and can be represented by higher-order tensors.
We propose Generalized Tensor Compressive Sensing (GTCS)-a
unified framework for compressive sensing of sparse higher-order
tensors. We give two reconstruction procedures, a serial method
(GTCS-S) and a parallelizable method (GTCS-P). We compare the
performance of GTCS with KCS and MWCS experimentally on various
types of data including sparse image, compressible image, sparse
video and compressible video. Experimental results show that GTCS
outperforms KCS and MWCS in terms of both accuracy and efficiency.
Compared to KCS, our recovery problems are in terms of each tensor
mode, which is much smaller comparing with the vectorization of all
tensor modes. Unlike MWCS, GTCS manages to get rid of tensor rank
estimation, which considerably reduces the computational complexity
and at the same time improves the reconstruction accuracy.
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