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Nonnegative irreducible and primitive matrices

A = [aij ] ∈ Rn×n
+ induces digraph DG(A) = DG = (V ,E)

V = [n] := {1, . . . ,n}, E ⊆ [n]× [n], (i , j) ∈ E ⇐⇒ aij > 0

DG strongly connected, SC,
if for each pair i 6= j there exists a dipath from i to j

Claim: DG SC iff for each ∅ 6= I ⊂ [n]
∃j ∈ [n] \ I and i ∈ I s.t. (i , j) ∈ E

A -primitive if AN > 0 for some N > 0 ⇐⇒ AN(Rn
+ \ {0}) ⊂ int Rn

+

A primitive ⇐⇒ A irreducible and g.c.d of all cycles in DG(A) is one
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Perron-Frobenius theorem

PF: A ∈ Rn
+ irreducible. Then 0 < ρ(A) ∈ spec (A) algebraically simple

x,y > 0 Ax = ρ(A)x,A>y = ρ(A)y.

A ∈ Rn×n
+ primitive iff in addition to above |λ| < ρ(A) for

λ ∈ spec (A) \ {ρ(A)}

Collatz-Wielandt:

ρ(A) = minx>0 maxi∈[n]
(Ax)i

xi
= maxx>0 mini∈[n]

(Ax)i
xi
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Irreducibility and weak irreducibility of nonnegative
tensors

F := [fi1,...,id ]ni1=...=id
∈ (Cn)⊗d is called d-cube tensor, (d ≥ 3)

F ≥ 0 if all entries are nonnegative

F irreducible: for each ∅ 6= I $ [n], there exists
i ∈ I, j2, . . . , jd ∈ J := [n] \ I s.t. fi,j2,...,jd > 0.

D(F) digraph ([n],A): (i , j) ∈ A if there exists j2, . . . jd ∈ [n] s.t.
fi,j2,...,jd > 0 and j ∈ {j2, . . . , jd}.

F weakly irreducible if D(F) is strongly connected.

Claim: irreducible implies weak irreducible

For d = 2 irreducible and weak irreducible are equivalent

Example of weak irreducible and not irreducible n = 2,d = 3,
f1,1,2, f1,2,1, f2,1,2, f2,2,1 > 0
and all other entries of F are zero
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Eigenvectors of homogeneous monotone maps on Rn
+

Hilbert metric on PRn
>0: for x = (x1, . . . , xn)>,y = (y1, . . . , yn)> > 0.

Then dist(x,y) = maxi∈[n] log yi
xi
−mini∈[n] log yi

xi
.

F = (F1, . . . ,Fn)> : Rn
>0 → Rn

>0 homogeneous:
F(tx) = tF(x) for t > 0,x > 0, and monotone F(y) ≥ F(x) if y ≥ x > 0.
F induces F̂ : PRn

>0 → PRn
>0

F nonexpansive with respect to Hilbert metric
dist(F(x),F(y)) ≤ dist(x,y).

αmaxx ≤ y ≤ βminx⇒
αmaxF(x) = F(αmaxx) ≤ F(y) ≤ F(βminx) = βminF(x)
⇒ dist(F(x),F(y)) ≤ log βmin

αmax
= dist(x,y)

x > 0 eigenvector of F if F(x) = λF(x).
So x ∈ PRn

+ fixed point of F|PRn
+.
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Existence of positive eigenvectors of F

1. If F contraction: dist(F(x),F(y)) ≤ K dist(x,y) for K < 1,
then F has unique fixed point in PRn

+

and power iterations converge to the fixed point

2. Use Brouwer fixed and irreducibility to deduce existence of positive
eigenvector

3. Gaubert-Gunawardena 2004:
for u ∈ (0,∞), J ⊆ [n] let uJ = (u1, . . . ,un)> > 0: ui = u if i ∈ J and
ui = 1 if i 6∈ J. Fi(uJ) nondecreasing in u.
di-graph G(F) ⊂ [n]× [n]: (i , j) ∈ G(F) iff limu→∞ Fi(u{j}) =∞.

Thm: F : Rn
>0 → Rn

>0 homogeneous and monotone. If G(F) strongly
connected then F has positive eigenvector

Collatz-Wielandt ρ(F ) = minx>0 maxi∈[n]
Fi (x)

xi

= supx=(x1,...,xn)>
0 mini,xi>0
Fi (x)

xi
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Uniqueness and convergence of power method for F

Thm 2.5, Nussbaum 88: F : Rn
>0 → Rn

>0 homogeneous and monotone.
Assume; u > 0 eigenvector F with the eigenvalue λ > 0, F is C1 in
some open neighborhood of u, A = DF(u) ∈ Rn×n

+ ρ(A)(= λ) a simple
root of det(xI − A). Then u is a unique eigenvector of F in Rn

>0.

Cor 2.5, Nus88: In the above theorem assume A = DF(u) is primitive.
Let ψ 
 0, ψ>u = 1.
Define G : Rn

>0 → Rn
>0 G(x) = 1

ψ>F(x)
F(x)

Then limm→∞G◦m(x) = u for each x ∈ Rn
>0.
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Perron-Frobenius theorem for nonnegative tensors I

F = [fi1,...,id ] ∈ (Cn)⊗d maps Cn to itself

(Fx)i = fi,•x :=
∑

i2,...,id∈[n] fi,i2,...,id xi2 . . . xid , i ∈ [n]

Note we can assume fi,i2,...,id is symmetric in i2, . . . , id .

F has eigenvector x = (x1, . . . , xn)> ∈ Cn with eigenvalue λ:

(Fx)i = λxd−1
i for all i ∈ [n]

Assume: F ≥ 0, (FRn
+ \ {0}) ⊆ Rn

+ \ {0}

F1 : Πn → Πn, x 7→ 1∑n
i=1(Fx)

1
d−1
i

(Fx)
1

d−1

Brouwer fixed point: x 	 0 eigenvector with λ > 0 eigenvalue

Problem When there is a unique positive eigenvector with maximal
eigenvalue?
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Perron-Frobenius theorem for nonnegative tensors II

Theorem Chang-Pearson-Zhang 2009 [2]
Assume F ∈ ((Rn)⊗d )+ is irreducible.
Then there exists a unique nonnegative eigenvector which is positive
with the corresponding maximum eigenvalue λ.
Furthermore the Collatz-Wielandt characterization holds

λ = minx>0 maxi∈[n]
(Fx)i

xd−1
i

= maxx>0 mini∈[n]
(Fx)i

xd−1
i

Theorem Friedland-Gaubert-Han 2011 [5]
Assume F ∈ ((Rn)⊗d )+ is weakly irreducible.
Then there exists a unique positive eigenvector with the corresponding
maximum eigenvalue λ.
Furthermore the Collatz-Wielandt characterization holds

Give short proofs from [FGH11]
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Generalization of Kingman inequality:
Friedland-Gaubert

Kingman’s inequality: D ⊂ Rm convex,
A : D → Rn×n

+ , A(t) = [aij(t)], each log aij(t) ∈ [−∞,∞) is convex,
(entrywise logconvex)
then log ρ(A) : D → [−∞,∞) convex, (ρ(A(·)) logconvex)

Generalization: F : D → ((Rn)⊗d )+ entrywise logconvex
then ρ(T (·)) is logconvex (L. Qi & collaborators)

Proof Outline:
F◦s = [f s

i1,...,id
], (00 = 0), F ◦ G = [fi1,...,id gi1,...,id ]

GKI: ρ(F◦α ◦ G◦β) ≤ (ρ(F))α(ρ(G))β, α, β ≥ 0, α + β = 1 (∗)
Assume F ,G > 0, Fx = ρ(F)x◦(d−1), Gx = ρ(G)y◦(d−1)

Hölder’s inequality for p = α−1,q = β−1 yields
((F◦α ◦ G◦β)(x◦α ◦ y◦β))i ≤ (Fx)αi (Gx)βi = (ρ(F))α(ρ(G))β(xαi yβi )d−1

Collatz-Wielandt implies (∗)
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Karlin-Ost and Friedland inequalities-FG

ρ(F◦s)
1
s non-increasing on (0,∞) (∗)

Assume F > 0, s > 1 use ‖y‖s non-increasing

(F◦sx◦s)
1
s
i ≤ (Fx)i = ρ(F)xd−1

i
use Collatz-Wielandt

ρtrop(F) = lims→∞ ρ(F◦s)
1
s - the tropical eigenvalue of F .

if F weakly irreducible then F has positive tropical eigenvector
maxi2,...,id fi,i2,...,id xi2 . . . xid = ρtrop(F)xd−1

i , i ∈ [n],x > 0

Cor:
ρ(F ◦ G) ≤ ρ(F

1
2 ◦ G

1
2 )2 ≤ ρ(F)ρ(G)

ρ(F ◦ G) ≤ ρ(F◦p)
1
p ρ(Gq)

1
q , 1

p + 1
q = 1

p = 1,q =∞ ⇒ ρ(F ◦ G) ≤ ρ(F)ρtrop(G)
pat(G) pattern of G, tensor with 0/1 entries obtained by replacing
every non-zero entry of G by 1.
F = pat(G)⇒ ρ(G) 6 ρ(pat(G))ρtrop(G)

A Summer School by Shmuel Friedland July 6-8, 2011 given in Department of Mathematics University of Coimbra, Portugal ()Topics in Tensors III Nonnegative tensors 12 / 31



Characterization of ρtrop(F) – I

Friedland 1986: for A ∈ Rn×n
+ lims→∞ ρ(A◦s)

1
s = λ0(A)

is the maximum geometric average of cycle products of A ∈ Rn×n
+

hence is λ0(A) = ρtrop(A) (Cunnigham-Green)

D(F) := ([n],Arc), (i , j) ∈ Arc iff
∑

j2,...,jd fi,j2,...,jd xj2 . . . xjd contains xj .
d − 1 cycle on [m] vertices is d − 1 outregular strongly connected
subdigraph D = ([m],Arc) of D(F),
i.e. the digraph adjacency matrix A(D) = [aij ]) ∈ Zm×m

+ of subgraph is
irreducible with each row sum d − 1.

A(D)1 = (d − 1)1,v>A(D) = (d − 1)v>, v = (v1, . . . , vm)> > 0
probability vector
Assume for simplicity d − 1 cycle on [m]
weighted-geometric average:

∏m
i=1(fi,j2(i),...,jd (i))vi

Friedland-Gaubert: ρtrop(F) is the maximum weighted-geometric
average of d − 1 cycle products of F ∈ ((Rn)⊗d )+

Cor. ρtrop(F) is logconvex in entries of T .
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Outline of proof

Assume T > 0
x = (x1, . . . , xn) 
 0 is a tropical eigenvector. Rename the indices so
xi > 0 for i ∈ [m] and xi = 0 for i > m.
fi,j2(i),...,jd (i)xj2(i) . . . xjd (i) = λxd−1

i , i ∈ [m] (∗)
Let D = ([m],Arc) be defined: the directed arcs from i are
(i , j2(i)), . . . , (i , jd (i)).
Note that if jp(i) = jq(i) = for p < q then the arc (i , k) is multiple.

Assume first A(D) irreducible:
A(D)1 = (d − 1)1,v>A(D) = (d − 1)v> > 0
(∗) equivalent∑m

j=1 aij log xj = (d − 1) log xi + logλ− log fi,j2(i),...,jd (i), i ∈ [m].
multiply by vi sum on i : logλ =

∑m
i=1 vi log fi,j2(i),...,jd (i)

If A(D) reducible take the terminal strongly connected component

Choosing all other entries of F very small positive we get
ρtrop(F) is maximum of

∏m
i=1 f vi

i,j2(i),...,jd (i)
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Characterization of ρtrop(F) II

More general results Akian-Gaubert [1]
Z = (zi1,...,id ) ∈ ((Rn)⊗d )+ occupation measure:∑

i1,...,id zi1,...,id = 1 and for all k ∈ [n]∑
i,{j2,...,jd}3k zi,j2,...,id = (d − 1)

∑
m2,...,md

zk ,m2,...,md

first sum is over i ∈ [n] and all j2, . . . , jd ∈ [n] s. t. k ∈ {j2, . . . , jd}
Def: Zn,d all occupation measures

Thm: log ρtrop(F) = maxZ∈Zn,d

∑
j1,...,jd∈[n] zj1,...,jd log fi1,...,id

Proof: The extreme points of occupational measures correspond to
geometric average
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Diagonal similarity of nonnegative tensors

F = [fi1,...,id ] ∈ ((Rn)⊗d )+ is diagonally similar to
G = [gi1,...,id ] ∈ ((Rn)⊗d )+ if

gi1,...,id = e−(d−1)ti1 +
∑d

j=2 tij fi1,...,id for some t = (t1, . . . , tn)> ∈ Rn

Diagonally similar tensors have the same eigenvalues and spectral
radius

generalization of Engel-Schneider [3], (Collatz-Wielandt)

ρtrop(F) = inf(t1,...,tn)>∈Rn maxi1,...,id e−(d−1)ti1 +
∑d

j=2 tij fi1,...,id
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Generalized Friedland-Karlin inequality I

Friedland-Karlin 1975: A ∈ Rn×n
+ irreducible, Au = ρ(A)u,A>v = ρ(A)v,

u ◦ v = (u1v1, . . . ,unvn) > 0 probability vector:
log ρ(diag(et)A) ≥ log ρ(A) +

∑n
i=1 uivi ti

(graph of convex function above its supporting hyperplane)

(etF)i1,...,id = eti1 fi1,...,id
GFKI: F is weakly irreducible.
A := D(u)−(d−2)∂(Fx)(u), Au = ρ(A)u,A>v = ρ(A)v and u ◦ v > 0
probability vector

log ρ(diag(et)F) ≥ log ρ(F) +
∑n

i=1 uivi ti

F super-symmetric: Fx = ∇φ(x), φ homog. pol. degree d

log ρ(diag(et)F) ≥ log ρ(F) +
∑n

i=1 ud
i ti ,

∑n
i=1 ud

i = 1
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Generalized Friedland-Karlin inequality II

minx>0
∑n

i=1 uivi log (Fx)i

xd−1
i

= log ρ(F) (∗)
equality iff x the positive eigenvector of F .

Gen. Donsker-Varadhan: ρ(F) = maxp∈Πn infx>0
∑n

i=1 pi
(Fx)i

xd−1
i

(∗∗)
Prf: For x = u RHS (∗∗) ≤ ρ(T ).
For p = u ◦ v (∗)⇒ RHS (∗∗) = ρ(F).

Gen. Cohen: ρ(F) convex in (f1,...,1, . . . , fn,...,n):
ρ(F +D) = maxp∈Πn (

∑n
i=1 pidi,...,i + infx>0

∑n
i=1 pi

(Fx)i

xd−1
i

)

GFK: F weakly irreducible, positive diagonal, u,v > 0,u ◦ v ∈ Πn,
∃t,s ∈ Rn s.t. eti1 fi1,...,id esi2

+...+sid with eigenvector u
and v left eigenvector of D(u)−(d−2)∂Fx(u)

PRF: Strict convex function g(z) =
∑n

i=1 uivi(logFez − (d − 1)zi)
achieves unique minimum for some z = log x, as g(∂(Rn

+ \ {0}) =∞

F super-symmetric and v = ud−1 then t = s
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Scaling of nonnegative tensors to tensors with given
row, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:
r = (r1, . . . , rm)>,c = (c1, . . . , cn)>,d = (d1, . . . ,dl)

> > 0:∑
j,k ti,j,k = ri > 0,

∑
i,k ti,j,k = cj > 0,

∑
i,j ti,j,k = dk > 0∑m

i=1 ri =
∑n

j=1 cj =
∑l

k=1 dk

Find nec. and suf. conditions for scaling:
T ′ = [ti,j,kexi +yj +zk ],x,y, z such that T ′ has given row, column and
depth sum
Solution: Convert to the minimal problem:
minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑
i,j,k ti,j,kexi +yj +zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to a
solution of the scaling problem (Lagrange multipliers)
fT is convex
fT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.
For matrices indecomposability is equivalent to strict convexity
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Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalities
r>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent finding
the unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linear
convergence of Sinkhorn algorithm
True for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?
Yes for Menon, unknown for Brualdi
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SVD

A ∈ Rm×n, σ1(A) ≥ . . . ≥ 0 singular values

Ayi = σi(A)xi , A>xi = σi(A)yi

±σi(A), i = 1, . . . are critical values of f (x,y) = x>Ay
restricted to ‖x‖2 = ‖y‖2 = 1

SVD of A closely related to spectral theory

B =

[
0m×m A

A> 0n×n

]
, −λ(B) = λ(B)

positive singular values are the positive eigenvalues of B

σ1(A) = max‖x‖2=‖y‖2=1 y>Ax
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SVD of nonnegative matrices

Perron-Frobenius for A = [aij ] ∈ Rm×n
+ :

u ∈ Rm
+,v ∈ Rn

+, u>u = v>v = 1 Av = σ1(A)u, A>u = σ1(A)v

σ1(A) = maxx∈Rm,y∈Rn,‖x‖2=‖y‖2=1 x>Ay = u>Av.

G(A) := DG(B) = G(B) = (V1 ∪ V2,E) bipartite graph on
V1 = [m],V2 = [n], (i , j) ∈ E ⇐⇒ aij > 0.

If G(A) connected. Then u,v unique, σ2(A) < σ1(A), ( as
B-irreducible).
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Rank one approximations for 3-tensors

Rm×n×l IPS: 〈A,B〉 =
∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =
√
〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of X
PX(T ) =

∑d
i=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑d
i=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :
minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λx
T × x⊗ z = λy, T × x⊗ y = λz
λ singular value, x,y, z singular vectors
How many distinct singular values are for a generic tensor?
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`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (
∑n

i=1 |xi |p)
1
p

Problem: max‖x‖p=‖y‖p=‖z‖p=1
∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=
∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t
2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity
Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobenius
theorem?

Yes, for p ≥ 3, No, for p < 3,
Friedland-Gauber-Han [5]
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Numerical counterexamples

F := [fi,j,k ] ∈ R2×2×2
+ : f1,1,1 = f2,2,2 = a > 0 otherwise, fi,j,k = b > 0.

f (x,y, z) = b(x1 + x2)(y1 + y2)(z1 + z2) + (a− b)(x1y1z1 + x2y2z2).

For p1 = p2 = p3 = p > 1 positive singular vectors:
x = y = z = (0.51/p,0.51/p)>.

For a = 1.2,b = 0.2 and p = 2 additional positive singular vectors:
x = y = z ≈ (0.9342,0.3568)>,
x = y = z ≈ (0.3568,0.9342)>.

For a = 1.001,b = 0.001 and p = 2.99 additional positive singular
vectors:
x = y = z ≈ (0.9667,0.4570)>,
x = y = z ≈ (0.4570,0.9667)>
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Nonnegative multilinear forms

Associate with T = [ti1,...,id ] ∈ Rm1×...×md
+

a multilinear form f (x1, . . .xd ) : Rm1×...×md → R

f (x1, . . . ,xd ) =
∑

ij∈[mj ],j∈[d ] ti1,...,id xi1,1 . . . xid ,d ,

xi = (x1,i , . . . , xmi ,i ∈ Rmi

For u ∈ Rm,p ∈ (0,∞] let ‖u‖p := (
∑m

i=1 |ui |p)
1
p and

Sm−1
p,+ := {0 ≤ u ∈ Rm, ‖u‖p = 1}

For p1, . . . ,pd ∈ (1,∞) critical point (ξ1, . . . , ξd ) ∈ Sm1−1
p1,+

× . . .× Smd−1
pd ,+

of f |Sm1−1
p1,+

× . . .× Smd−1
pd ,+

satisfies Lim [4]:∑
ti1,...,id xi1,1 . . . xij−1,j−1xij+1,j+1 . . . xid ,d = λxpj−1

ij ,j
,

ij ∈ [mj ],xj ∈ Spj−1
mj ,+

, j ∈ [d ]
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Perron-Frobenius theorem for nonnegative multilinear
forms

Theorem- Friedland-Gauber-Han [5]
f : Rm1 × . . .× Rmd → R, a nonnegative multilinear form,
T weakly irreducible and pj ≥ d for j ∈ [d ].
Then f has unique positive critical point on Sm1−1

+ × . . .× Smd−1
+ .

If F is irreducible then f has a unique nonnegative critical point which
is necessarily positive
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Outline of the uniqueness of pos. crit. point of f

Define: F : Rm
+ × Rn

+ × Rl
+ → Rm

+ × Rn
+ × Rl

+:

F ((x,y, z))i,1 =
(
‖x‖p−3

p
∑n,l

j=k=1 ti,j,kyjzk

) 1
p−1

, i = 1, . . . ,m

F ((x,y, z))j,2 =
(
‖y‖p−3

p
∑m,l

i=k=1 ti,j,kxizk

) 1
p−1

, j = 1, . . . ,n

F ((x,y, z))k ,3 =
(
‖z‖p−3

p
∑m,n

i=j=1 ti,j,kxiyj

) 1
p−1

, k = 1, . . . , l

Assume
∑n,l

j=k=1 ti,j,k > 0, i = 1, . . . ,m,∑m,l
i=k=1 ti,j,k > 0, j = 1, . . . ,n,

∑m,n
i=j=1 ti,j,k > 0, k = 1, . . . , l

F 1-homogeneous monotone, maps open positive cone Rm
+ ×Rn

+ ×Rl
+

to itself.
T = [ti,j,k ] induces tri-partite graph on 〈m〉, 〈n〉, 〈l〉:
i ∈ 〈m〉 connected to j ∈ 〈n〉 and k ∈ 〈l〉 iff ti,j,k > 0, sim. for j , k
If tri-partite graph is connected then F has unique positive eigenvector
If F completely irreducible, i.e. F N maps nonzero nonnegative vectors
to positive, nonnegative eigenvector is unique and positive
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