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The maximum number of perfect matchings in graphs

with a given degree sequence

Noga Alon∗ Shmuel Friedland†‡

Abstract

We show that the number of perfect matchings in a simple graph G with an

even number of vertices and degree sequence d1, d2, . . . , dn is at most
∏

n

i=1
(di!)

1

2di .
This bound is sharp if and only if G is a union of complete balanced bipartite
graphs.
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1 Introduction

Let G = (V,E) be an undirected simple graph. For a vertex v ∈ V , let deg v denote
its degree. Assume that |V | is even, and let perfmatG denote the number of perfect
matchings in G. The main result of this short note is:

Theorem 1.1

perfmatG ≤
∏

v∈V

((deg v)!)
1

2 deg v , (1.1)

where 0
1
0 = 0. If G has no isolated vertices then equality holds if and only if G is a

disjoint union of complete balanced bipartite graphs.

For bipartite graphs the above inequality follows from the Bregman-Minc In-
equality for permanents of (0, 1) matrices, mentioned below.

The inequality (1.1) was known to Kahn and Lovász, c.f. [3, (7)], but their
proof was never published, and it was recently stated and proved independently
by the second author in [5]. Here we show that it is a simple consequence of the
Bregman-Minc Inequality.

After our note was published [1], it was pointed out to us that the inequality that
permanent of the adjacency matrix dominates the square of the number of perfect
matching is due to Gibson [6], and the inequality (1.1) appears in [4, (3.6),p’136].
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2 The proof

Let A be an n × n (0, 1) matrix, i.e. A = [aij ]
n
i,j=1

∈ {0, 1}n×n. Denote ri =∑n
j=1

aij, i = 1, . . . , n. The celebrated Bregman-Minc inequality, conjectured by
Minc [7] and proved by Bregman [2], states

permA ≤
n∏

i=1

(ri!)
1
ri , (2.1)

where equality holds (if no ri is zero) iff up to permutation of rows and columns A

is a block diagonal matrix in which each block is a square all-1 matrix.

Proof of Theorem 1.1: The square of the number of perfect matchings of G counts
ordered pairs of such matchings. We claim that this is the number of spanning 2-
regular subgraphs H of G consisting of even cycles (including cycles of length 2
which are the same edge taken twice), where each such H is counted 2s times, with
s being the number of components (that is, cycles) of H with more than 2 vertices.
Indeed, every union of a pair of perfect matchings M1,M2 is a 2-regular spanning
subgraph H as above, and for every cycle of length exceeding 2 in H there are two
ways to decide which edges came from M1 and which from M2.

The permanent of the adjacency matrix A of G also counts the number of span-
ning 2-regular subgraphs H ′ of G, where now we allow odd cycles and cycles of
length 2 as well. Here, too, each such H ′ is counted 2s times, where s is the number
of cycles of H ′ with more than 2 vertices, (as there are 2 ways to orient each such
cycle as a directed cycle and get a contribution to the permanent). Thus the square
of the number of perfect matchings is at most the permanent of the adjacency ma-
trix, and the desired inequality follows from Bregman-Minc by taking the square
root of (2.1), where the numbers ri are the degrees of the vertices of G.

It is clear that if G is a vertex-disjoint union of balanced complete bipartite
graphs then equality holds in (1.1). Conversely, if G has no isolated vertices and
equality holds, then equality holds in (2.1), and no ri is zero. Therefore, after
permuting the rows and columns of the adjacency matrix of G it is a block diagonal
matrix in which every block is an all-1 square matrix, and as our graph G has no
loops, this means that it is a union of complete balanced bipartite graphs, completing
the proof. 2
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