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Motivation: Ising model - 1925

On lattice Z
d two kinds of particles: spin up 1 and spin down 2. Each

neighboring particles located on (i, i + ej) interact with energy −J if
both locations are occupied by the same particles, and with energy J if
the two sites are occupied by two different particles. In addition each
particle has a magnetization due to the external magnetic field. The
energy of the particle of type 1 is H while the energy of the particle of
type 2 is −H. The energy of E(φ) of a given finite configuration of
particles in Z

d is the sum of the energies of the above type.
Ferromagnetism J > 0: all spins are up or down.
Antiferromagnetism J < 0 half spins up and down
(Lowest free energy)
Phase transition:
from one state to another as the temperature varies
Energy: k

T E(φ)
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Subshifts of Finite Type-SOFT

< n >:= {1, 2, 3, ..., n}
ALPHABET ON n LETTERS - COLORS.

• • • . . . • • •︸ ︷︷ ︸
m times

Coloring of Z
d in n coloring =

Full Z
d shift on n symbols

Example of SOFT: (0 − 1) LIMITED CHANNEL
HARD CORE LATTICE or NEAR NEIGHBOR EXCLUSION
n = 2, < 2 >= {1, 2} = {1, 0} (2 ≡ 0).
NO TWO 1′s ARE NEIGHBORS.
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One dimensional SOFT

Γ ⊆< n > × < n > directed graph on n vertices CΓ(< m >)-all Γ
allowable configurations of length m:
{a = a1...am = (ai)

m
1 :< m >→< n > (ai , ai+1) ∈ Γ}

CΓ(Z)-all Γ allowable configurations (tilings) on Z:
{a = (ai)i∈Z : Z →< n >, (ai , ai+1) ∈ Γ}
Hard core model:
n = 2, Γ = {••, ••, ••}
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MD SOFT=Potts Models

Dimension d ≥ 2. For m ∈ N
d

< m >:=< m1 > × . . .× < md >
vol(m) := |m1| × . . . × |md |
Γ := (Γ1, . . . ,Γd ),Γi ⊂ 〈n〉 × 〈n〉
CΓ(< m >)-all Γ allowable configurations of m:
a = (ai)i∈〈m〉 :< m >→< n >
s.t. (ai, ai+ej

) ∈ Γj if i, i + ej ∈ 〈m〉
ej = (δ1j , . . . , δdj), j = 1, . . . , d .
Example:

< (4, 3) >:=
• • • •
• • • •
• • • •

Γ1 Γ2
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For φ ∈ CΓ(〈m〉) - c(φ) := (c1(φ), . . . , cn(φ))
denotes coloring distribution of configuration φ
ci(φ)-the number of times the particle i appears in φ

1
vol(m)c(φ) ∈ Πn - coloring frequency of φ

Πn(vol(m)) all c ∈ Z
n
+ s.t. 1

vol(m)c ∈ Πn

CΓ(〈m〉, c) denotes all φ ∈ CΓ(〈m〉) with c(φ) = c.
CΓ,per(〈m〉) ⊆ CΓ(〈m〉)-m-periodic configurations
CΓ(Z

d )-are-Γ allowable configurations of Z
d

Assumption: CΓ(Z
d) 6= ∅

ui ∈ R energy of particle i ∈ 〈n〉
u := (u1, . . . , un) ∈ R

n energy vector
E(φ) = c(φ) · u Energy of configuration φ
Near neighbor interaction model, can be fit to the above noninteraction
model by considering the coloring of the cube 〈(3, . . . , 3)〉 as one
particle
Similarly short range interaction model
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Pressure

Grand partition function
ZΓ(m, u) :=

∑
φ∈CΓ(〈m〉) ec(φ)·u

log ZΓ(m, u) subadditive in each component of m and convex in u
1

vol(m) log ZΓ(m, u) - average energy or pressure

PΓ(u) := limm→∞
1

vol(m) log ZΓ(m, u)

Pressure of Γ-SOFT, (Pressure of the Potts model)
hΓ := PΓ(0)-ENTROPY of Γ-SOFT
PΓ(u) is a convex Lipschitz function on R

n

|PΓ(u) − PΓ(v)| ≤ ||u − v||∞ := max |ui − vi |
PΓ(u + t1) = PΓ(u) + t
PΓ has the following properties:
Has subdifferential ∂PΓ(u) for each u
∂PΓ(u) ⊆ Πn for each u
Has differentiable ∇PΓ(u) a.e.
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Density points and density entropy

p ∈ Πn density point of CΓ(Z
d ) when there exist sequences of boxes

〈mq〉 ⊆ N
d and color distribution vectors cq ∈ Πn(vol(mq))

mq → ∞, CΓ(〈mq〉, cq) 6= ∅ ∀q ∈ N, and limq→∞
cq

vol(mq) = p

ΠΓ the set of all density points of CΓ(Z
d)

ΠΓ is a closed set
For p ∈ ΠΓ the color density entropy
hΓ(p) := supmq ,cq

lim supq→∞
log #CΓ(〈mq〉,cq)

vol(mq) ≥ 0
where the supremum is taken over all sequences satisfying the above
conditions
hΓ is upper semi-continuous on ΠΓ
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Convex functions

f : R
n → [−∞,∞] convex.

dom f := {x ∈ R
m : f (x) < ∞}

f proper if f : R
n → R̄ := (−∞,∞] and f 6≡ ∞

f closed if f is lower semi-continuous.
q subgradient: f (x) ≥ f (u) + q>(x − u) ∀x
∂f (u) ⊂ R

n the subset of subgradients of f at u
ASSUMPTION: f is proper and closed
∂f (u) is a closed nonempty set for each u ∈ ri dom f
f is differentiable at u ⇐⇒ ∂f (u) = {∇f (u)}
diff f - the set of differentiability points of f
∇f continuous on diff f and diff f ⊇ dom f
The conjugate, (Legendre transform) f ∗ defined:
f ∗(y) := supx∈Rn x>y − f (x) for each y ∈ R

m

f ∗ is a proper closed function and f ∗∗ = f
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P∗
Γ and color density entropy

Thm 1: hΓ(p) 6 −P∗
Γ(p) ∀p ∈ ΠΓ.

PΓ(u) = maxp∈ΠΓ
(p>u + hΓ(p)), u ∈ R

n

ΠΓ(u) := arg maxp∈ΠΓ
(p>u + hΓ(p)) = {p ∈ ΠΓ : PΓ(u) = p>u + hΓ(p)}

For each p ∈ ΠΓ(u), hΓ(p) = −P∗
Γ(p).

ΠΓ(u) ⊆ ∂PΓ(u).
u ∈ diff PΓ ⇒ ΠΓ(u) = {∇PΓ(u)}.
Therefore ∂PΓ(diff PΓ) ⊆ ΠΓ.
S(u), u ∈ R

n \ diff PΓ-
are all the limits of sequences
∇PΓ(ui), ui ∈ diff PΓ and ui → u.
Then S(u) ⊆ ΠΓ(u).
conv ΠΓ(u) = conv S(u) = ∂PΓ(u).
∂PΓ(R

n) ⊆ conv ΠΓ ⊆ Πn.
conv ΠΓ = dom P∗

Γ .
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Outline of proof

From the definitions of PΓ(u), p,

hΓ(p) := supmq ,cq
lim supq→∞

log #CΓ(〈mq〉,cq)
vol(mq) ≥ 0

PΓ(u) > p>u + hΓ(p) ⇒ PΓ(u) > supp∈ΠΓ
p>u + hΓ(p) ⇒

−hΓ(p) > P∗
Γ(p) ⇒ ΠΓ ⊆ dom P∗

Γ

C(m, u) := arg maxc∈Πn(vol(m)) #CΓ(〈m〉, c)ec>u

ZΓ(m, u) = O(vol(m)n−1)#CΓ(〈m〉, c(m, u))ec(m,u)>u

Let mq → ∞ s.t. c(mq ,u)
vol(mq) → p(u) ⇒

PΓ(u) 6 p(u)>u + lim supq→∞
log #CΓ(〈mq 〉,c(mq ,u))

vol(mq) 6 p(u)>u + hΓ(p(u))

For p ∈ ΠΓ(u) use maximal characterization
PΓ(u + v) > p>(u + v) + hΓ(p) = p>v + PΓ(u)
So p ∈ ∂PΓ(u) ⇒ ΠΓ(u) ⊆ ∂PΓ(u) ⇒
u ∈ diff PΓ ⇒ ΠΓ(u) = {∇PΓ(u)}
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First order phase transition

Claim: For u ∈ R
n each p ∈ ΠΓ(u) is the set of possible density of n

colors in an allowable configurations from CΓ(Z
d ) with the potential u.

For u ∈ diff PΓ p(u) = ∇PΓ(u) is a unique density.
Claim: Any point of nondifferentiabity of PΓ is a point of the phase
transition.
Proof Let u ∈ R

n \ diff PΓ Then ∂PΓ consists of more than one point.
Thm 1 yields that ∂PΓ(u) = conv S(u) ⊆ ΠΓ(u). S(u) consists of more
than one point. Hence ΠΓ(u) consists of more than one density for u.
u ∈ R

n \ diff PΓ is called a point of phase transition, or a phase
transition point of the first order.
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Ergodic Notions

CΓ(Z
d )-a compact metric space.

It is invariant under the shifts
σi : CΓ(Z

d ) → CΓ(Z
d), i = 1, . . . , d

σi(φ) is obtained by shifting the allowable configuration φ ∈ CΓ(Z
d)

using the transformation x 7→ x − ei .
Let MΓ be the compact set of invariant measures on CΓ(Z

d) with
respect to σi , i = 1, . . . , d .
hΓ(µ) -Kolmogorov-Sinai entropy for µ ∈ MΓ

hΓ(µ) = limm→∞
1

(2m+1)d Hµ(∨−m≤i1,...,id≤mσi1
1 . . . σid

d A)

where A = {A1, . . . , An}
a cylinder partition of CΓ(Z

d).
Ai - the set of all configurations φ ∈ CΓ(Z

d ) s.t. 0 ∈ Z
d colored by color

i in φ.

Shmuel Friedland Univ. Illinois at Chicago () The pressure, densities and first order phase transitions associated with multidimensional SOFT
Dynamics Seminar, College Park, October 28,

/ 38



The maximum principle

fu : CΓ → R be given by
fu(φ) = ui for φ ∈ Ai , u = (u1, . . . , un).
PΓ(u) = maxµ∈MΓ

hΓ(µ) +
∫

fu(x)dµ(x)
µu ∈ MΓ is maximal if
PΓ(u) = hΓ(µ) +

∫
fu(x)dµ(x)

u -ergodic phase transition
if there are at least two maximal µu measures
Conjecture If u ∈ R

n \ diff PΓ then u is an ergodic phase transition
Special case studied case in the literature u = 0:
The entropy
hΓ = PΓ(0) = maxp∈ΠΓ

hΓ(p) = maxµ∈MΓ
hΓ(µ)
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d-Dimensional Monomer-Dimers

Dimer: (i, j), j = i + ek ∈ Z
d .

any partition of Z
d to dimers (1-factor).

Monomer: occupies i ∈ Z
d .

any partition of Z
d to monomer-dimers

is 1-factor of a subset of Z
d .

Dimer and Monomer-Dimer are SOFT

0 = h̃1 ≤ h̃2 ≤ ... ≤ h̃d ≤ ...(dimers)

log
1 +

√
5

2
= h1 ≤ h2 ≤ ... ≤ hd ≤ ...

(monomer − dimer)

Fisher, Kasteleyn and Tempreley 61

h̃2 =
1
π

∞∑

i=0

(−1)i

(2i + 1)2 = 0.29156090...
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Hammersley’s results

Hammersley in 60’s studied extensively the monomer-dimer model. He
showed ΠΓ = Πd+1 for d -dimensional model p = (p1, . . . , pd , pd+1)
pi -the dimer density in ei -direction i = 1, . . . , d pd+1-the monomer
density Hammersley studied p := p1 + . . . + pd -the total dimer density
hd(p)-the p-dimer density in Z

d , p ∈ [0, 1]
He showed hd(p)-concave continuous function on [0, 1]
Heilman and Lieb 72: hd(p) analytic on (0, 1)
No phase transition in parameter p ∈ (0, 1)
Au-Yang and Perk 84: Phase transition at p = 1
Friedland-Krop-Lundow-Markstrom 08
hd(p) + 1

2(p log p + (1 − p) log(1 − p)) concave
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The Graphs for h2(p)
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Figure: HM is the lower bound of Hammersley-Menon, BW is the lower bound
of Bondy-Welsh, FP is the lower bound of Friedland-Peled, MC is the Monte
Carlo estimate of Hammersley-Menon, B are Baxter’s estimates, and h2 is
the true value of h2 = max h2(p).
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Graph estimates for h2(p)
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Friendly colorings

Thm 1 implies:
For any Potts model hΓ(·) : ΠΓ → R+ is concave on every convex
subset of ΠΓ(R

n).
To get the exact analog of Hammersley’s result
Γ = (Γ1, . . . ,Γd ) on 〈n〉
F = ∪m∈Nd C̃Γ(〈m〉), where C̃Γ(〈m〉) ⊆ CΓ(〈m〉) for each m ∈ N

d ,
friendly: if whenever a box 〈m〉 is cut in two and each part is colored by
a coloring in F , the combined coloring is in F .
Γ friendly if there exist a friendly set F = ∪m∈Nd C̃Γ(〈m〉) and a constant
vector b ∈ N

d such that if any box 〈m〉 is padded with an envelope of
width bi in the direction of ei , then each Γ-allowed coloring of 〈m〉 can
be extended in the padded part to a coloring in F .
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Examples of friendly colorings

Γ has a friendly color f ∈ 〈n〉, i.e., for each i ∈ 〈d〉 (f , j), (j , f ) ∈ Γi for all
j ∈ 〈n〉
Then C̃Γ(m) are Γ-allowed colorings of 〈m〉 whose boundary points are
colored with f
Hard-core model: Γi = {(1, 1), (1, 2), (2, 1)}, has friendly color f = 1.
Γ associated with the monomer-dimer covering
C̃Γ(〈m〉) the set of tilings of 〈m〉 by monomers and dimers, i.e., the
coverings in which no dimer protrudes out of 〈m〉, as in Hammersley
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P∗
Γ for friendly colorings

Thm 2: Let Γ = (Γ1, . . . ,Γd ) be a friendly coloring digraph. Then
1

ΠΓ is convex. Hence ΠΓ = dom P∗
Γ.

2 hΓ(·) : ΠΓ → R+ is concave.
3 For each u ∈ R

n, ΠΓ(u) = ∂PΓ(u).
4 For each u ∈ R

n, hΓ(·) is an affine function on ∂PΓ(u).
5

hΓ(p) = −P∗
Γ(p) for each p ∈ ΠΓ.
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Outline of proof

(1). Let α ∈ C̃Γ(〈m〉), c(α) = (c1, . . . , cn) ∈ Πn(vol(m)) color frequency
vector of α, and p := 1

vol(m)c(α).

For j = (k1, . . . , kd ) ∈ N
d let j · m := (k1m1, . . . , kd md). View 〈j · m〉 as a

box composed of vol(j) boxes isomorphic to 〈m〉 color each box by α

obtaining a coloring α(j · m) ∈ C̃Γ(j · m). Clearly p = 1
vol(j·m)c(α(j · m)).

Choose jq → ∞ to deduce p ∈ ΠΓ.
Let β ∈ C̃Γ(〈n〉). So q := 1

vol(n)c(β) ∈ ΠΓ.

Claim: For i , j ∈ N
i

i+j p + j
i+j q ∈ ΠΓ.

Let α(n · m), β(m · n) ∈ C̃Γ(n · m) defined as above. Let
j := (m1n1, . . . , md−1nd−1, (i + j)md nd) view box 〈j〉 composed of i + j
boxes isomorphic to 〈m · n〉 aligned side-by-side along the direction of
ed . Color the first i of these boxes by α(m ·n) and the last j by β(n ·m),
to get γ ∈ C̃Γ(〈j〉) with 1

vol(j)c(γ) = i
i+j p + j

i+j q. Hence i
i+j p + j

i+j q ∈ ΠΓ.
Since ΠΓ is closed ap + (1 − a)q ∈ ΠΓ for all a ∈ [0, 1].
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Outline of proof-II

Let Π̃Γ be the convex hull of 1
vol(m)c(α) for some m and some

α ∈ C̃Γ(〈m〉). So Π̃Γ ⊆ ΠΓ.
The padding part of definition of Γ friendly implies
Π̃Γ ⊆ ΠΓ ⊆ Cl Π̃Γ ⇒ ΠΓ = Cl Π̃Γ

Equality ΠΓ = dom P∗
Γ follows from last part of Thm 1.
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Outline of proof-III

(b) The padding part of definition of Γ friendly implies
For p, q ∈ ΠΓ, ε > 0 ∃
mq := (m1,q, . . . , md ,q), nq := (n1,q, . . . , nd ,q) ∈ N

d , q ∈ N, mq, nq → ∞
s.t.

C̃Γ(〈mq〉, cq), C̃Γ(〈nq〉, dq) 6= ∅, q ∈ N,

lim
mq→∞

1
vol(mq)

cq = p, lim
nq→∞

1
vol(nq)

dq = q,

lim
q→∞

log #C̃Γ(〈mq〉, cq)

vol(mq)
≥ hΓ(p) − ε,

lim
q→∞

log #C̃Γ(〈nq〉, dq)

vol(nq)
≥ hΓ(q) − ε.
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Outline of proof - IV

Observation that for any m, n ∈ N
d , c ∈ Πn(vol(m)):

#C̃Γ(〈n · m〉, vol(n)c) ≥ (#C̃Γ(〈m〉, c))vol(n) yields:
For i , j ∈ N hΓ(

i
i+j p + j

i+j q) ≥ i
i+j hΓ(p) + j

i+j hΓ(q) − ε
which proves the concavity of hΓ.
(c-d): Let u ∈ diff PΓ.
Then ΠΓ(u) = {∇PΓ(u)} = ∂PΓ(u) and (c-d) trivially hold.
Recall S(u) ⊆ ΠΓ(u), conv S(u) = ∂PΓ(u) ⊇ ΠΓ(u) Let
pi ∈ S(u), i = 1, . . . , j . So PΓ(u) = p>

i u + hΓ(pi), i = 1, . . . , j
Since ΠΓ convex, for a = (a1, . . . , aj) ∈ Πj p :=

∑j
i=1 aipi ∈ ΠΓ.

As hΓ concave PΓ(u) =
∑j

i=1 aip>
i u + hΓ(pi) ≤ p>u + hΓ(p)

The maximal characterization of PΓ(u) implies PΓ(u) = p>u + hΓ(p).
So p ∈ ΠΓ(u) and hΓ(p) =

∑j
i=1 aihΓ(pi).

(e) Follows from Thm 1 and extra arguments using convexity of P∗
Γ
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Reduction of one parameter

PΓ(u) = t + PΓ(u − t1) ⇒ ∂PΓ(u) ∈ Πn

It is enough to compute P̂Γ(û) := PΓ(û), û = (u1, . . . , un−1, 0)
Hard core model: P̂Γ(t) depends on the energy t ∈ R.
(It is known that for d ≥ 2 hard core model has phase transition)
For the dimer problem the pressure Pd(v) depends on v = (v1, . . . , vd ),
where vi is the energy of the dimer in the direction ei , i = 1, . . ..
(Non-isotropic model)
Dimer isotropic model in Z

d :
pressure Pd(v), where v is the energy of the dimer in any direction.
(Standard model-No phase transition for v ∈ R)
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Computation of pressure

Using the scaled transfer matrices on the torus
T (m′), m′ = (m1, . . . , md−1) as in Friedland-Peled 2005 [3].
Assume for simplicity d = 2,Γ = (Γ1,Γ2), where Γ1 symmetric digraph.
Let ∆ transfer digraph induced by Γ2 between the allowable Γ1 coloring
of the circle T (m).
Then V := CΓ1,per(m) are the set of vertices of ∆(m). For
α, β ∈ CΓ1,per(m) the directed edge (α, β) is in ∆(m) iff the
configuration [(α, β)] is an allowable configuration on CΓ((m, 2)).
Adjacency matrix D(∆(m)) = (dαβ)α,β∈CΓ1,per(m) is N × N matrix, where
N := #CΓ1,per(m).
One dimensional SOFT is CΓ(T (m) × Z):
all Γ allowable coloring of the infinite torus in the direction e2 with the
basis T (m).
The pressure corresponding to this one dimensional SOFT is denoted
by P̃∆(m)(u). Its formula:
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Computation of pressure II

Let D̃(∆(m), u) = (d̃αβ(u))α,β∈CΓ1,per(m) d̃αβ(u) = dαβe
1
2 (c(α)+c(β))>u

Then P̃∆(u) := θ(u,m)
m , θ(u, m) := log ρ(D̃(∆(m), u))

We divide log ρ(D̃(∆, u)) by m, to have
P̃∆(u + t1) = P̃∆(u) + t for any t ∈ R

Main inequalities
1
p (θ(u, p + 2q) − θ(u, 2q)) ≤ PΓ(u) ≤ 1

2m (θ(u, 2m))
for any m, p ≥ 1 and q ≥ 0.
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Automorphism Subgroups

A = (aij)
N
1 nonnegative matrix

A(A) := {π ∈ SN : aπ(i)π(j) = aij , i , j ∈< N >}
Let G ≤ A(A),O(G) :=< N > /G, M = #O(G)
Â = (âαβ)α,β∈O(G), âαβ =:

∑
j∈β aij , i ∈ α, ρ(A) = ρ(Â),

If A = AT then Â symmetric for
< x, y >=

∑
α∈O(G)(#α)xαyα.M ≥ N/#G,

In our computations M ∼ N/#G
Using these tools we confirmed Baxter’s computations with nine digits
of precision of P2(v) and of h2(p).
We also computed the non-isotropic P2((v1, v2)).
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Graph 1 of pressure 2-dimensional dimers P(v1, v2)
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Figure: The graph of P̄1(12,(v1,v2))
12 for angle θ = 28o, ϕ = 78o
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Graph 2 of pressure 2-dimensional dimers P(v1, v2)
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Figure: The graph of P̄1(12,(v1,v2))
12 for angle θ = −159o, ϕ = 420
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Graph 1 of 2-dimensional entropy h2(v1, v2)
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Figure: The graph of an approximation of h̄2(p1, p2) for angle θ = 45o, ϕ = 45o
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Graph 2 of 2-dimensional entropy h2(v1, v2)
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Figure: h̄2(p1, p2) for angle θ = −153o, ϕ = 78o
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