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Abstract

In this paper we study the maximum value of the largest eigenvalue for
simple bipartite graphs, where the number of edges is given and the number of
vertices on each side of the bipartition is given. We state a conjectured solution,
which is an analog of the Brualdi- Hoffman conjecture for general graphs, and
prove the conjecture in some special cases.
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1 Introduction

The purpose of this paper to study the maximum value of the maximum eigenvalue
of certain classes of bipartite graphs. These problem are analogous to the problems
considered in the literature for general graphs and 0− 1 matrices [1, 2, 3, 5, 8]. We
describe briefly the main problems and results obtained in this paper.

We consider only finite simple undirected graphs bipartite graphs G. Let G =
(V ∪W,E), where V = {v1, . . . , vm},W = {w1, . . . , wn} are the two set of vertices
of G. We view the undirected edges E of G as a subset of V × W . Denote by
deg vi,deg wj the degrees of the vertices vi, wj respectively. Let D(G) = {d1(G) >

d2(G) > · · · > dm(G)} be the rearranged set of the degrees deg v1, . . . ,deg vm. Note
that e(G) =

∑m
i=1 deg vi is the number of edges in G. Denote by λmax(G) the

maximal eigenvalue of G. Denote by Gni the induced subgraph of G consisting of
nonisolated vertices of G. Note that e(G) = e(Gni), λmax(G) = λmax(Gni). It is
straightforward to show, see Proposition 2.1, that

λmax(G) 6
√

e(G). (1.1)

Furthermore the equality holds if and only if Gni is a complete bipartite graph. In
what follows we assume that G = Gni, unless stated otherwise.

∗Visiting Professor, Fall 2007 - Winter 2008, Berlin Mathematical School, Berlin, Germany
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The majority of this paper is devoted to refinements of (1.1) for noncomplete
bipartite graphs. We now state the basic problem that this paper deal with. Denote
by Kp,q = (V ∪W,E) the complete bipartite graph where #V = p,#W = q,E =
V ×W . We assume here the normalization 1 ≤ p 6 q. Let e be a positive integer
satisfying e 6 pq. Denote by K(p, q, e) the family of subgraphs Kp,q with e edges
and with no isolated vertices and which are not complete bipartite graphs.

Problem 1.1 Let 2 6 p 6 q, 1 < e < pq be integers. Characterize the graphs
which solve the maximal problem

max
G∈K(p,q,e)

λmax(G). (1.2)

We conjecture below an analog of the Brualdi-Hoffman conjecture for nonbipar-
tite graphs [1], which was proved by Rowlinson [5]. See [3, 8] for the proof of partial
cases of this conjecture.

Conjecture 1.2 Under the assumptions of Problem 1.1 an extremal graph that
solves the maximal problem (1.2) is obtained from a complete bipartite graph by
adding one vertex and a corresponding number of edges.

Our first result toward the solution of Problem 1.1 is of interest by itself. Let
D = {d1 > d2 > · · · > dm} be a set of positive integers, and let BD be the class
of bipartite graphs G with no isolated vertices, where D(G) = D. We show that
maxG∈BD

λmax(G) is achieved for a unique graph, up to isomorphism, which is the
chain graph [9], or the difference graph [7], corresponding to D. (See §2.) It follows
that an extremal graph solving the Problem 1.1 is a chain graph.

Our main result, Theorem 8.1, shows that Conjecture 1.2 holds in the following
cases. Fix r > 2 and assume that e ≡ r − 1 mod r. Assume that l =

⌊
e
r

⌋
> r. Let

p ∈ [r, l + 1] and q ∈ [l + 1, l + 1 + l
r−1 ]. So Kp,q has more than e edges. Then

the maximum (1.2) is achieved if and only if G is isomorphic to the following chain
graph Gr,l+1. Gr,l+1 obtained from Kr−1,l+1 = (V ∪W,E) by adding an additional
vertex vr to the set V , and connecting vr to the vertices w1, . . . , wl in W .

We now list briefly the contents of the paper. §2 is a preliminary section in which
we recall some known results on bipartite graphs and related results on nonnegative
matrices. In §3 we show that the maximum eigenvalue of a bipartite graph increases
if we replace it by the corresponding chain graph. §4 gives upper estimates on the
maximum eigenvalue of chain graphs. In §5 we discuss a minimal problem related to
the sharp estimate of chain graphs with two different degrees. §6 discuses a special
case of the above minimal problem over the integers. In §7 we introduce C-matrices,
which can be viewed as continuous analogs of the square of the adjacency matrix of
chain graphs. in §8 prove Theorem 8.1.

2 Preliminaries

We now set up some notation and review basic results. Denote by R
m×n the set of

m×n matrices with real entries. We view A ∈ R
m×n as A = (Ai,j)

m,n
i,j=1. Let G = (V ∪

W,E) be a bipartite graph with V = {v1, . . . , vm},W = {w1, . . . , wn}, possibly with
isolated vertices. We arrange the vertices V ∪W in the order v1, . . . , vm, w1, . . . , wn.
Then the adjacency matrix B of G is of the form

2



Figure 1: The chain graph GD for D = {5, 2, 2, 1}.
v1 v2 v3 v4

w1 w2 w3 w4 w5

B =

(
0 A

A⊤ 0

)

, (2.1)

where A is an m× n matrix of 0’s and 1’s. We call A the representation matrix of
the bipartite graph G. Note that i− th row sum of A is deg vi and the j− th column
sum of A is deg wj. The graph G can be specified by specifying the matrix A. Then
G does not have isolated vertices if and only if A does not zero rows and columns.

Given D = {d1 > d2 > · · · > dm}, a set of positive integers, we construct from
D the following graph GD ∈ BD, well-known as a chain graph [9] or a difference
graph [7]. The vertices of GD are partitioned into {v1, . . . , vm} and {w1, . . . , wn},
n = d1, and the neighbors of vi are w1, w2, . . . , wdi

. This is illustrated in Figure 1.
We now recall the well known spectral properties of the symmetric matrix

B ∈ R
(m+n)×(m+n) of the form (2.1), where A ∈ R

m×n
+ , i.e. A is m × n matrix

with nonnegative entries. The spectrum of B is real (by the symmetry of B) and
symmetric around the origin (because if (x,y) is an eigenvector for λ, then (x,−y)
is an eigenvector for −λ). Every real matrix possesses a singular value decomposi-
tion (SVD). Specifically, if A is m× n of rank r, then there exist positive numbers
σi = σi(A), i = 1, . . . , r (the singular values of A) and orthogonal matrices U, V of
orders m,n such that A = UΣV ⊤, where Σ = diag(σ1, . . . , σr, 0, . . .) is an m × n

matrix having the σi along the main diagonal and otherwise zeros. It is possible
and usually done to have the σi in non-increasing order. For symmetric matri-
ces the singular values are the absolute values of the eigenvalues. The matrix B

from (2.1) satisfies B2 =
(

AA⊤ 0
0 A⊤A

)
, and so the eigenvalues of B2 are those of AA⊤

together with those of A⊤A. Using the SVD for A we see that AA⊤ has the m

eigenvalues σ2
1 , . . . , σ

2
r , 0, 0, . . . and A⊤A has the n eigenvalues σ2

1 , . . . , σ
2
r , 0, 0, . . ..

The eigenvalues of B are therefore square roots of these numbers, and by the
symmetry of the spectrum of B, the eigenvalues of B are the m + n numbers
σ1, . . . , σr, 0, . . . , 0,−σr, . . . ,−σ1. In particular, the largest eigenvalue of B is σ1(A).
We denote this eigenvalue by λmax(B) = σ1(A). If B is the adjacency matrix of G

then λmax(G) = λmax(B) = σ1(A).

For x = (x1, . . . , xn)⊤ ∈ R
n we denote by ‖x‖ =

√
∑n

j=1 x2
j , the Euclidean norm

of x. For A ∈ R
m×n the operator norm of A is given by σ1(A) =

√

λmax(AA⊤) =

3
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λmax(A⊤A). We can find σ1(A) by the following maximum principle.

σ1(A) = max
x∈Rm,‖x‖=1

y∈Rn,‖y‖=1

x⊤Ay = max
y∈Rn,‖y‖=1

‖Ay‖. (2.2)

To see this, consider the SVD A = UΣV ⊤. Every x ∈ R
m with ‖x‖ = 1 can be

written as x = Ua, a = (a1, . . . , am)⊤, with ‖a‖ = 1, and every y ∈ R
n with ‖y‖ = 1

can be written as y = V b, b = (b1, . . . , bn)⊤, with ‖b‖ = 1. Then

x⊤Ay = a⊤U⊤AV b = a⊤Σb =

r∑

i=1

aibiσi 6 σ1

r∑

i=1

|aibi| 6

6 σ1

(
r∑

i=1

a2
i

r∑

i=1

b2
i

) 1

2

6 σ1

(
m∑

i=1

a2
i

n∑

i=1

b2
i

) 1

2

= σ1‖a‖‖b‖ = σ1.

Equality is achieved when x is the first column of U and y is the first column of
V , and this proves the first equality of (2.2). The second equality is obtained by
observing that for a given y, the maximizing x is parallel to Ay.

Another useful fact that can be derived from the SVD A = UΣV ⊤ is the fol-
lowing: if (x,y) is an eigenvector of

(
0 A

A⊤ 0

)
belonging to σ1 > 0, then ‖x‖ = ‖y‖.

To see this, observe that Ay = σ1x and A⊤x = σ1y. Define vectors a = U⊤x and
b = V ⊤y. Then

Σb = ΣV ⊤y = U⊤Ay = σ1U
⊤x = σ1a

Σ⊤a = Σ⊤U⊤x = V ⊤A⊤x = σ1V
⊤y = σ1b.

It follows that for all i we have σibi = σ1ai and σiai = σ1bi. Thus (σ1+σi)(bi−ai) =
0. Since σ1 +σi > 0, it follows that ai = bi for all i, and so a = b, i.e., U⊤x = V ⊤y.
The orthogonal matrices U⊤ and V ⊤ preserve the norms, and therefore ‖x‖ = ‖y‖.

Recall the Rayleigh quotient characterization of the largest eigenvalue of a sym-
metric matric M ∈ R

m×m: λmax(M) = max‖x‖=1 x⊤Mx. Every x achieving the
maximum is an eigenvector of M belonging to λmax(M). If the entries of M

are non-negative (M > 0), the maximization can be restricted to vectors x with
non-negative entries (x > 0) because x⊤Mx 6 |x|⊤M |x| and ‖|x|‖ = ‖x‖, where
|x| = (|x1|, . . . , |xm|)⊤.

Recall that a square non-negative matrix C is said to be irreducible when some
power of I + C is positive (has positive entries). Equivalently the digraph induced
by C is strongly connected. Thus a symmetric non-negative matrix B is irreducible
when the graph induced by B is connected. For a rectangular non-negative matrix
A, AA⊤ is irreducible if and only if the bipartite graph with adjacency matrix B

given by (2.1) is connected.
If a symmetric non-negative matrix B is irreducible, then the Perron-Frobenius

theorem implies that the spectral radius of B is a simple root of the characteristic
polynomial of B and the corresponding eigenvector can be chosen to be positive.
The following result is well known and we bring its proof for completeness.

Proposition 2.1 A = (Ai,j)
m,n
i,j=1 ∈ R

m×n
+ and assume that B is of the form

(2.1). Then

λmax(B) 6

√
√
√
√

m,n
∑

i,j=1

A2
i,j. (2.3)
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Equality holds if and only if either A = 0 or A is a rank one matrix. In particular,
if G is a bipartite graph with e(G) > 1 edges then

λmax(G) 6
√

e(G), (2.4)

and equality holds if and only if Gni is Kp,q, where pq = e(G).

Proof Let r be the rank of A. Recall that the positive eigenvalues of AA⊤ are
σ1(A)2, . . . , σr(A)2. Hence trace AA⊤ =

∑m,n
i,j A2

i,j =
∑r

k=1 σk(A)2 > σ1(A)2. Com-
bine this equality with the equality λmax(B) = σ1(A) to deduce (2.3). Clearly,
equality holds if and only if either r = 0, i.e. A = 0, or r = 1.

Assume now that G is a bipartite graph. Let A be the representation matrix of
G. Then trace AA⊤ = e(G). Hence (2.3) implies (2.4).

Assume that G = Kp,q. Then the entries of the representation matrix A consist
of all 1. So rank of A is one and e(Kp,q) = pq, i.e. equality holds in (2.4). Conversely,
suppose that λmax(G) =

√

e(G). Hence λmax(Gni) =
√

e(Gni). Let C ∈ R
p×q be

the representation matrix of Gni. Since satisfies equality in (2.3) we deduce that C

is a rank one matrix. But C is 0−1 matrix that does not have a zero row or column.
Hence all the rows and columns of C must be identical. Hence all the entries of C

are 1, i.e. Gni is a complete bipartite graph with e(G) edges. �

3 The Optimal Graphs

The aim of this section to prove the following theorem.

Theorem 3.1 Let D = {d1 > d2 > · · · > dm} be a set of positive integers.
Then the chain graph GD is the unique graph in BD, (up to isomorphism), which
solves the maximum problem maxG∈BD

λmax(G).

Let us call a graph G ∈ BD optimal if it solves the maximum problem of the above
theorem. Our first goal is to prove that every optimal graph is connected. For that
purpose we partially order the finite sets of positive integers as follows.

Definition 3.2 Let D = {d1 > d2 > · · · > dm} and D′ = {d′1 > d′2 > · · · > d′m′}
be sets of m and m′ positive integers. Then D > D′ means that m > m′, and
d1 > d′1, d2 > d′2, . . . , dm′ > d′m′ , and D 6= D′.

Theorem 3.3 If D > D′, then λmax(GD) > λmax(GD′).

Proof Let A be the m×d1 matrix of 0’s and 1’s with row sums d1 > d2 > · · · > dm,
and columns ordered so that each row is left-justified (1’s first, then 0’s). Then
B =

(
0 A

A⊤ 0

)
of order m + d1 is the adjacency matrix of GD. Let A′ and B′ be

defined similarly for GD′ .
Let M = BB⊤ and M ′ = B′B′⊤. Then M and M ′ are symmetric non-negative

irreducible matrices of orders m and m′, and λmax(GD) = λmax(M), λmax(GM ′) =
λmax(M

′).
Case 1: m = m′. In this case, by Definition 3.2, at least one of the inequalities

d1 > d′1, d2 > d′2, . . . , dm > d′m holds with strict inequality. It follows that M > M ′

(i.e., M −M ′ is a non-negative matrix), and some integer i ∈ [1,m] satisfies Mi,i >

M ′
i,i. Therefore every positive vector y satisfies y⊤My > y⊤M ′y. Let y = x′ be the

5



positive Perron-Frobenius eigenvector of the irreducible matrix M ′, with ‖x′‖ = 1.
Then by the Rayleigh quotient we have

λmax(M) > x′⊤Mx′ > x′⊤M ′x′ = λmax(M
′),

as required.
Case 2: m > m′. In this case, let L be the principal submatrix of M consisting

of its first m′ rows and columns. By Definition 3.2 we have d1 > d′1, d2 > d′2, . . . ,
dm′ > d′m′ . Therefore L > M ′, and hence λmax(L) > λmax(M

′).
Since L is symmetric and non-negative, there exists a vector y ∈ Rm′

with y > 0,
‖y‖ = 1 satisfying λmax(L) = y⊤Ly. Extend y with zeros to a vector x ∈ R

m.
Then x > 0 and ‖x‖ = 1 and y⊤Ly = x⊤Mx 6 λmax(M). Equality cannot occur
here, for if it did, then x would be the unique Perron-Frobenius eigenvector of the
irreducible matrix M and x would be positive, whereas xi = 0 for i > m′. Thus
λmax(M) > λmax(L) > λmax(M

′), as required. �

Lemma 3.4 If G ∈ BD is connected, then λmax(G) 6 λmax(GD).

Proof Let D = {d1 > · · · > dm} and n > d1. Let B =
(

0 A
A⊤ 0

)
be the adjacency

matrix of G, where A is m×n with row sums given by D. Since G is connected, B is
irreducible. Let (x,y) be the positive Perron-Frobenius eigenvector of B belonging
to λmax(G) = σ1(A), with x = (x1, . . . , xm), y = (y1, . . . , yn):

σ1(A)
(

x
y

)
=
(

0 A
A⊤ 0

)(
x
y

)
, (3.1)

and so Ay = σ1(A)x.
As we observed in Section 2, we have ‖x‖ = ‖y‖, and so we may choose a

normalization such that ‖x‖ = ‖y‖ = 1.
We reorder the columns of A so that y1 > y2 > · · · > yn > 0. The rows are still

in their original order, and so the row sums are d1 > · · · > dm in this order.

Let
←−
A be the matrix obtained from A by left-justifying each row, i.e., moving

all the 1’s of the row to the beginning of the row. Then
(

0
←−
A←−

A⊤ 0

)
is the adjacency

matrix of GD with n−d1 zero rows and columns appended at the end, and therefore

λmax(GD) = σ1(
←−
A ).

Since y1 > y2 > · · · > yn > 0 and since
←−
A is obtained from A by left-justifying

each row, we have
←−
Ay > Ay. Since x > 0, we have x⊤

←−
Ay > x⊤Ay. (2.2) yields

λmax(GD) = σ1(
←−
A ) = max

u∈Rm,‖u‖=1

v∈Rn,‖v‖=1

u⊤
←−
Av > x⊤

←−
Ay > x⊤Ay

= x⊤σ1(A)x = σ1(A) = λmax(G). (3.2)

�

Lemma 3.5 An optimal graph must be connected.

Proof Let G ∈ BD be an optimal graph. The graph G is bipartite, and one side
of the bipartition (call it the first side) has degrees given by D. Let G1, . . . , Gk be
the connected components of G. Then λmax(G) = λmax(Gi) for some i.

Like G, the component Gi is also bipartite with the bipartition inherited from
that of G. Let Di be the set of degrees of Gi on the first side of the bipartition.

6



If G is disconnected, then D > Di, and therefore λmax(G) > λmax(GD) >

λmax(GDi
) > λmax(Gi), where the first inequality is by the optimality of G, the

second by Theorem 3.3, and the third by Lemma 3.4 and the connectivity of Gi.
This contradicts the equality above and proves that G must be connected. �

We are now ready to prove our main theorem.

Proof (of Theorem 3.1). Let G ∈ BD be optimal with adjacency matrix B =
(

0 A
A⊤ 0

)
. By Lemma 3.5 G is connected. We begin as in the proof of Lemma 3.4. We

let (x,y) be the positive Perron-Frobenius eigenvector of B belonging to λmax(G) =
σ1(A), with x = (x1, . . . , xm)⊤, y = (y1, . . . , yn)⊤, ‖x‖ = ‖y‖ = 1. In other words,
(3.1) holds, or equivalently

Ay = σ1(A)x (3.3)

A⊤x = σ1(A)y (3.4)

However, this time we reorder both the rows and the columns of A so that x1 >

x2 > · · · > xm > 0 and y1 > y2 > · · · > yn > 0, so now the row sums of A, which
we still denote by d1, d2, . . . , dm, are not necessarily non-decreasing. As before, we

let
←−
A be the matrix obtained from A by left-justifying each row. The graph with

adjacency matrix
(

0
←−
A←−

A⊤ 0

)
is still isomorphic to GD plus n − d1 isolated vertices,

and therefore λmax(GD) = σ1(
←−
A ). For the same reasons as before we have

←−
Ay >

Ay, and therefore (3.2) holds. Moreover, by the optimality of G we have equality
throughout (3.2). In particular GD is optimal and λmax(GD) = σ1(A), so from now

on we abbreviate σ1(A) = σ1(
←−
A ) = σ1. Now

←−
Ay > Ay and x⊤

←−
Ay = x⊤Ay and

x > 0 give ←−
Ay = Ay = σ1x. (3.5)

The first two rows of (3.5) and x1 > x2 now give

y1 + · · ·+ yd1
= σ1x1 > σ1x2 = y1 + · · ·+ yd2

,

and since y > 0 we must have d1 > d2. The same argument with rows 2 and 3 shows
d2 > d3, and so on. We have established that the row sums of A are non-decreasing,
i.e.,

d1 > d2 > · · · > dm. (3.6)

Note that by (3.6), the columns of
←−
A are top-justified, i.e., the 1’s are above the

0’s. For this reason and x > 0 we have
←−
A⊤x > A⊤x, and hence y⊤

←−
A⊤x > y⊤A⊤x

by y > 0. The analog of (3.2) for
←−
A⊤ now holds with equality throughout and we

obtain ←−
A⊤x = A⊤x = σ1y. (3.7)

Our remaining task is to show that d1 = n and A =
←−
A , and therefore G is

isomorphic to GD. For that purpose we need notation for rows of
←−
A with equal

sums, and similarly for columns.

We introduce the following notation for the row sums of
←−
A :

r1 = d1 = · · · = dm1
> r2 = dm1+1 = · · · = dm1+m2

> · · · >
> rh = dm1+···+mh−1+1 = · · · = dm1+···+mh

,
(3.8)

7



where

m1 + · · ·+ mh = m.

This is illustrated in Figure 2.

Figure 2: The notation for the row sums of
←−
A .

rh

r2

r1

mh

m2

m1

From (3.5) we have σ1xi = (
←−
Ay)i = y1 + · · ·+ ydi

. Therefore by (3.8) and y > 0

we obtain

x1 = · · · = xm1
> xm1+1 = · · · = xm1+m2

> · · · >
xm1+···+mh−1+1 = · · · = xm1+···+mh

> 0.
(3.9)

Analogously using (3.7) and (3.8) and x > 0 we obtain

y1 = · · · = yrh
> yrh+1 = · · · = yrh−1

> · · · >
yr2+1 = · · · = yr1

> 0 = yr1+1 = yr1+2 = · · · = yn.
(3.10)

From (3.10) and y > 0, we conclude that

d1 = r1 = n.

We are now ready to show that A =
←−
A . Since d1 = r1 = n, the first m1 rows of

A are all-1, and so are the first m1 rows of
←−
A . Now let m1 + 1 6 i 6 m1 + m2 be

an index of one of the next m2 rows. Both A and
←−
A have di = r2 1’s in row i. Let

the 1’s in row i of A lie in columns k1, . . . , kr2
. Then by (3.5) we have

r2∑

j=1

ykj
= (Ay)i = (

←−
Ay)i =

r2∑

j=1

yj. (3.11)

However, by (3.10) the last r1 − r2 components of y are smaller than all other
components. Therefore if any kj lies in the range {r2 + 1, . . . , r1}, it would follow
that

∑r2

j=1 ykj
<
∑r2

j=1 yj, contradicting (3.11). Therefore kj = j for j = 1 . . . , r2,

in other words rows i of A and
←−
A are the same.

An analogous argument can be applied to the next m3 rows, and so on, and it

follows that
←−
A = A. �
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The arguments of the proof of the above theorem yield.

Corollary 3.6 Let the assumptions of Problem 1.1 holds. Then any H ∈ K(p, q, e)
satisfying maxG∈K(p,q,e) λmax(G) = λmax(H) is isomorphic to GD, for some D =
{d1 > d2 > · · · > dm}, where m 6 p and d1 6 q.

4 Estimations of the Largest Eigenvalue

In this section we give lower and upper bounds for λmax(G), where G is an optimal
graph with a given adjacency matrix

(
0 A

A⊤ 0

)
. (Our upper bound improves the upper

bound (2.4).)
Recall the concept of the second compound matrix Λ2A of an m×n matrix A =

(Ai,j) [6]: Λ2A is an
(
m
2

)
×
(
n
2

)
matrix with rows indexed by (i1, i2), 1 6 i1 < i2 6 m

and columns indexed by (j1, j2), 1 6 j1 < j2 6 n. The entry in row (i1, i2) and
column (j1, j2) of Λ2A is given by

Λ2A(i1,i2)(j1,j2) = det

(
Ai1,j1Ai1,j2

Ai2,j1Ai2,j2

)

. (4.1)

Note that (Λ2A)⊤ = Λ2A
⊤. It follows from the Cauchy-Binet theorem that for

matrices A,B of compatible dimensions one has Λ2(AB) = (Λ2A)(Λ2B). One also
has Λ2I = I and therefore Λ2A

−1 = (Λ2A)−1 for nonsingular A. In particular, the
second compound matrix of an orthogonal matrix is orthogonal, and therefore the
SVD carries over to the second compound: if the SVD of A is A = UΣV ⊤, then the
SVD of Λ2A is (Λ2A) = (Λ2U)(Λ2Σ)(Λ2V )⊤. It follows that if the singular values of
A are σ1 > σ2 > · · · , then the singular values of Λ2A are σiσj, i < j. In particular,
when the rank of A is larger than 1, equivalently Λ2A 6= 0, we have

σ1σ2 = σ1(Λ2A) = max
w 6=0

‖(Λ2A)w‖
‖w‖ , (4.2)

where the second equality follows by applying (2.2) to Λ2A.
We now specialize to A given by (2.1), which is the adjacency matrix of an

optimal graph. Thus A is a matrix of 0’s and 1’s whose rows are left-justified and
whose columns are top-justified. We use the notation (3.8) for the row sums of A.
For such A the entries of Λ2A can only be 0 or −1. Indeed, if in (4.1) Ai2,j2 = 1,
then Ai1,j2 = Ai2,j1 = Ai1,j1 = 1 and the determinant vanishes. If Ai2,j2 = 0 and
the determinant does not vanish, then again Ai1,j2 = Ai2,j1 = Ai1,j1 = 1 and the
determinant equals −1. In the latter case we say that (i1, i2) and (j1, j2) are in a
Γ-configuration.

To estimate σ1σ2 from below, we take a particular column vector w in (4.2): the
(j1, j2), j1 < j2 entry of w is 1 if column (j1, j2) of Λ2A is nonzero; otherwise this
entry of w is zero. (The assumption Λ2A 6= 0 implies that w 6= 0.) By (4.2) we
have

σ1σ2 >
‖(Λ2A)w‖
‖w‖ . (4.3)

Since w is a vector of 0’s and 1’s, ‖w‖2 is the number of nonzero entries of
w, that is to say, the number of nonzero columns of Λ2A. We count the nonzero
columns (j1, j2), j1 < j2 of Λ2A as follows. Fix j2. There is a unique k = 1, . . . , h−1
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such that rk+1 + 1 6 j2 6 rk. If j1 is chosen among 1, . . . , rk+1, then there exist
(i1, i2) such that (i1, i2) and (j1, j2) are in a Γ-configuration, and otherwise not. It
follows that for our fixed j2, there are rk+1 values of j1 such that column (j1, j2) of
Λ2A is nonzero. We can vary j2 without changing k in rk − rk+1 ways, so Λ2A has
rk+1(rk− rk+1) nonzero columns corresponding to the same k. Summing over k, we
conclude that

‖w‖2 =

h−1∑

k=1

rk+1(rk − rk+1). (4.4)

By similar arguments we see that for 1 6 k < l 6 h, the vector (Λ2A)w has mkml

entries equal to −rl(rk− rl), and that all other entries of (Λ2A)w vanish. Therefore

‖(Λ2A)w‖2 =
∑

16k<l6h

mkml[rl(rk − rl)]
2. (4.5)

From (4.3), (4.4) and (4.5), we obtain

σ2
1σ

2
2 > ω ≡

∑

16k<l6h mkml[rl(rk − rl)]
2

∑h−1
k=1 rk+1(rk − rk+1)

. (4.6)

As we have noted above, we assume that h > 1, for otherwise A has rank 1. If h = 1
we define ω = 0.

We can improve the lower bound (4.6) by the following consideration. The
graph with adjacency matrix

(
0 A⊤

A 0

)
is isomorphic to the one with adjacency matrix

(
0 A

A⊤ 0

)
. Therefore we can repeat the work in this section with A⊤ replacing A. This

amounts to transposing the Ferrers diagram illustrated in Figure 2. Instead of (4.6)
we now have

σ2
1σ

2
2 > ω′ ≡

∑

16k<l6h m′km
′
l[r
′
l(r
′
k − r′l)]

2

∑h−1
k=1 r′k+1(r

′
k − r′k+1)

, (4.7)

where for i = 1, . . . , h we have r′i = m1 + · · · + mh−i+1 and m′i = rh−i+1 − rh−i+2

(rh+1 = 0).
Combining (4.6) and (4.7) we obtain

σ2
1σ

2
2 > ω∗ ≡ max{ω, ω′}. (4.8)

We are now ready to estimate σ2
1 from above.

Theorem 4.1 Let D = {d1 > d2 > · · · > dm} be a set of positive integers,
where d1 > dm. Then

λmax(GD)2 6
e(GD) +

√

e(GD)2 − 4ω∗(GD)

2
, (4.9)

where ω∗(GD) is defined in (4.8). Assume that in the Ferrers diagram given in
Figure 2 h = 2. I.e. the degree of the vertices in each group of GD have exactly two
distinct values. Then equalities hold in (4.6), (4.7), (4.8) and (4.9). In particular

ω∗(D) = ω = ω′ = m1m2r2(r1 − r2). (4.10)
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Proof Since the eigenvalues of A⊤A are λmax(GD)2 = σ2
1, σ

2
2 , . . . , σ

2
r , 0, 0, . . ., we

have
∑r

i=1 σ2
i = trace A⊤A =

∑

i,j A2
i,j = e. Let us denote a = σ2

1 + σ2
2 , so that

a 6 e = e(GD), and b = σ2
1σ

2
2 , so that b > ω∗ by (4.8). Solving for σ2

1 we obtain

σ2
1 = a+

√
a2−4b
2 6

e+
√

e2−4ω∗

2 .
Assume that h = 2. Then A has rank 2, Λ2A has rank 1, and a = e. Furthermore

the definitions of ω, ω′ yield the equalities (4.10). To complete the proof, we show
that equality holds in (4.3) and therefore also in (4.6), i.e., b = ω.

Since Λ2A has rank 1 and its elements are only 0 and −1, all its nonzero rows
are equal. Say it has c nonzero rows, each with d elements of −1. The trace of
(Λ2A)⊤(Λ2A) is the sum of squares of the singular values of Λ2A, which equals
(σ1(Λ2A))2 = σ2

1σ
2
2 in our case. This trace also equals the sum of squares of the

elements of Λ2A, namely cd.
On the other hand, our chosen vector w satisfies ‖w‖2 = d and ‖(Λ2A)w‖2 = cd2

(because each of the c nonzero rows of Λ2A multiplied by w gives −d). Hence
‖(Λ2A)w‖2
‖w‖2 = cd. Thus both sides of (4.3) are equal to

√
cd. �

We suspect that under the conditions of Theorem 4.1 for h > 3 one has strict
inequality in (4.9).

5 A Minimization Problem

The first step in proving Conjecture 1.2 is to show its validity in the case h = 2 in
Figure 2. We note that for h = 2, (4.9) is tight by Theorem 4.1. Theorem 4.1 also
implies that equality holds in (4.6), (4.7) and (4.8). This motivates us to consider
the problem of minimizing ω∗(G).

Let n1 := r2, n2 := r1 − r2. Then the condition that the chain graph G has e

edges is equivalent to
m1n1 + m1n2 + m2n1 = e. (5.1)

Formula (4.6) for the case h = 2 gives

ω = m1m2n1n2. (5.2)

Let K2(p, q, e) ⊆ K(p, q, e) be set of all subgraphs of Kp,q isomorphic to some GD

whose Ferrers diagram, given in Figure 2, satisfies the condition h = 2. By the above
discussion for h = 2, the problem of finding maxG∈K2(p,q,e) λmax(G) is equivalent to
the following minimization problem over the integers.

Problem 5.1 Let p, q and e be integers satisfying 2 6 p 6 q and 3 6 e < pq.
Find the minimum of m1m2n1n2 in positive integers m1, m2, n1 and n2 satisfying
m1 + m2 6 p, n1 + n2 6 q and the constraint (5.1).

Note if p = q, then Problem 5.1 remains invariant under the duality of exchang-
ing (m1,m2) with (n1, n2). Conjecture 1.2 implies that any minimal solution of
Problem 5.1 satisfies the condition min(m2, n2) = 1.

In order to prove Conjecture 1.2 in the cases discussed in Theorem 8.1 we need
to consider a problem of minimizing m1m2n1n2 under certain constraints, where
m1, m2, n1 and n2 are real numbers. We start with the following simple lemma.
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Lemma 5.2 Let b, b and e be positive real numbers satisfying e > a+b. Assume
that

ax + by = e, 1 6 x, 1 6 y. (5.3)

Then

xy > min

(
e− a

b
,
e− b

a

)

. (5.4)

Equality holds if and only if

1. x = 1 when a < b;

2. y = 1 when b < a;

3. x = 1 or y = 1 when a = b.

Proof Set by = e − ax and observe that f(x) := byx = (e − ax)x. Note that f

is a parabola, with its maximum at x0 := e
2a

. So f is decreasing for x > x0 and

increasing for x < x0. The minimum of xy = f
b
, given the constraints x > 1, y > 1

is achieved only when x = 1 and y = e−a
b

> 1 (the minimum possible value of x), or

when y = 1 and x = e−b
a

> 1 (where x is the maximum possible value). For a < b

and x = 1 we have xy = e−a
b

, which is the LHS of (5.4). For b < a and y = 1 we

have xy = e−b
a

, which is the RHS of (5.4). �

Proposition 5.3 Let 2 6 r, e ∈ N and assume that

e = lr + r − 1, r 6 p, q 6 l + 1 +
l

r − 1
. (5.5)

Let G = (V,W,E) ∈ K(p, q, e). Then #V > r and #W > r.

Proof Assume to the contrary that #V 6 r−1. Since G is not a complete bipartite
graph,

e < (r − 1)q 6 (r − 1)

(

l + 1 +
l

r − 1

)

= lr + r − 1 = e,

which is impossible. Replacing q by p we deduce that #W > r. �

Hence if p, q and e satisfy (5.5), then for D ∈ K2(p, q, e) we must have m1 + m2 > r

and n1+n2 > r. Since m1, m2, n1, n2 are positive integers, they satisfy the following
constraints

m>1, m2 > 1, n1 > 1, n2 > 1, m1 + m2 > r, n1 + n2 > r. (5.6)

Theorem 5.4 Let 2 6 r ∈ N, e ∈ [r2 + 1,∞) and consider the minimum of
ω = m1m2n1n2 subject to m1, m2, n1, n2 ∈ R, (5.1) and (5.6). Then the minimum

is (r−1)(e−r+1)
r

, and it is achieved only in one of the two cases

(m1,m2) = (r − 1, 1), (n1, n2) =

(
e− r + 1

r
, 1

)

(5.7)

(m1,m2) =

(
e− r + 1

r
, 1

)

, (n1, n2) = (r − 1, 1). (5.8)
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Proof Let ω be the minimum value of ω subject (5.1) and (5.6). Note that since for

the values of m1, m2, n1, n2 given in (5.7) we have ω = (r−1)(e−r+1)
r

, we deduce that

ω 6
(r−1)(e−r+1)

r
. Since all the functions are symmetric in (m1,m2) and (n1, n2),

we will always assume that m1 + m2 6 n1 + n2. As m1 > 1 and m2 > 1, we have
(m1 − 1)(m2 − 1) > 0, which implies m1m2 > m1 + m2 − 1. Similarly n1n2 >

n1 + n2 − 1. Thus

ω = m1m2n1n2 > (m1 + m2 − 1)(n1 + n2 − 1) > (m1 + m2 − 1)2.

Suppose that m1 + m2 >
e
r
. Then

ω > (m1 + m2 − 1)2 >

(e

r
− 1
)2

=
(e− r)2

r2
.

Since e > r2 + 1 and r > 2, we obtain

(e− r)2 − r(r − 1)(e − r + 1) = (e− r2 − 1)(r2 − r + 2) + 1 > 0 · 0 + 1.

Hence ω >
(r−1)(e−r+1)

r
if m1 +m2 >

e
r
. Thus to find the value of ω, we may assume

that m1 + m2 < e
r
.

Fix m1, m2 that satisfy the conditions

m1 > 1, m2 > 1,
e

r
> m1 + m2 > r. (5.9)

Now let us find the minimum of n1n2 subject to n1 > 1, n2 > 1 and (5.1). The
constraint (5.1) is equivalent to (5.3) with a = m1 +m2, b = m1, x = n1 and y = n2.
Also a + b = 2m1 + m2 < r(m1 + m2) 6 e. Since a > b, Lemma 5.2 implies that
n1n2 is at a minimum when

n2 = 1, n1 := n1(e,m1,m2) =
e− b

a
=

e−m1

m1 + m2
. (5.10)

Clearly

n1(e,m1,m2) >
e− (m1 + m2)

m1 + m2
>

e− e
r

e
r

= r − 1 > 1,

and hence n1(e,m1,m2)+1 > r. Thus the problem of minimizing m1m2n1n2 subject
to (5.1) and (5.6) is equivalent to the problem

minimize τ := m1m2n1(e,m1,m2) =
(e−m1)m1m2

m1 + m2
subject to (5.9). (5.11)

Fix m1. Since the function t
m1+t

increases for t > 0, the minimum of τ in (5.11)
is achieved only in the following two cases:

1. Case 1: m2 = r −m1 if 1 6 m1 6 r − 1;

2. Case 2: m2 = 1 if m1 > r − 1.

Consider first Case 1. Assume first that r = 2. Then m1 = m2 = 1, and the
minimum of τ subject to Case 1 is (e−1)

2 .

Now assume that r > 3. Then τ = f(m1), where f(t) := t(r−t)(e−t)
r

. Note that
f(t) is a cubic with zeros at 0, r and e. Also f(t) < 0 for t < 0 and f(t) > 0 for
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t > e. Hence f ′(t) = 0 for some t = t1 ∈ (0, r) and some t = t2 ∈ (r, e). Note that
f(t) increases on (−∞, t1) and decreases on (t1, t2).

We need to find mint∈[1,r−1] f(t). Clearly

rf ′(t) = (r − t)(e− t)− t(e− t)− t(r − t) = (r − 2t)(e − 2t)− t2.

As (r− 2)(e− 2) > e− 2 > r2 − 1 > 8, we deduce that f ′(1) > 0. As r− 2(r− 1) =
2 − r < 0 and (e − 2r + 2) > (r2 − 2r + 3) = (r − 1)2 + 2 > 0, it follows that
f ′(r − 1) < 0. So 1 < t1 < r − 1. Hence

min
t∈[1,r−1]

f(t) = min(f(1), f(r − 1)) = f(r − 1) =
(e− r + 1)(r − 1)

r
,

which is achieved only for m1 = r − 1 and m2 = 1.
We now consider Case 2. In this case τ = g(m1), where

g(t) =
(e− t)t

t + 1
= e + 1− t− e + 1

t + 1
.

Thus on [0,∞), the function g′(t) vanishes at the point

t0 =
√

e + 1− 1 >
√

r2 − 1 = r − 1.

Note that t0 is the unique solution of (5.1), where m1 = n1 = t and m2 = n2 = 1. So
f(t) increases on [0, t0] and decreases on the interval [t0,∞). Our assumption that
m1 + m2 = m1 + 1 6 n1 + n2 = n1 + 1 is equivalent to m1 6 n1. So m1 6 t0 6 n1.
The assumption that m1+m2 = m1+1 > r means that m1 > r−1. Hence g(m1) has
a unique minimum at m1 = r − 1. This corresponds to n1 = e−r+1

r
. Interchanging

(m1,m2) with (n1, n2) obtain the second solution (m1,m2) = (e−r+1
r

, 1), (n1, n2) =
(r, 1). �

Theorem 5.5 Suppose one of the following conditions holds.

1. r = 2, e > 3 is odd and 2 6 p 6 q, l = e−1
2 < q.

2. 3 6 r ∈ N and (5.5) holds.

Then minG∈K2(p,q,e) λmax(G) is achieved only for GD isomorphic to the graph ob-
tained from Kr−1,l+1 by adding one vertex to the group of r − 1 vertices and con-
necting it to l vertices in the group of l + 1 vertices.

Proof Assume that GD has the Ferres diagram given in Figure 2 with h = 2. Let
n1 = r2 and n2 = r1 − r2. Assume first that r = 2 and 3 6 e is odd. Then m1 > 1,
m2 > 1, n1 > 1 and n2 > 1, so m1 + m2 > 2 and n1 + n2 > 2. Then for e > 5
the theorem follows from Theorem 5.4 for r = 2 and Theorem 4.1. For e = 3 the
theorem is trivial. For r > 3 the theorem follows from Proposition 5.3, Theorem 5.4
and Theorem 4.1. �
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6 A special case of Problem 5.1

We now discuss a special case of Problem 5.1 that is not covered by Theorem 5.4.

Theorem 6.1 Let e = 3k+1, where k > 7 is an integer. Consider the minimum
of ω = m1m2n1n2, where m1, m2, n1 and n2 are positive integers satisfying the
constraints m1(n1 + n2) + m2n1 = e, m1 + m2 > 3, n1 + n2 > 3; in other words,
(5.1) and (5.6) with r = 3 hold. Then the minimum of ω is 2k, and it is achieved
if and only one of the following cases holds:

(m1,m2) = (1, 2), (n1, n2) = (k, 1) (6.1)

(m1,m2) = (k, 1), (n1, n2) = (1, 2). (6.2)

Proof Clearly, if (6.1) or (6.2) holds, then ω = 2k. Thus it is enough to show
that for all integer values of m1, m2, n1 and n2 satisfying the constraints that are
different from the values given in (6.1) and (6.2), we have ω > 2k.

Since we can interchange m1 with n1 and m2 with n2, we assume without loss
of generality that n1 + n2 > m1 + m2. We denote the product m1m2 by X. Since
m1 + m2 > 3, it follows that X > 2.

Case 1: m1 + m2 > k. Since n1 + n2 > m1 + m2 > k, we have m1m2 > k − 1
and n1n2 > k − 1. This implies ω = m1m2n1n2 > (k − 1)2 > 2k since k > 7.

Case 2: 3 < m1+m2 < k. Hence X > 3. Suppose X > k−1. Since n1+n2 > 4,
we have n1n2 > 3. Thus ω = m1m2n1n2 > 3(k − 1) > 2k since k > 7.

So for the remaining part of Case 2 we assume that X < k − 1, and hence
⌊

2k
X

⌋
> 2. We will now show that n1n2 >

⌊
2k
X

⌋
+ 1, from which it will follow that

ω = Xn1n2 > X 2k
X

= 2k, as required.

Assume to the contrary that n1n2 <
⌊

2k
X

⌋
+ 1. Since n1n2 6

⌊
2k
X

⌋
we have

n1 + n2 6
⌊

2k
X

⌋
+ 1, and hence n1 6

⌊
2k
X

⌋
. We now obtain an upper bound for e.

Clearly

e = m1(n1 + n2)+ m2n1 6 m1

(⌊
2k

X

⌋

+ 1

)

+ m2n1 6 m1

(⌊
2k

X

⌋

+ 1

)

+ m2

⌊
X

2k

⌋

.

Observe that that for any 0 < a ∈ R we have the inequality

m1(a + 1) + m2a 6 m1m2(a + 1) + a = X(a + 1) + a

and hence

e 6 X

(⌊
2k

X

⌋

+ 1

)

+

⌊
2k

X

⌋

= X

⌊
2k

X

⌋

+ X +

⌊
2k

X

⌋

. (6.3)

Let f(x) = x + 2k
x

. Since f is strictly convex on (0,∞), it follows that f(X) 6

max(f(3), f(k − 2)) = max(3 + 2k
3 , k − 2 + 2k

k−2). Hence f(X) < k + 1 for k > 6.

We also note that in the range [3, k − 2], f(x) has a unique minimum at x =
√

2k.
Furthermore, f(x) is strictly increasing after that point.

Consider the function g(x) = x+
⌊

2k
x

⌋
on the interval x ∈ (0,∞). Note that g(x)

is piecewise linear, where each linear piece has slope 1, and is continuous from the
left, with jumps at xi = 2k

i
for i ∈ N. So g(xi) = f(xi) for i ∈ N , and g(x) < f(x)

if 0 < x 6= xi for i ∈ N . This implies g(X) = X +
⌊

2k
X

⌋
6 f(X) < k + 1 for k > 6.

15



Since g(X) is an integer, we deduce that g(X) 6 k when k > 6 and X ∈ [3, k − 2].
Use (6.3) to deduce that

e 6 X

⌊
2k

X

⌋

+ g(X) 6 X
2k

X
+ g(X) 6 2k + k = 3k.

This contradicts the assumption that e = 3k + 1, and completes Case 2.
Case 3: m1 + m2 = 3. Then m1m2 = 2 and e = 3n1 + m1n2. Assume first that

m1 = 2 and m2 = 1. Since e = 3k+1 it follows that n2 > 2. So 3n1n2 = n2(e−2n2).
Since e > 22, the minimum of n1n2 is achieved either for n2 = 2 or for the maximum
possible value of n2 obtained when n1 = 1. For n2 = 2 we have n1 = k − 1 and
ω = 4(k − 1) > 2k if k > 2. For n1 = 1 we have n2 = e−3

2 , which may not be an
integer, and ω = (e− 3) = 3k − 2 > 2k for k > 2.

Assume finally that m1 = and m2 = 2. Then e = 3n1 + n2. Lemma 5.2 yields
that n1n2 >

e−1
3 = k, and equality holds if and only if n2 = 1 and n1 = k. This

completes Case 3 and the proof of the theorem. �

We used software to show that Theorem 6.1 holds for k = 2, 3, 4, 5, 6.

7 C-matrices

Let R
p
+ց := {c = (c1, . . . , cp) ∈ R

p, c1 > · · · > cp > 0}. With each c ∈ R
p
+ց we

associate the following symmetric matrix.

M(c) = [cmin(i,j)]
p
i,j=1. (7.1)

The following result is well-known [4, §3.3, pp.110–111].

Proposition 7.1 Let c = (c1, . . . , cp) ∈ R
p
+ց. Then all the minors of M(c) are

nonnegative. In particular M(c) is a nonnegative definite matrix. If c1 > · · · > cp >

0, then all the principal minors of M(c) are positive, i.e., M(c) is positive definite.

Corollary 7.2 Let c = (c1, . . . , cp) ∈ R
p
+ց. Then the rank of M(c) is equal to

the number of distinct positive elements in {c1, . . . , cp}.

Proof Let {ci1 , . . . , cik} be the set of all distinct positive elements in {c1, . . . , cp}.
Hence the rank of M(c) is at most k. Let F be the principal submatrix of M(c)
based on the rows and columns {i1, . . . , ik}. Proposition 7.1 yields that rank F = k.�

In what follows we assume that c = (c1, . . . , cp) ∈ R
p
+ց unless stated otherwise.

Assume that c1 > · · · > cm > 0 = cm+1 = · · · = cp. Denote by c+ := (c1, . . . , cm).
Then M(c+) is the principal submatrix of M(c) obtained from M(c) by deleting
the last p−m zero rows and columns. Let

λ1(c) > λ2(c) > · · · > λp(c) > 0

be the p eigenvalues of M(c). Let m′ be the number of distinct elements in
{c1, . . . , cm}. Corollary 7.2 yields that M(c) has exactly m′ positive eigenvalues
and λi(c) = λi(c+) for i = 1, . . . ,m.
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Let Sm(R) be the space of m × m real symmetric matrices. Since λ1(M) is a
convex function on Sm(R) by

max
‖z‖=1

z⊤
A + B

2
z 6

max‖x‖=1 x⊤Ax + max‖y‖=1 y⊤By

2
,

we obtain the following result.

Proposition 7.3 Let C ⊂ R
p
+ց be a compact convex set. Let E(C) be the set of

the extreme points of C. Then maxc∈C λ1(c) = maxc∈E(C) λ1(c).

We show that λ1(GD) = λ1(d) for a corresponding vector d ∈ R
p
+ց. Let D =

{d1 > d2 > · · · > dm} be a set of positive integers. Assume that m 6 p and let
d = (d1, . . . , dm, 0, . . . , 0) ∈ R

p
+ց. Let G(d) denote the chain graph with degrees

d, that is to say the chain graph GD with p−m additional isolated vertices, where
D = {d1, . . . , dm}. Let A(d) be the representation matrix of G(d). Note that A(d+)
is the representation matrix of GD. Clearly A(d)A(d)⊤ = M(d). Hence

λmax(GD)2 = λ1(d) = λ1(d+). (7.2)

Thus M(d) can be viewed as a continuous version of G(d). The main idea of
the proof of Conjecture 1.2, under the conditions discussed in the Introduction, is
to replace the maximum discussed in Problem 1.1 with the maximization problem
discussed in Proposition 7.3 with a carefully chosen C.

We now bring a few inequalities for λ1(d) needed later, which can be viewed as
a generalizations of Proposition 2.1 and Theorem 4.1.

Proposition 7.4 Let c = (c1. . . . , cp) ∈ R
p
+ց. Then

e(c) := trace M(c) =

p
∑

i=1

ci =

p
∑

i=1

λi(c), (7.3)

p
∑

i=1

λi(c)
2 = trace M(c)2 =

p
∑

i=1

(2i− 1)c2
i , (7.4)

∑

16i<j6p

λi(c)λj(c) =
∑

16i<j6p

cj(ci − cj). (7.5)

Hence λ1(c) 6 e(c). Equality holds if and only if M(c) has rank one. Moreover,

λ1(c) 6

√
√
√
√

p
∑

i=1

(2i− 1)c2
i . (7.6)

A sharper upper estimate of λ1(c) for p > 2 is given as follows. Assume that the
set {c1, . . . , cp} consists of h > 2 distinct positive numbers. Then

λ1(c) 6
(2αh − 1)e(c) +

√

e(c)2 − 4αhβ

2αh

, (7.7)
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where

αh =
h

2(h− 1)
, β =

∑

16i<j6p

cj(ci − cj).

For a fixed β, the right-hand side of (7.7) is an increasing sequence for h = 2, 3, . . .,
and its limit as h→∞ is the right-hand side of (7.6).

Proof The equalities (7.3), (7.4) are straightforward. The equality (7.5) follows
from them and the identity

2
∑

16i<j6p

λiλj =

(
p
∑

i=1

λi

)2

−
p
∑

i=1

λ2
i . (7.8)

Since all λi(c) are real, the inequality (7.6) follows from (7.4).
We now show how the estimate (7.7) follows from (7.5). By Corollary 7.2 the

rank of M(c) is exactly h, and therefore exactly h eigenvalues of M(d) are positive.
Thus in the left-hand side of the equalities (7.3)–(7.5), i and j can run from 1 to h

only. For h = 2, (7.7) follows with equality from (7.3) and (7.5).
Assume that h > 3. We let λ1(c) = x and e(c) = e and rewrite (7.5) as follows:

x(e− x) = β −
∑

26i<j6h

λi(c)λj(c). (7.9)

In (7.9) we are free to choose λ2(c), . . . , λh(c) subject to x +
∑

26i6h λi(c) = e, and
wish to maximize x.

Observe that the right-hand side of (7.9) is always nonnegative by (7.5) and
the definition of β. Thus (7.9) has two solutions x between 0 and e, and we
are interested in the larger one and want to maximize it. This is equivalent to
choosing λ2(c), . . . , λh(c) so as to minimize the right-hand side of (7.9), or equiva-
lently to maximize

∑

26i<j6h λi(c)λj(c). It is well-known that a sum of the form
∑

16i<j6k aiaj can only increase if the ai are each replaced by their arithmetic

mean
P

ai

k
. Indeed, (

∑
1 · ai)

2 6 (
∑

12)(
∑

a2
i ) = k

∑
a2

i . Therefore 2
∑

i<j aiaj =

(
∑

ai)
2 −∑ a2

i 6 (
∑

ai)
2 − 1

k
(
∑

ai)
2 = (

∑
ai)

2 k−1
k

= 2
(
k
2

) (P

ai

k

)2
.

Thus the upper estimate on x is achieved if we set each of λ2(c), . . . , λh(c) equal
to y. Then x and y are subject to x + (h − 1)y = e and x(e − x) +

(
h−1

2

)
y2 = β.

Eliminating y, we see that x should satisfy

x(e− x) +
h− 2

2(h− 1)
(e− x)2 = β, (7.10)

and the larger solution of (7.10) yields (7.7) for h > 3.
The left-hand side of (7.10) is a quadratic in x, which is positive for 0 < x < e

and increases with h. Therefore the larger solution of (7.10) increases with h. When
we take (7.10) to the limit h→∞, we obtain x(e−x)+ 1

2 (e−x)2 = β, or equivalently

x2 = e2 − 2β =

p
∑

i=1

(2i− 1)c2
i , (7.11)

and the positive solution of (7.11) is equal to the right-hand side of (7.6). �
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8 A proof of Conjecture 1.2 in certain cases

Theorem 8.1 Let 2 6 r 6 l be two positive integers. Assume that e = rl+r−1.
Suppose one of the following conditions holds:

1. r = 2 and 2 6 p 6 q, l = e−1
2 < q;

2. 3 6 r 6 l and r 6 p 6 l + 1 6 q 6 l + 1 + l
r−1 .

Let Gr,l+1 be the graph obtained from Kr−1,l+1 by adding one vertex to the group of
r − 1 vertices and connecting it to l vertices in the group of l + 1 vertices. Then
λmax(G) 6 λmax(Gr,l+1), for all G ∈ K(p, q, e). Equality holds if and only if G is
isomorphic to Gr,l+1.

Proof Corollary 3.6 implies that in order to find maxG∈K(p,q,e), it is enough to
consider graphs GD = (U, V,E), for some D = {d1 > d2 > · · · > dm}, where m 6 p

and d1 6 q. We are going to assume that #U = m 6 #V = d1 (if this is not
satisfied consider the isomorphic graph G′D = (V,U,E)). Let d = (d1, . . . , dm) be
the degree sequence of D.

SinceK(e, p, q) does not contain a complete bipartite graph, we know that m > 2.
Proposition 5.3 yields that m > r for r > 3. Let δi := di − dm for i = 1, . . . ,m. We
define s by δs > 0 = δs+1 = · · · = δm, and put δ := (δ1, . . . , δs)

⊤. Thus switching
from d to δ amounts to deleting the first dm columns of the Ferrers diagram of
d, and then deleting empty rows. The resulting Ferrers diagram has a total of
e′ := e −mdm =

∑s
i=1 δi components equal to 1 and the rest are zero. Note that

δ1 6 q − dm. As h > 2, we have that δs > 1. Hence e′ 6 e− 1 and e′

s
> 1.

We now consider the following polyhedron in R
s:

P := {(x1, . . . , xs)
⊤ ∈ R

s, x1 > x2 > · · · > xs > 0,

s∑

i=1

xi = e′}. (8.1)

Using the notation

1n,i := (1, . . . , 1
︸ ︷︷ ︸

i

, 0, . . . , 0)⊤ ∈ R
n, i = 1, . . . , n, (8.2)

it is clear that the extreme points of P are e′

i
1l,i, i = 1, . . . , s.

Let us define

ai(d) = (a1,i, . . . , am,i)
⊤ :=

e′

i
1m,i + dm1m,m, i = 1, . . . , s. (8.3)

We note that d ∈ C(d) := conv {a1(d), . . . ,as(d)}. Indeed, δ ∈ P , and therefore
there exist α1, . . . , αs > 0 satisfying

∑s
i=1 αi = 1 and

∑s
i=1 αi

e′

i
1l,i = δ. Then

s∑

i=1

αiai(d) =

s∑

i=1

αi

(
e′

i
1m,i + dm1m,m

)

=

(
s∑

i=1

αi
e′

i
1m,i

)

+ dm1m,m

(d1, . . . , ds, dm, . . . , dm)⊤ = (d1, . . . , ds, ds+1, . . . , dm)⊤ = d.
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Since d is a convex combination of a1(d), . . . ,as(d), it follows that M(d) is the same
convex combination of M(a1(d)), . . . ,M(as(d)). Combine (7.2) with Proposition 7.3
to obtain

λmax(GD)2 = λ1(M(d)) 6 max
16k6l

λ1(M(ak(d))). (8.4)

The vector ak(d) has the form ak(d) = (x, . . . , x
︸ ︷︷ ︸

k

, y, . . . , y
︸ ︷︷ ︸

m−k

)⊤ with x = e′

k
+ dm and

y = dm. Therefore the first k rows of M(ak(d)) are equal to ak(d) and the last m−k

rows are equal to y1m,m. Proposition 7.1 and Corollary 7.2 yield that M(ak(d)) is
a nonnegative definite matrix of rank 2. It satisfies

λ1(M(ak(d))) + λ2(M(ak(d))) = trace M(ak(d)) = k

(
e′

k
+ dm

)

+ (m− k)dm = e.

(8.5)
The product λ1(M(ak(d)))λ2(M(ak(d))) is equal to the sum

∑

i<j

λi(M(ak(d)))λj(M(ak(d))),

which in turn equals the coefficient of λm−2 in the characteristic polynomial
∏

i

(λ− λi(M(ak(d)))).

This coefficient equals in turn the sum of all 2 × 2 principal minors of M(ak(d)).
There are k(m − k) contributing minors, each of the form det

(
x y
y y

)
= y(x − y).

Therefore

λ1(M(ak(d)))λ2(M(ak(d))) = ω(ak(d)) := k(m− k)
e′

k
dm. (8.6)

Hence

λ1(M(ak(d))) =
e +

√

e2 − 4ω(ak(d))

2
. (8.7)

Thus the maximum possible value of λ1(M(ak(d))) is achieved for the minimum
value of ω(ak(d)). This situation corresponds to the minimization problem we
studied in Theorem 5.4. We put

m1 = k, m2 = m− k, n1 = dm, n2 =
e′

k
.

Clearly m1 > 1 and n1 > 1. Also m2 = m − k > s + 1 − k > 1 and n2 = e′

k
>

e′

s
> 1. Recall that m = m1 + m2 > r. We claim that for each 2 6 r ∈ N, the

inequality n1 + n2 > r holds. For r = 2 this inequality follows from the inequalities
n1 > 1, n2 > 1. Assume now that r > 3. Observe that

n1 + n2 = dm +
e′

k
> dm +

e′

s
> dm +

e′

m− 1
= dm +

e−mdm

m− 1
=

e− dm

m− 1
.

Recall that GD is not complete bipartite. Since d1 > · · · > dm, we deduce that
dm 6

e−1
m

. Hence
e− dm

m− 1
> f(m) :=

e

m− 1
+

1

m(m− 1)
.
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So f(m) is a decreasing function for m > 1. For m = p = l + 1, obtain f(l + 1) >
e
l

= rl+r−1
l

> r if r > 3. Hence n1 + n2 > r for any r > 2. Theorem 5.4 implies the
inequality

ω(ak(d)) 6
(r − 1)(e − r + 1)

r
. (8.8)

Hence

λ1(M(ak(d))) 6
e +

√

e2 − ( (r−1)(e−r+1)
r

)2

2
= λmax(Gr,l+1)

2,

where the last equality follows from Theorem 4.1. We use (8.4) to deduce

λmax(GD) 6 λmax(Gr,l+1) for any GD ∈ K(p, q, e). (8.9)

It is left to show that equality holds in (8.9) if and only if D = D∗ := {d1 = · · · =
dr−1 = l + 1 > dr = l}. Let d∗ = (l + 1, . . . , l + 1, 1) be the corresponding degree
sequence of D∗. We now consider the equality case in (8.8). Theorem 5.4 asserts
that equality holds only if one of the two conditions in (5.7) holds.

Assume first that the first condition of (5.7) holds. So n1 = e−r+1
r

= l. On
the other hand n1 = dm. So dm = l. Also m = m1 + m2 = r − 1 + 1 = r.
Furthermore, n2 = e′

k
= 1. This can happen if and only if δ1 = · · · = δk = 1. Hence

d1 = · · · = ds = l + 1 and ds+1 = dr = l. Since e = lr + r − 1, we deduce that
s = r − 1.

Assume now that the second condition holds in (8.8). So dm = n1 = r − 1 and
e′

k
= 1. Hence d1 = · · · = ds = r > ds+1 = · · · = dm = r−1. We have m1 = e−r+1

r
=

l = k and m2 = 1. So m = m1 + m2 = l + 1. Since e = rl + r − 1, we deduce that
s = r − 1. Hence D = D∗ = {d1 = · · · = dl = r > dl+1 = r − 1}. Note that GD∗

is isomorphic to GD∗ = Gr,l+1 = (U∗, V∗, E). More precisely, GD∗ = (V∗, U∗, E).
Assume first that r > 3. Then #V∗ = l + 1 > r = #U∗. This case is ruled out
since we agreed to consider only GD = (U, V,E) where #U 6 #V . If r = 2, then
#V∗ = e+1

2 = l + 1 and #U = 2. If e > 5, then this case is ruled out as above. If
e = 3, then any G ∈ K(2, 2, 3) is isomorphic to G2,2, and the theorem trivially holds
in this case. In particular any GD ∈ K(2, 2, 3) is equal to GD∗ .

Let GD = (U, V,E) ∈ K(p, q, e), and assume that #U 6 #V and D 6= D∗.
The above arguments show that ω(ak(d)) > ω(ar−1(d∗)) for k = 1, . . . , s. Hence
λ1(M(ak(d)) < λmax(Gr,l+1)

2 for k = 1, . . . , s, and (8.4) yields that λmax(GD) <

λmax(Gr,l+1)
2. �
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